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Classical theory of cylindrical nonlinear optics: Second-harmonic generation
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1Wuhan National Laboratory for Optoelectronics and School of Physics, Huazhong University of Science
and Technology, Wuhan 430074, People’s Republic of China

2School of Physics, Ludong University, Yantai 264025, People’s Republic of China
(Received 16 December 2010; published 29 June 2011)

The second-harmonic generation of cylindrical electromagnetic waves in a nonlinear nondispersive medium is
investigated two separate ways. One method uses the exact solutions of the Maxwell equations, which describe
propagation of cylindrical electromagnetic waves, and the other method uses the traditional coupled-wave
equations, which are derived from the interaction between cylindrical electromagnetic waves and a nonlinear
nondispersive medium. The results obtained by these two methods are concordant with each other. We also show
that both methods are useful in dealing with the problem of cylindrical second-harmonic generation and each of
them has particular advantages in several aspects. The method of using the exact solution can solve problems
of second-harmonic generation under initial-value and boundary-value conditions and the approach of using
coupled-wave equations can be directly extended to describe other nonlinear phenomena such as sum-frequency
and four-wave mixing.
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I. INTRODUCTION

Electromagnetic wave propagation in nonlinear media is a
fundamental problem in physics and many interesting electro-
magnetic phenomena occur when the dielectric susceptibility
of a medium is a nonlinear function of the electric-field
amplitude [1–7]. One such electromagnetic phenomenon
is optical second-harmonic generation (SHG), which was
initially observed in quartz [3]. Since then a number of
important features of SHG have been found and SHG has
become one of the most intensively studied effects in nonlinear
optics [6–19]. For example, it has been widely used as a
noninvasive, noncontact probe of electronic and structural
properties of crystals [7]. A phenomenological approach to
describing nonlinear optics phenomena (including SHG) was
developed in the 1960s [4–7]. Most works on the subject of
nonlinear optics, including SHG, consider plane nonlinear
waves. The process of SHG is shown in Fig. 1(a). The
features of nonlinear optics with cylindrical or spherical waves
(so-called cylindrical or spherical nonlinear optics), however,
remain poorly studied [1,2]. Figure 1(b) shows a schematic
diagram of cylindrical harmonic generation. In this paper we
study SHG in cylindrical nonlinear optics, which are different
from the plane nonlinear optics phenomena.

In this article we employ two different methods to investi-
gate SHG of cylindrical electromagnetic waves in a nonlinear
nondispersive medium. First, following the method proposed
in Ref. [1] for constructing exact axisymmetric solutions of
the Maxwell equations in a nonlinear nondispersive medium,
we demonstrate that this exact axisymmetric solution, which
has been successfully used to discuss electromagnetic shock
waves [1], can also be used to describe the SHG of cylindri-
cal electromagnetic waves. Furthermore, this exact solution
method has particular advantages in several aspects. Our
study may be used in nonlinear resonators, nanoscale optical
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element, and optical regulation [1,6,7]. Second, we imitate
plane nonlinear optics to derive coupled-wave equations,
which describe the interaction between cylindrical electro-
magnetic waves and a nonlinear medium, to study the SHG
of cylindrical electromagnetic waves (discussed in detail in
Sec. III).

The outline of the paper is as follows. In Sec. II we
use exact solutions to investigate cylindrical SHG and show
that second-harmonic generation results quite naturally from
exact solutions. We also use an effective approximation to
simplify the exact solution and show that the method of
using exact solutions can solve problems of second-harmonic
generation under boundary-value conditions. In Sec. III we
derive coupled-wave equations to investigate the SHG of
cylindrical electromagnetic waves and compare the results
with the results obtained using the exact solution. We also
discuss the phase-matching condition of SHG in cylindrical
nonlinear optics in Sec. III. In Sec. IV we briefly discuss the
differences between our system and conical wave propagation;
a possible experimental setup is also shown schematically. Our
conclusions are summarized in Sec. V.

II. ANALYSIS OF SECOND-HARMONIC GENERATION BY
USING THE EXACT SOLUTION

A. Cylindrical wave propagation in an infinite medium

We considering a medium that possesses an axis of
symmetry [shown in Fig. 1(b)] that is taken as the z axis of a
cylindrical coordinate system (r,φ,z) and use the axisymmetric
model in which the fields are independent of φ and z to write
the Maxwell equations as [1]

∂H

∂r
+ H

r
= ε(E)

∂E

∂t
,

∂E

∂r
= µ0

∂H

∂t
, (1)

where H ≡ Hφ(r,t), E ≡ Ez(r,t), and ε(E) = dD/dE =
ε0ε1exp(αE), with ε1 and α known constants. Thus
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FIG. 1. (Color online) (a) Schematic diagram of conventional
plane nonlinear optics. When a beam of light with base frequency
is incident upon a nonlinear medium, second- and higher-harmonic
generation occur. (b) Schematic diagram of cylindrical nonlinear
optics. The light source is placed on the axis of a nonlinear
medium and cylindrical electromagnetic waves are emitted. Second-
and higher-harmonic generation occur also when the cylindrical
electromagnetic waves with base frequency propagate in the nonlinear
medium; however, such harmonic generations are different from plane
harmonic generations.

