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Efficient excitation of a two-level atom by a single photon in a propagating mode
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State mapping between atoms and photons, and photon-photon interactions play an important role in scalable
quantum information processing. We consider the interaction of a two-level atom with a quantized propagating
pulse in free space and study the probability Pe(t) of finding the atom in the excited state at any time t . This
probability is expected to depend on (i) the quantum state of the pulse field and (ii) the overlap between the pulse
and the dipole pattern of the atomic spontaneous emission. We show that the second effect is captured by a single
parameter � ∈ [0,8π/3], obtained by weighting the dipole pattern with the numerical aperture. Then, Pe(t) can
be obtained by solving time-dependent Heisenberg-Langevin equations. We provide detailed solutions for both
single-photon Fock state and coherent states and for various temporal shapes of the pulses.
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I. INTRODUCTION

Light-matter interface in free space at the quantum level lies
at the heart of quantum networks and quantum communication
as well as being the fundamental question in quantum optics,
and may be less technologically demanding than typical cavity
quantum electrodynamical systems. Recently, achievements
have been made for atoms [1–5], single molecules [6,7], and
quantum dots [8]. Especially, high numerical aperture optics
[9] have been recognized as a key element for free space atom-
light coupling and precision spectroscopy, involving fixed
aspheric lenses [4,5,10–12], deep parabolic mirrors [13–15],
spherical mirrors [16], and phase Fresnel lenses [17].

Regarding the atom-light interaction, there are two different
phenomena: the scattering of the light by the atom [3,4,7] and
the absorption of the light by the atom [2,15,18]. Efficient
information transfer between atoms and photons requires
controlled photon absorption with high probability. However,
the time reversal argument implies the main properties of
the excitation pulse. These are (i) the spatial profile of the
pulse should match the atomic dipole emission pattern, and
(ii) the temporal shape of the photon has to be a time inverted
version of the spontaneously emitted photon. This means that
the atom must be illuminated from all directions by a photon
with a rising exponential temporal envelope [15,18]. Strong
focusing can give rise to increased overlap of the light beam
with the atomic dipole, and this improvement of the atom-light
coupling in free space has been predicted by theory [1,10] and
demonstrated in experiment [4,5,11].

In this paper, we focus on the effect of the temporal-spectral
features of the pulse on the probability of finding the atom in
the excited state starting from the ground state (“excitation
probability”). We present the general formalism and apply it
into two specific situations: single-photon wave packets and
coherent-state wave packets.

The paper is organized as follows. In Sec. II, we review a
general quantized model of the interaction between an atom
and a continuum propagating pulse in free space and introduce
the basic parameters describing the coupling between the
atomic dipole and the pulse. In Sec. III, we introduce a
special case. In Sec. IV, the dependence of the atomic
excitation probability on the temporal and spectral features of

single-photon wave packets and coherent-state wave packets
are investigated, respectively. The excitation probability for
realistic focusing setups is discussed in Sec. V. And our results
are briefly summarized in Sec. VI.

II. GENERAL MODEL AND APPROACH

We start by considering the interaction of a two-level
atom sitting at position ra with the quantized radiation field
with continuum modes in free space. In Coulomb gauge, the
positive-frequency parts of the electric-field operators can be
expanded as [19]

Ê
(+)

(r,t) = i
∑

λ

∫
d3k

√
h̄ωk

(2π )32ε0
âk,λεk,λuk,λ(r)e−iωkt ,

(1)

where ωk = c|k|, c is the vacuum speed of light, ε0 is the
permittivity of the vacuum, εk,λ(λ = 1,2) are unit polarization
vectors, εk,λ · εk,λ′ = δλλ′ , εk,λ · k = 0, and the field opera-
tors follow the usual commutation relation

[âk,λ,â
†
k′

,λ′] = δ(k − k′)δλ,λ′ . (2)

Energy conservation implies the normalization of the spatial
mode functions uk,λ(r),∫

d3r u∗
k,λ

(r) · uk′
,λ′ (r) = δ(k − k′) δλλ′ . (3)

In the interaction picture and rotating-wave approximation,
the dynamics of the system is described by the Hamiltonian

ĤI = −ih̄
∑

λ

∫
d3k[gk,λ(ra)σ̂+âk,λe

−i(ωk−ωa )t − H.c.],

(4)

where ωa = Ee − Eg is the atomic transition frequency
and σ̂+ = |e〉〈g|,σ̂− = |g〉〈e|,σ̂z = |e〉〈e| − |g〉〈g| = σ̂+σ̂− −
σ̂−σ̂+ are atomic operators. The coupling strength is given by

gk,λ(ra) = d

√
ωk

(2π )32h̄ε0
uk,λ(ra)ed · εk,λ, (5)
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where d is the value of the dipole momentum and ed is the unit
dipole vector.