P = D0 + ε0(ε1 − 1)E + ε0ε1αE2/2+· · · and χ (2) =ε1α/2.
The exact solution of such a system can be written as [1]

E = E
(

ρeαE/2,τ + Z0αρH

2
√

ε1

)
,

H =
√

ε1e
αE/2

Z0
H

(
ρeαE/2,τ + Z0αρH

2
√

ε1

)
, (2)

where E(ρ,τ ) and H(ρ,τ ) represent the solution of the linear
problem in Eq. (1) with α = 0, ρ = r/a, τ = t/

√
ε0ε1µ0a,

and Z0 = √
µ0/ε0, with a a constant with the dimension of

length.
We begin our discussion by considering cylindrical wave

propagation in an infinite medium. The solution of the
linear problem is E(r,t) = ζJ0(kr) cos(
t) and H(r,t) =
−ζJ1(kr) sin(
t), which when rewritten in terms of the vari-
able (ρ,τ ) becomes E(ρ,τ ) = ζJ0(kρa) cos(
τ

√
ε0ε1µ0a)

and H(ρ,τ ) = −ζJ1(kρa) sin(
τ
√

ε0ε1µ0a). From Eq. (2)
we can obtain the solution of the nonlinear problem:

E = ζJ0(kreαE/2) cos(
t + αµ0
rH/2),

H = −ζ

√
ε1e

αE/2

Z0
J1(kreαE/2) sin(
t + αµ0
rH/2). (3)

Here Jm is a Bessel function of the first kind of order m, ζ is
a constant, and k = 


√
ε0ε1µ0. The solution shows that the

electric field and magnetic field of the cylindrical electromag-
netic wave in a nonlinear medium are not separate but coupled
with each other. For simplicity we consider that H can be

approximately written as H ≈ γ sin(
t) at a certain r , where
γ = −ζ

√
ε1J1(kr)/Z0; then we can obtain E ∝ cos[
t +

γαµ0
r sin(
t)/2] = cos(
t) cos[γαµ0
r sin(
t)/2] −
sin[γαµ0
r sin(
t)/2] sin(
t). If α is small enough, ensur-
ing that αµ0
rH � 1, then cos[γαµ0
r sin(
t)/2] ≈ 1
and sin[γαµ0
r sin(
t)/2] ≈ γαµ0
r sin(
t)/2, so
we can obtain E ∝ cos(
t) − γαµ0
r sin2(
t)/2 =
cos(
t) + γαµ0
r cos(2
t)/4 − γαµ0
r/4. The term
−γαµ0
r/4 in the expression reflects optical rectification
or the photogalvanic effect. The term γαµ0
r cos(2
t)/4
implies that the second harmonic results quite naturally from
the exact solution in Eq. (3). α, 
 , r , and the magnetic-field
amplitude γ will influence the SHG characterization of the
cylindrical electromagnetic wave. By defining ηT as the
ratio of the amplitude of the second harmonic to that of
the base frequency in the frequency spectrogram, we have
ηT = |γ |αµ0
r/4 = |ζαkrJ1(kr)|/4. For the case of α not
being small enough, by using sin θ ≈ θ − θ3/6 and cos θ ≈
1 − θ2/2, we can find the third and higher harmonics. In fact,
the approximation of H ∝ sin(
t) is sufficiently effective,
but not necessary. One can use a high-order approximation,
for example, H ≈ γ sin[
t + γαµ0
r sin(
t)], which also
leads to the third and higher harmonics. Using the formula
ηT = |ζαkrJ1(kr)|/4, we can find the extreme value of ηT .
We give an example in the following.

Figure 2 shows the results of the calculation of the exact
solution of Eq. (3). By using α = 0.14, 
 = 6 × 108 MHz,
ζ = 1, and ε1 = 2, Fig. 2(a) shows the frequency spectrum
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FIG. 2. (Color online) Results of cylindrical wave propagation in
an infinite medium calculated using the exact solution of Eq. (3). (a)
Frequency spectrum of the electric field at various r . We use α = 0.14,

 = 6 × 108 MHz, ζ = 1, and ε1 = 2. (b) Efficiencies of SHG ηT

with different r , which ranges from 0 to 2 µm. The blue solid curve
represents the results calculated directly using the exact solution of
Eq. (3), the red dotted curve represents the results of calculations
using ηT = λ|ζαkrJ1(kr)|/4, and the green dashed curve represents
the results of calculations using ηT = |ζαkrJ1(kr)|/4. (c) Results of
the variation of the intensities with r of the two frequency components
calculated using the exact solution of Eq. (3).
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of the electric field at various r . There is an obvious second
harmonic in the frequency spectrum. It can be found that the
amplitude of the second harmonic does not increase with r .
In Fig. 2(a) the amplitude of the second harmonic at r =
1.5 µm is the smallest one. Figure 2(b) shows the curve of ηT

as a function of r calculated by different methods. The blue
solid curve represents the results calculated directly using the
exact solution of Eq. (3); the green dashed curve represents
results calculated using ηT = |ζαkrJ1(kr)|/4, which fit well
with the results calculated directly using the exact solution of
Eq. (3). The difference between the two curves arises from the
approximation of eαE/2 ≈ 1. To describe ηT more precisely,
we introduce a correction factor λ ≈ 1.86. Figure 2(b) shows
that ηT = λ|ζαkrJ1(kr)|/4 (the red dot curve) fits precisely
with the results calculated directly using the exact solution of
Eq. (3). The results of the variation of the intensities with r

of the two frequency components calculated using the exact
solution of Eq. (3) are shown in Fig. 2(c).

B. Advanced approximation and origin of the correction factor

As an approximate solution E = ζJ0(kr) cos(
t) +
ζJ0(kr)γαµ0
r cos(2
t)/4 − γαµ0
r/4 shows most of
the nonlinear optical phenomena; however, it still need to
be improved. By using numerical simulation we verify that
H ≈ γ sin(
t) is a good approximation and the errors
mainly arise from the approximation exp(αE/2) ≈ 1, pre-
cisely, J0(kreαE/2) ≈ J0(kr). In what follows we propose
an improved approximation to replace the approximation
J0(kreαE/2) ≈ J0(kr). As mentioned in Sec. II A, a correction
factor λ ≈ 1.86 is introduced by numerical simulation to
describe second-harmonic generation more precisely. Here we
will show why this correction factor is introduced.

We introduce a function f (x,b) as

J0(xb) = J0(x)f (x,b) (4)

such that f (x,1) = 1 and

f (x,1 + �) ≈ f (x,1) + f ′(x,1)�, (5)

where |�| � 1 and f ′(x,1) = (∂f/∂b)b=1 = −xJ1(x)/J0(x).
Thus we obtain

f (x,1 + �) ≈ 1 − �xJ1(x)/J0(x). (6)

Using Eqs. (4) and (6) we can give an approximation of
J0(kreαE/2). Following Eq. (4) and considering |αE| � 1 we
write J0(kreαE/2) as

J0(kreαE/2) = J0(kr)f
(
kr,eαE/2)

≈ J0(kr)f (kr,1 + αE/2). (7)

Using Eq. (6) we obtain

J0(kreαE/2) ≈ J0(kr)

(
1 − αEkrJ1(kr)

2J0(kr)

)
. (8)

Now we use Eq. (8) and H ≈ γ sin 
t to discuss
second-harmonic generation. Substituting Eq. (8) into E =
ζJ0(kreαE/2) cos(
t + αµ0
rH/2) we have

E ≈ ζJ0(kr)

(
1 − αEkrJ1(kr)

2J0(kr)

)
cos(
t + � sin 
t), (9)

where � = −αζJ1(kr)kr/2, and Eq. (9) can be write as

E ≈ E0 + Ec, (10)

where E0 = ζJ0(kr) cos(
t + � sin 
t) (which has been
discussed in detail in Sec. II A) and Ec = �E cos(
t +
� sin 
t) can be considered a correction term of E. There
are unknown functions E on each side of Eq. (10). Solving
it directly is not recommended. Here we use a simple way of
substituting E = E0 into Ec of the right-hand side of Eq. (10)
to obtain

Ec ≈ �ζJ0(kr) cos2(
t + � sin 
t)

≈ �

2
ζJ0(kr)(cos 2
t − 2� sin 
t sin 2
t + 1). (11)

We find that

E0 ≈ ζJ0(kr)

(
cos 
t + �

2
cos 2
t − �

2

)
, (12)

so we can obtain the final result

E ≈ ζJ0(kr) cos 
t + �ζJ0(kr) cos 2
t, (13)

where third and higher harmonics are discarded. A comparison
of Eqs. (12) and (13) leads to the correction factor λ = 2, which
is in good agreement with the factor introduced in Sec. II A.