The evolution of the operators is governed by a set of
coupled Heisenberg equations

˙̂ak,λ = g∗
k,λ

(ra)σ̂−ei(ωk−ωa )t , (6)

˙̂σ z = −�′(σ̂z + 1) − 2
∑

λ

∫
d3k[gk,λ(ra)σ̂+âk,λe

−i(ωk−ωa )t

+ H.c.] + ζ̂z, (7)

˙̂σ− = −�′

2
σ̂− + σ̂z

∑
λ

∫
d3kgk,λ(ra)âk,λe

−i(ωk−ωa )t + ζ̂−,

(8)

in which the decay term proportional to �′ and the noise
operators ζ̂ are introduced to account for the interaction of
the atom with the environment.

By integrating Eq. (6), the field operator is decomposed
into a free field part and a part radiated by the atom
[20, p. 393]:

âk,λ(t) = âk,λ(t0) + g∗
k,λ

(ra)
∫ t

t0

σ̂−(t ′)ei(ωk−ωa )t ′dt ′. (9)

The substitution of Eq. (9) back into Eqs. (7) and (8) gives a
set of modified optical Bloch equations [21],

˙̂σ z = −�(σ̂z + 1)

− 2
∑

λ

∫
d3k[gk,λ(ra)σ̂+âk,λ(t0)e−i(ωk−ωa )t +H.c.]+ζ̂z,

(10)

˙̂σ− = −�

2
σ̂−

+ σ̂z

∑
λ

∫
d3kgk,λ(ra)âk,λ(t0)e−i(ωk−ωa )t + ζ̂−,

(11)

where the standard spontaneous decay rate in free space is
made up of two parts [22]: � = �′ + �p, the decay into the
environment �′, which is the nonpulse mode in our case, and
the decay to the pulse mode �p.

Following the same reasoning for the environment field
operators b̂k′

,λ′ as for the field operators âk,λ, one readily
finds the explicit form of the noise operators

ζ̂z =−2
∑
λ′

∫
d3k′[gk′

,λ′(ra)σ̂+b̂k′
,λ′ (t0)e−i(ωk′−ωa )t + H.c.],

(12)

ζ̂− = σ̂z

∑
λ′

∫
d3k′gk′

,λ′(ra)b̂k′
,λ′ (t0)e−i(ωk′−ωa )t , (13)

where gk′
,λ′ (ra) is the corresponding coupling strength to the

atom.
Furthermore, with the use of the Weisskopf-Wigner theory

[23, p. 207], the explicit formula for the �p can be found and
is given by

�p = 2π
∑

λ

∫
d3k|gk,λ(ra)|2δ(ωk − ωa). (14)

Substituting for gk,λ from Eq. (5) and going to the spherical
coordinates, one gets

�p = 1

2(2π )2

(
ωa

c

)3
d2

h̄ε0

∑
λ

∫
d


∣∣uka ,λ(ra)
∣∣2 |ed · εka,λ|2

≡ 1

2(2π )2

(
ωa

c

)3
d2

h̄ε0
�, (15)

where the integration runs over the solid angle d
 covered
by the pulse mode and the indices ka respect the condition
|ka| = ka coming from the δ distribution in Eq. (14). Note that
in the special case, where uka ,λ = eika ·ra and the integration is
performed over the whole solid angle, the parameter � reaches
its maximum value � = 8π/3, and one obtains the well known
formula for the spontaneous decay of a single atom in a free
space (see, e.g., [20, p. 530]),

� = 1

3π

(
ωa

c

)3
d2

h̄ε0
. (16)

This is as well the maximum possible value (in principle) for
the pulse mode decay �p = � �

8π/3 . Thus, the single parameter
� ∈ [0,8π/3] describes which part of space, weighted by the
atomic dipole moment, is covered by the pulse.

In the following, we study the excitation probability Pe of
the atom excited by the photon wave packet, which is given
by the expectation value of atomic operator σ̂z,

Pe(t) = 1
2 (〈�0|σ̂z(t)|�0〉 + 1), (17)

where the initial state of the system |�0〉 = |g〉|�p〉|0e〉 is a
product state of the atomic ground state, the pulse state, and the
environment. We assume the environment to be initially in the
vacuum state. In order to find the value of 〈σ̂z(t)〉 at arbitrary
time t , one has to solve the set of coupled differential equations
for all involved time-dependent operators [in our case, σ̂z and
σ̂±, where the equation for σ̂+ is just a Hermitian conjugate of
Eq. (11)]. The complete set of equations is obtained by first
averaging Eq. (10) over the initial state |�0〉. Next, the initial
state dependent average of operators σ̂± has to be found and
can be obtained from Eq. (11) and the H.c. of Eq. (11). The
complete set of equations can be schematically written as

ṡ(t) = Ms(t) + b. (18)

The form of the vectors s and b and the matrix M is initial
state dependent and will be specified in Sec. III. Note that
the Langevin-type noise operators [Eqs. (12) and (13)] are
determined directly in terms of the initial field operators of the
environment [23, p. 273], so their average values will vanish
as 〈ζ̂ 〉 = 0, when considering the initial vacuum state of the
environment.