C. Cylindrical SHG under boundary-value conditions

We show that using the exact solution in Eq. (3) to study
SHG has advantages in several aspects such as problems
of SHG under initial-value and boundary-value conditions,
which are extremely complicated problems. Here we consider
a boundary-value problem with the conditions E(1,τ ) = 0 and
the amplitude factor of the wave ζ , which is used in many
works [1,2]. The solution of the nonlinear equations [Eqs. (1)]
can be written in the form [1]

E = ζJ0(κnρeαE/2) cos(κnθ ),

H = −ζ

√
ε1e

αE/2

Z0
J1(κnρeαE/2) sin(κnθ ), (14)

where κn is the nth root of the equation J0(κ) = 0
and θ = τ + Z0αρH/2

√
ε1. Similarly, we can obtain E ∝

cos(κnτ ) − λκnZ0αργ sin2(κnτ )/2
√

ε1. In this case, γ =
−ζ

√
ε1J1(κnρ)/Z0 and ηT = λ|ζακnρJ1(κnρ)|/4. Using

dηT /dρ = 0, we can determine extreme values of ηT , which
satisfy J0(κnρ)κnρ = 0. Obviously, there are two cases: κnρ =
0 and J0(κnρ) = 0. Thus ηT reaches extreme values at ρ = 0,
ρ = κm/κn, and ρ = 1, where m is an integer that is smaller
than n. More specifically, ηT reaches a minimum at ρ = 0 and
a maximum at ρ = 1. With the exceptions ρ = 0 and 1, other
extreme values satisfy κnρ = κm. If we consider fields in the
n = 1 mode, viz. κ1 = 2.4048, we find that ηT increases with
ρ. For fields in the n = 2 mode, ηT has another extreme value
at ρ = κ1/κ2; thus ηT has two peaks in the n = 2 mode and
n peaks in the n mode. The zero points of ηT can be obtained
similarly, which satisfy J1(κnρ)κnρ = 0. There are also two
cases: κnρ = 0 or J1(κnρ) = 0. Thus ηT reaches the zero point
at ρ = 0 and κ1

m/κn, where κ1
m is the mth root of the equation

J1(κ) = 0.
Figure 3 shows the results of calculations of the exact

solution in Eq. (14) in the n = 1 mode. Similar to Fig. 2(a),
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FIG. 3. (Color online) Results of calculations of cylindrical wave
propagation in a nonlinear medium for the boundary-value problem
E(1,τ ) = 0. (a) Frequency spectrum of the electric field in the n = 1
mode. We use α = 0.5, ζ = 1, and ε1 = 2. (b) Efficiencies of SHG
ηT with different ρ, which ranges from 0 to 1.

Fig. 3(a) shows the frequency spectrum of the electric field at
various ρ by using α = 0.5, ζ = 1, and ε1 = 2. When ρ = 0.1,
there is hardly any second harmonic; when ρ = 0.5, the second
harmonic is pronounced; and when ρ = 0.9, not only is the
second harmonic but also the third harmonic is pronounced.
Figure 3(b) shows the variation of ηT with ρ ranging from 0 to 1
calculated by different methods. The solid curve represents the
results calculated directly using the exact solution in Eq. (14)
and the dashed curve represents the results calculated using
ηT = λ|ζακnρJ1(κnρ)|/4. It is shown that ηT increases with ρ,
as we have discussed, and ηT = λ|ζακnρJ1(κnρ)|/4 fits well
with the results calculated directly using the exact solution
in Eq. (14) in the n = 1 mode. To verify the higher mode,
we calculate a spectrum analysis of the exact solution in
Eq. (14) in the n = 2 mode; the results are shown in Fig. 4.
We can see that ηT is not increasing with ρ. Specifically, it has
another extreme value at ρ = κ1/κ2 and another zero point
at ρ = κ1

1 /κ2, as we have discussed. Figure 4(b) shows that
ηT = λ|ζακnρJ1(κnρ)|/4 fits well with the results calculated
directly using the exact solution in Eq. (14) in the n = 2 mode.
We can obtain similar results for the higher mode.

Our results are in agreement with those in Ref. [1] where it
is shown that the nonlinear effects become more pronounced
with increasing n and depend significantly on the coordinate ρ.
It can be seen from Figs. 3 and 4 that the SHG of n = 2 is more
pronounced than the SHG of n = 1 on the whole. However,
it is violable at specific coordinates; for example, the SHG of
n = 2 is less pronounced than the SHG of n = 1 for the case
ρ ≈ 0.7.

The problem of SHG under boundary-value conditions,
which corresponds to the problem of SHG in a cavity, is
an active research area in nonlinear optics. In these cases,
electromagnetic waves are in the form of standing waves and
several different phenomena are observed [20–24]. For most of
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FIG. 4. (Color online) Results of calculations of cylindrical wave
propagation in a nonlinear medium for the boundary-value problem
E(1,τ ) = 0. (a) Frequency spectrum of the electric field in the n =
2 mode. We use α = 0.5, ζ = 1, and ε1 = 2. (b) Efficiencies of SHG
ηT with different ρ, which ranges from 0 to 1.

this research, plane standing waves are considered. However,
to the best of our knowledge, the features of SHG of cylindrical
standing waves in a cylindrical cavity remain unknown. Thus
the investigation of such a system has theoretical meaning.
Petrov and Kudrin [1] have studied shock waves in a cylindrical
cavity resonator filled with a nonlinear medium while in the
present work we have analyzed the second-harmonic spectrum
of the system. The results may be used in optical elements and
geophysical prospecting, as suggested in Refs. [1,2].

III. COUPLED-WAVE EQUATIONS OF CYLINDRICAL
ELECTROMAGNETIC WAVES INTERACTING WITH

A NONLINEAR MEDIUM

A. Derivation of the coupled-wave equations
in the cylindrical geometry

In this section we deduce coupled-wave equations of
cylindrical electromagnetic waves interacting with a nonlinear
medium. We also assume that the medium possesses an axis
of symmetry, which is taken as the z axis of a cylindrical
coordinate system (r,φ,z). If the fields are independent of φ

and z, then the Maxwell equations can be written as [1]

∂H

∂r
+ H

r
= ∂D

∂t
,

∂E

∂r
= µ0

∂H

∂t
, (15)

where H ≡ Hφ(r,t), E ≡ Ez(r,t), and D(r,t) ≡ ε0E + P with
P being the intensity of the polarization of the medium.
Hereinafter we will focus on electric fields to set up a
classical theory that describes cylindrical electromagnetic
wave propagation in a nonlinear medium.

For the case P ∝ E, the medium is linear. Considering
D = ε0ε1E, we can solve Eq. (15) by the method of variable
separation. The solution is E = AJ0(kr) exp(−i
 t). Now
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considering the condition that P = ε0χ
(1)E + PNL, on the

basis of Eq. (15) we have

∂2E

∂r2
+ 1

r

∂E

∂r
= 1

v2

∂2E

∂t2
+ µ0

∂2PNL

∂t2
, (16)

where 1/v2 = ε0µ0(1 + χ (1)) = ε0ε1µ0. This equation is the
fundamental equation of cylindrical nonlinear optics.

Following the example of plane waves [4–7], we present
the electric field as

E = 1

2

∑
i

AiJ0(kir) exp(−i
it) + A∗
i J0(kir) exp(i
it)

(17)

and

PNL = 1

2

∑
q

PqJ0(kqr) exp(−i
qt) + P ∗
q J0(kqr) exp(i
qt).

(18)

Also we can write E = 1
2

∑
i E(
i) and PNL = 1

2

∑
q

PNL(
q), where E(
i) = AiJ0(kir) exp(−i
it), E(−
i) =
E∗(
i), PNL(
q) = PqJ0(kqr) exp(−i
qt), PNL(−
q) =
P ∗

NL(
q), and the summation runs over all frequencies in-
cluding 
 > 0 and 
 < 0. Using these presentations we
can simplify Eq. (16) and obtain the coupled-wave equations
of cylindrical electromagnetic waves interacting with the
nonlinear medium:

∂2E(
i)

∂r2
+ 1

r

∂E(
i)

∂r
+ k2

i E(
i)=−µ0

2
i PNL(
q = 
i).

(19)

This equation describes cylindrical electromagnetic waves,
coupled by PNL, with frequency 
i propagating in a nonlinear
medium. In what follows we will use this equation to study
SHG.