III. SPECIAL CASE: DIPOLE PATTERN

With the help of the presented general model, one can study
the dependence of excitation probabilities on both the spatial
and temporal properties of the pulse. In the following, we
assume that the light field in question matches the atomic
dipole field pattern. Therefore, all the functions gk,λ will be
defined with the dipole pattern. Then, we only focus on the
temporal and spectral effects of pulse. We first examine the
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interaction of the atom with a single-photon Fock state pulse
and next with the coherent-state pulse.

A. Single-photon wave packet

Let’s first consider the pulse mode to be a single-photon
wave packet, which can be written as [23, p. 208]

|1p〉 =
∑

λ

∫
d3kg∗

k,λ(ra)f (ωk)â†
k,λ |0〉 ≡ â

†
C |0〉 , (19)

where the spectral distribution function f (ωk) is the only
degree of freedom left. The normalization of the single-photon
wave packet [Eq. (19)] implies∑

λ

∫
d3k|gk,λ(ra)|2|f (ωk)|2 = 1. (20)

The explicit form of Eq. (18) can now be found with the initial
state |�0〉 = |g〉 |1p〉 |0e〉:

s(t) =

⎛
⎜⎝

〈g,1p,0e|σ̂z(t)|g,1p,0e〉
〈g,1p,0e|σ̂+(t)|g,0p,0e〉
〈g,0p,0e|σ̂−(t)|g,1p,0e〉

⎞
⎟⎠ ,

M =

⎛
⎜⎝

−� −2g(t) −2g∗(t)

0 −�/2 0

0 0 −�/2

⎞
⎟⎠ , b =

⎛
⎜⎝

−�

−g∗(t)

−g(t)

⎞
⎟⎠ ,

(21)

with initial condition

sT (t0) = (1 0 0).

Once again with the help of Weisskopf-Wigner approxima-
tion, where we assume that the coupling gk,λ is constant for
frequencies of interest centered around the atomic transition
frequency ωa , one finds that the effective coupling strength
g(t) is the product of the temporal envelope of the pulse and
the decay rate into the pulse mode:

g(t) = √
�pξ (t), (22)

where

ξ (t) =
√

�p

2π

∫
dωkf (ωk) e−i(ωk−ωa )t (23)

is, up to a constant factor, the Fourier transform of the spectral
distribution function. The excitation probability is then given
by the first component of the vector s:

Pe(t) = 1
2 [s1(t) + 1]. (24)

B. Coherent state wave packet

Let us now have a look at the wave packet initially prepared
in a (continuous field) coherent state. In analogy with the
definition of a continuous mode coherent state presented in
[24], we define the coherent state as

|αp〉 = exp[αâ
†
C − α∗âC] |0〉 , (25)

where the wave-packet operator â
†
C is defined in Eq. (19). The

mean photon number N in the wave packet is given by

N = 〈αp| â†
CâC |αp〉 = |α|2. (26)

This yields the usual relation for a coherent state,

âC |αp〉 = α |αp〉 . (27)

Again, we get a set of similar differential equations with the
same initial condition, but different variables,

s(t) =

⎛
⎜⎝

〈g,αp,0e|σ̂z(t)|g,αp,0e〉
〈g,αp,0e|σ̂+(t)|g,αp,0e〉
〈g,αp,0e|σ̂−(t)|g,αp,0e〉

⎞
⎟⎠ ,

M =

⎛
⎜⎝

−� −2g(t) −2g∗(t)

g∗(t) −�/2 0

g(t) 0 −�/2

⎞
⎟⎠ , b =

⎛
⎜⎝

−�

0

0

⎞
⎟⎠ .

(28)

IV. ANALYSIS OF THE TEMPORAL ENVELOPE

In this section, we assume that the incoming pulse not only
matches the atomic dipole pattern but also occupies the whole
solid angle, which implies that �p = �. We then discuss the
pulse temporal shape effect on the excitation probability.