We set 
1 = 
 and 
2 = 2
 . Using Eq. (19) we obtain

∂2E(
 )

∂r2
+ 1

r

∂E(
 )

∂r
+ k2E(
 )

= −µ0

2PNL(
q = 
 ),

∂2E(2
 )

∂r2
+ 1

r

∂E(2
 )

∂r
+ 4k2E(2
 )

= −4µ0

2PNL(
q = 2
 ), (20)

where PNL is used as the secondary nonlinear polarization
P (2):

PNL(
q = 
 ) = ε02χ (−
,2
, − 
 ) : E(2
 )E∗(
 ),

PNL(
q = 2
 ) = ε0χ (−2
,
,
 ) : E(
 )E(
 ). (21)

Using an effective nonlinear optical coefficient, we can rewrite
Eq. (20) as

∂2E(
 )

∂r2
+ 1

r

∂E(
 )

∂r
+ k2E(
 )

= −2ε0µ0

2deffE(2
 )E∗(
 ),

∂2E(2
 )

∂r2
+ 1

r

∂E(2
 )

∂r
+ 4k2E(2
 )

= −4ε0µ0

2deffE

2(
 ), (22)

where deff is the effective nonlinear optical coefficient of
the nonlinear medium, E(
 ) = A1J0(kr) exp(−i
 t), and
E(2
 ) = A2J0(2kr) exp(−2i
 t). Then we have

∂2A1J0(kr)

∂r2
+ 1

r

∂A1J0(kr)

∂r
+ k2A1J0(kr)

= −2KA∗
1A2J0(kr)J0(2kr),

∂2A2J0(2kr)

∂r2
+ 1

r

∂A2J0(2kr)

∂r
+ 4k2A2J0(2kr)

= −4KA2
1J

2
0 (kr), (23)

where K = ε0µ0

2deff. Simplifying Eq. (23) we obtain

∂2A1(r)

∂r2
+

(
1

r
− 2k

J1(kr)

J0(kr)

)
∂A1(r)

∂r
= −2KA∗

1A2J0(2kr),

∂2A2(r)

∂r2
+

(
1

r
− 4k

J1(2kr)

J0(2kr)

)
∂A2(r)

∂r
= −4KA2

1
J 2

0 (kr)

J0(2kr)
.

(24)

By applying the slowly varying envelope approximation
∂2
r Ai(r) � KAi(r) and ∂2

r Ai(r) � k∂rAi(r), we can ignore
∂2
r Ai(r) in Eq. (24) to obtain

∂A1(r)

∂r
= −2KJ0(2kr)

(
1

r
− 2k

J1(kr)

J0(kr)

)−1

A∗
1A2,

∂A2(r)

∂r
= −4K

J 2
0 (kr)

J0(2kr)

(
1

r
− 4k

J1(2kr)

J0(2kr)

)−1

A2
1. (25)

On the basis of a small signal approximation, viz. A1(r) =
A1(0), we have

A2(r) = 4KA2
1(0)

∫ r

0

rJ 2
0 (kr)

4kJ1(2kr) − J0(2kr)
dr. (26)

This expression can be used to calculate the amplitude of
the second-harmonic generation when A2 is small. If A2

is not small enough, Eq. (26) is inapplicable. In this case,
one can solve Eq. (25) numerically, which, however, is not
recommended. A null point for J0(kr) and J0(2kr) will cause
significant distortions because numerical calculation provides
extreme sensitivity through a small range around the null point.
Here we offer a method to deal with the problem. Returning to
Eq. (23), we mark A1J0(kr) as Ã1 and A2J0(2kr) as Ã2. Then
we have

∂2Ã1

∂r2
+ 1

r

∂Ã1

∂r
+ k2Ã1 = −2KÃ∗

1Ã2,

∂2Ã2

∂r2
+ 1

r

∂Ã2

∂r
+ 4k2Ã2 = −4KÃ2

1. (27)

Equation (27) can be solved numerically by considering A1 and
A2 as functions of r , which gives the result of second-harmonic
generation for the case that A2 is not small enough. The light
intensity can be calculated as Si = ε0cnÃ2

i /2 and the efficiency
of the SHG is given by ηs = S2/S1 = n(2
 )Ã2

2/n(
 )Ã2
1 and

ηT = Ã2/Ã1.
Figure 5 shows the results of calculations of cylindrical

SHG based on coupled-wave equations. We use 
 = 6 ×
108 MHz and ε1 = 2 (as in Fig. 2). Figure 5(a) shows Ã1

and Ã2 as functions of r for various deff. For S2 ∝ Ã2
2 and
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FIG. 5. (Color online) Results of SHG calculated using coupled-
wave equations. We use 
 = 6 × 108 MHz and ε1 = 2. (a) Ã1 and Ã2

as functions of r with various deff. (b) Efficiencies of second-harmonic
ηT generation with different r , which ranges from 0 to 2 µm.

ηs ∝ Ã2
2/Ã

2
1, it is obvious that the light intensity of the

second harmonic and the efficiency of SHG increase with
the effective nonlinear optical coefficient deff, which is the
same as for plane electromagnetic waves. However, the light
intensity of the second harmonic and the efficiency of the
SHG of cylindrical electromagnetic waves that vary with r are
quite different from those of plane electromagnetic waves. For
plane electromagnetic waves, the light intensity of the second
harmonic and the efficiency of the SHG increase with r if there
is phase matching [7]. For cylindrical electromagnetic waves,
the light intensity of the second harmonic has fluctuations.
Figure 5(b) shows the efficiency of second-harmonic ηT

generation with different r , which ranges from 0 to 2 µm
in the two methods. In Sec. II we obtained χ (2) = ε1α/2 and
then deff = χ (2)/2 = α/2 and ηT = λ|ζdeffkrJ1(kr)|/2. From
Fig. 5(b) we find that the descriptions of SHG by coupled-wave
equations are in good agreement with the exact solution in
Eq. (2).

B. Phase-matching condition of SHG
in cylindrical nonlinear optics

An important issue with SHG is that of phase matching.
In plane nonlinear optics [7], the phase-matching condition of
SHG is �k = k(2
 ) − 2k(
 ) = 0. We have the definition
k = 


√
ε0ε1µ0. In our system k(2
 ) = 2


√
ε0ε1µ0 and

2k(
 ) = 2

√

ε0ε1µ0. Obviously our system satisfies the
phase-matching condition �k = 0. However, the modulation
of the SHG amplitude as well as the low conversion efficiency
implies that there is no phase matching in this case. The
facts suggest that the phase-matching condition of cylindrical
nonlinear optics is different from that of plane nonlinear optics.

Now we consider the problem of the phase-matching
condition of SHG in cylindrical nonlinear optics. We begin

our discussion from Eqs. (25). For simplicity, we rewrite
Eqs. (25) as

∂A1(r)

∂r
= −2Kψ1A

∗
1A2,

∂A2(r)

∂r
= −4Kψ2A

2
1, (28)

where

ψ1(r) = J0(2kr)

(
1

r
− 2k

J1(kr)

J0(kr)

)−1

,

ψ2(r) = J 2
0 (kr)

J0(2kr)

(
1

r
− 4k

J1(2kr)

J0(2kr)

)−1

. (29)

The functions ψ1 and ψ2 determine the phase-matching
condition of the SHG. In plane nonlinear optics [7], ψ1 =
exp(i�kr) and ψ2 = exp(−i�kr). In this case the phase-
matching condition of the SHG is �k = k(2
 ) − 2k(
 ) = 0
to ensure that ψ1 and ψ2 are positive. From Eqs. (29) we
find that if the medium is homogeneous and nondispersive,
then k is independent of r and ψ1 and ψ2 will not reach the
phase-matching condition. This is the reason why the SHG
amplitude is modulated and the conversion efficiency is low in
our system.

Phase matching of the SHG in cylindrical nonlinear optics
requires that the medium is inhomogeneous or dispersive, in
which case one can discuss the condition of phase matching. A
recent work [2] shows that the important technique suggested
by Petrov and Kudrin [1] can be extended to inhomogeneous
cases. So it is hopeful to use the exact solution to discuss phase
matching of nonlinear optical phenomena. Our work shows
that the inhomogeneity of the media will influence nonlinear
optic effects and the mechanism is phase matching.

Here we provide a scheme of phase matching of SHG in
cylindrical nonlinear optics for an inhomogeneous medium.
The inhomogeneity of the media can be described as ε(r) ∝
r−2, viz. k ∝ r−1; thus we have ψ1 ∝ r and ψ2 ∝ r , which
ensure that ψ1 and ψ2 are large and positive for any r . Figure 6
shows the results of SHG calculated using coupled-wave
equations for such cases. We can find that the modulations
of the SHG amplitude have disappeared and the conversion
efficiency is much larger than for the homogeneous cases. This
type of space-variant polarizability [rβ or (r − a)β] has been
used in many works [2,25–29]. For example, Jiang et al. [29]
used εφ = kr and εr = 1/kr to bend electromagnetic waves
and showed that the inhomogenous factor is realizable. The
effect of SHG strongly depends on the inhomogeneity of the
media, which may be used in a noninvasive, noncontact probe
of the nonlinear medium, such as a defect of crystals [2,6,7].