A. Pulse bandwidth effects

For a fixed pulse envelope, the excitation probability
depends on the ratio between the pulse bandwidth 
 and the
decay rate � of the atomic dipole. We take a single-photon
Fock state pulse with a Gaussian temporal shape as an example,
and study the effects of different bandwidths on the excitation
probability. The results are plotted in Fig. 1.

As we can see from Fig. 1, for single-photon excitation
with shorter pulses (
 � �), the bandwidth is too broad
for resonant absorption, which reduces the effective coupling
strength. For longer pulses (
 � �), the photon density is too
low for efficient interactions [21].
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0.6

0.8
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tΓ

P
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Ω
0

10Ω
0

Ω
0
/10

FIG. 1. (Color online) Excitation probability Pe(t) as a function
of time with the initial Gaussian pulse in a single-photon Fock state for
different bandwidths. 
0 = 1.5�, which turns out to be the optimized
bandwidth (cf. Fig. 2).
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FIG. 2. (Color online) Dependence of maximum excitation prob-
ability P max

e on the pulse bandwidth with Gaussian shape for the
single-photon Fock state pulse and single-photon coherent state pulse.

In Fig. 2, we show the dependence of the maximum achiev-
able resonant excitation probability on the pulse bandwidth for
the single-photon Fock state pulse and single-photon coherent
state pulse, where the mean photon number equals 1. We
find out that the optimum pulse bandwidth maximizing the
absorption is 
0 = 1.5� for the single-photon Fock state pulse
and 
′

0 = 2.4� for single-photon coherent-state pulse.
For coherent-state pulses, we studied the maximum excita-

tion probability as a function of the mean number of photons
N for various choices of the bandwidth, shown in Fig. 3.
As expected, the maximum excitation probability varies with
N . The saturation for large N for all bandwidths is due to
the fact that the effective coupling strength g(t) decreases
with the pulse length. Alternatively, this can be understood
as the photons arriving more distributed in time. Note that
for large N , it is better to choose a short intense pulse with

 � 
′

0 ∼ �, which is used for population transfer.

B. Pulse shape effects

In general, the excitation probability depends on the specific
shape of the input pulse. Here, we studied the following six
pulse shapes (see Table I).

For the single-photon Fock state, the excitation probability
has a peak value of about 0.8 with an optimum bandwidth for

0 10 20 30 40 50
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0.6
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M
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Ω′
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10Ω′
0

Ω′
0
/10

FIG. 3. (Color online) Maximum excitation probability P max
e as a

function of the mean photon number N with the initial coherent state
Gaussian pulse for different bandwidths. 
′

0 = 2.4� is the optimized
bandwidth for a Gaussian pulse (cf. Fig. 2).

TABLE I. Definition of pulse shapes.

Type of pulse Wave function for pulse bandwidth

Gaussian pulse ξ (t) = ( 
2

2π
)
1/4

exp
(

− 
2

4 t2
)

Hyperbolic secant pulse
√




2 sech(
t)

Rectangular pulse ξ (t) =
{√




2 for 0 � t � 2



0 else

Symmetric exponential ξ (t) = √

 exp(−
|t |)

pulse

Decaying exponential ξ (t) =
{√


 exp
(−


2 t
)

for t > 0

0 for t < 0pulse

Rising exponential pulse ξ (t) =
{√


 exp
(




2 t
)

for t < 0

0 for t > 0

the first four pulse shapes, shown in Figs. 4(a)–4(d), indicating
that the photon absorption is less sensitive to pulse shape
effects, such as discontinuities. For the decaying exponential
pulse, the maximum excitation probability is only 0.54 [see
Fig. 4(e)]. A particularly interesting case may be that of the
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FIG. 4. (Color online) Excitation probability Pe(t) as a function
of time for the coupling strength g(t) given in Eq. (22) with �p = �

(� = 8π/3). The single-photon Fock state pulse with optimum
bandwidth is shown in gray; the corresponding excitation probability
is given by the solid black line. The dashed blue line represents the
excitation probability for a single-photon coherent-state pulse of a
similar shape but different (optimized) bandwidth. (a) Gaussian pulse,
(b) hyperbolic secant pulse, (c) rectangular pulse, (d) symmetric
exponential pulse, (e) decaying exponential pulse, and (f) rising
exponential pulse.
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TABLE II. Optimum bandwidth and maximum excitation
probability.

Type of pulse State Optimum 
/� Maximum Pe(t)

Gaussian pulse |α〉 2.4 0.48
|1〉 1.5 0.80a

Hyperbolic secant pulse |α〉 2.0 0.48
|1〉 1.3 0.80

Rectangular pulse |α〉 1.3 0.48
|1〉 0.8 0.81

Symmetric exponential |α〉 1.4 0.48
pulse |1〉 0.9 0.79

Decaying exponential |α〉 1.4 0.37
pulse |1〉 1.0 0.54a

Rising exponential |α〉 1.9 0.56
pulse |1〉 1.0 0.995a

aThese results were also obtained in Ref. [15] with a different method.

rising exponential single-photon Fock state pulse, shown in
Fig. 4(f), for which the corresponding maximum excitation
probability is 0.995 with an optimum bandwidth of 
0 = 1�.
This agrees well with the prediction that for the aim of unit
absorption probability, the incident photon must possess the
time reversed properties of the spontaneously emitted photon.
Since the spontaneous decay is exponential, the temporal
envelope of the pulse has to be rising exponentially [15,18].

On the other hand, for an initial single-photon coherent-
state pulse with optimum bandwidth, the maximum excitation
probability is much lower, around 0.48 for the first four pulse
shapes and 0.4 and 0.56 for the decaying and rising exponential
pulses, respectively. Apparently the excitation is more efficient
if exactly one photon is present instead of a distribution with
mean 1. This emphasizes the importance of generating the
single-photon source rather than using an attenuated laser pulse
in applications where a high absorption is desired.

For the explicit values of optimum bandwidth needed to
achieve maximum excitation probability, see Table II

C. Damped Rabi oscillation

In Fig. 5, the probability of exciting the atom for an initial
coherent-state Gaussian pulse is evaluated for various mean
photon numbers N = (1,10,50). For a large mean photon
number, damped Rabi oscillations are observed. In the limit
of a very large mean photon number, one would recover the
textbook predictions for classical light pulses [23, p. 151].

V. DISCUSSION OF REALISTIC FOCUSING

Finally, we present a brief review of ongoing experiments
in order to consider the excitation probability in realistic tight
focusing configurations.

In the case of a parabolic mirror with a half opening
angle of 134◦ as it is used in the experiment described in
Refs. [13,14], the corresponding weighted solid angle reaches
� = 0.94 × 8π/3, and, thus, one may achieve a maximum
excitation probability of 0.94 with rising exponential shape
for a single-photon Fock state pulse, 0.54 for a single-photon
coherent-state pulse, 0.75 for a Gaussian single-photon Fock
state pulse, and 0.46 for a single-photon coherent-state pulse.

−2 0 2 4 6
0

0.2

0.4

0.6

0.8

1

t Γ

P
e(t

)

N=1
N=10
N=50

FIG. 5. (Color online) Excitation probability Pe(t) as a function
of time for an initial coherent-state Gaussian pulse with optimum
bandwidth 
′

0 = 2.4� for different mean photon numbers N .

In Refs. [4,10], a aspheric lens with numerical aperture
of 0.55 and focal length of 4.5 mm is used to focus down
a Gaussian beam. The weighted solid angle depends on the
focusing strength u := wL/f , where wL is the beam waist.
A maximum overlap of � = 0.364 × 8π/3 is expected at
focusing strength u = 2.239. With a rising exponential shape,
we predict a maximum excitation probability of 0.36 for a
single-photon Fock state pulse and 0.27 for a single-photon
coherent-state pulse. For a Gaussian shape, we predict a
maximum excitation probability of 0.29 for a single-photon
Fock state pulse and 0.23 for a single-photon coherent-state
pulse.

VI. CONCLUSION

In conclusion, with the help of time dependent Heisenberg-
Langevin equations, we studied the interaction between a
single two-level atom and a propagating pulse at the quantum
level. We have presented a general approach and a scalar
model to treat the atom-pulse interaction. For strong focusing
configurations, we account for the overlap of the incoming
pulse mode with the respective atomic dipole pattern.

The effect of temporal-spectral features of the single-
photon Fock state pulse and coherent-state pulse on the
excitation probability of the atom has been investigated.
With Gaussian, hyperbolic secant, rectangular, and symmetric
exponential shape pulses, the achievable maximum excitation
probability is around 0.8 for the single-photon Fock state pulse
and 0.48 for the single-photon coherent-state pulse. More
importantly, with a rising exponential shape, the maximum
value is nearly 1 for a single-photon Fock state pulse and 0.55
for a single-photon coherent-state pulse, which is in agreement
with the time reversal argument. As an example, the effect of
bandwidths and mean photon numbers of a Gaussian pulse is
analyzed. We also survey some current arrangements designed
to couple photons and atoms in order to assess their potential
for high excitation probabilities. The presented model provides
a suitable foundation to further study the pulse shape effects
of quantized continuous light fields in both scalar and full
three-dimensional treatment.
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