IV. DISCUSSION

It is worth mentioning the differences between our system
and the conical wave propagation, which is an active research
area in nonlinear optics [15–19]. While at first sight there are
certain similarities between our system and the conical wave
propagation, there are in fact essential differences between
them. In our system the emission of the second harmonic
is parallel to the fundamental wave. Similarly, we can also
show that our work is not a special case of the conical wave
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FIG. 6. (Color online) Results of SHG calculated using coupled-
wave equations for an inhomogeneous medium. |A1| and |A1|/2 as
functions of r for various deff are shown for k(r) = q/r , where q is
a constant. We use 
 = 6 × 108 MHz, ε1 = 2, and (a) q = 4.6 and
(b) q = 10.

propagation. The important difference is that in those cases
(see, e.g., Ref. [19]) the phase-matching condition is k2 −
2k1 = Gm, while in our system it is not. The amplitude of the
second-harmonic field is given by

E2
 (ρ,z) = 2πS(z) exp(−ik2zz)[iJ1(k2ρ sin α)uρ

− tan αJ0(k2ρ sin α)uz] (30)

in the conical wave propagation case; in our case the amplitude
of the second-harmonic field takes the form

E2
 ≈ −αζ 2krJ1(kr)J0(kr)/2. (31)

So the mechanism, phase-matching condition, and amplitude
of the second-harmonic field are all different from the system
of the conical wave propagation.

Our analysis in current geometry includes two different
systems: a cylindrical traveling wave and a cylindrical standing
wave. The former means that the cylindrical wave propagates
in an infinite medium, while the latter means that the system
is under boundary-value conditions. Both systems can be
produced by experiment, especially the cylindrical SHG
under boundary-value conditions, which has been proposed
in Ref. [1]. The experimental setup uses a cylindrical cavity
resonator of radius a and height L, which is a perfectly
conducting circular cylinder. The cavity resonator is filled with
a nonlinear medium. In this case one can excite E0n0(T M0n0)
modes and the nonlinear phenomena can be observed by using
a probe fixed in the cavity. For more details one can refer to
the original literature [1].

There are several possible experimental setups of cylindri-
cal SHG without boundary-value conditions. Here we use a slit
source to obtain cylindrical waves, which is frequently used
in practice [30]. A schematic of a possible experimental setup
is shown in Fig. 7. The nonlinear medium (shown in green in
Fig. 7) of a semicylinder is used and the cut surface is opaque
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FIG. 7. (Color online) Schematic of the experimental setup. The
nonlinear medium (green) of a semicylinder is used and the cut surface
is opaque (blue) except for the axis of the semicylinder, which can
form a slit and produce cylindrical waves. When a beam of light with
base frequency is incident upon the slit, cylindrical waves propagate
in the nonlinear medium and second- and higher-harmonic generation
will occur. Using a detector fixed around the medium, one can observe
cylindrical SHG.

(shown in blue in Fig. 7) except for the axis of the semicylinder,
which can form a slit and produce cylindrical waves. When
a beam of light with base frequency is incident upon the
slit, there are cylindrical waves propagating in the nonlinear
medium and second- and higher-harmonic generation will
occur. Using a detector fixed around the medium, one can
observe the cylindrical SHG.

Propagation of cylindrical and spherical waves in nonlinear
media is of great interest in theory and for application;
however, it remains poorly studied. In a recent work [1] an
exact solution that describes the propagation of cylindrical
electromagnetic waves in a nonlinear nondispersive medium
was obtained and used to discuss electromagnetic shock waves.
The exact solution is of great importance and in the present
article we show that it can be used to discuss not only electro-
magnetic shock waves, but also SHG. Figure 5(b) shows that
the exact solution in Eq. (2) can be used to deal with the SHG
very well. Furthermore, it has advantages in several aspects,
such as dealing with problems of SHG under initial-value and
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boundary-value conditions, which are complicated by using
coupled-wave equations. Moreover, a recent work [2] shows
that this important technique can be extended to deal with
problems of cylindrical electromagnetic wave propagation in
an inhomogeneous nonlinear and nondispersive medium. So
it is hopeful to use the exact solution to discuss nonlinear
optical phenomena in an inhomogeneous medium, which is
also an extremely complicated problem. In contrast, although
the exact solution has great success in dealing with the SHG,
the coupled-wave equations of cylindrical electromagnetic
waves interacting with a nonlinear medium are also necessary.
The coupled-wave equations can be directly associated with
the dispersion of media and can be extended to deal with
problems of sum frequency, four-wave mixing, and so on.

V. CONCLUSION

We have used two methods to deal with the problem of
cylindrical SHG. One method uses the exact solution obtained
recently. We have exported the exact solution and found
a simple method to deduce the SHG from it. The other
method uses the traditional coupled-wave equations. We have
set up coupled-wave equations of cylindrical electromagnetic

waves interacting with a nonlinear medium to describe SHG.
Using the coupled-wave equations, we have analyzed features
of cylindrical SHG and found that the results are in good
agreement with those obtained by using the exact solution. Our
results show that both methods are useful in dealing with the
problem of cylindrical SHG and each of them has advantages
in some aspects.
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