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Influence of conformational changes in complex molecules on photon statistics of
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A single complex molecule with conformational changes (conformations 0 and 2) is considered. When such a
molecule is irradiated by cw-laser light it can randomly change the intensity or polarization of its fluorescence
due to jumps from one conformation to another. In fact, the molecule manifests itself either like the 0-type or the
2-type emitter. An expression for the matrix sαβ (t) called the start-stop correlator (waiting time distribution) in
which α = 0,2 and β = 0,2 is derived. An expression for the matrix pαβ (t) called the full correlator is derived as
well. It determines the density of the probability of finding an event of α type and an event of β type separated
by time interval t. A relation between matrices sαβ (t) and pαβ (t) is found. A mathematical expression for the
distribution wN (T ) of events measured in time interval T is derived. It is expressed solely via the matrix sαβ (t).
Numerical calculations of the event distribution function for various rates of intra- and interconformational jumps
are carried out with the help of the formula for wN (T ) and by the Monte Carlo method. Both methods of the
calculation yield identical distributions. Fluctuating fluorescence intensity I(t) for a bin time of 5 ms is calculated
for slow and fast interconformational jumps. A relation is found between the autocorrelation function g(2)(t) of
fluorescence measurable in experiments and the matrix pαβ (t) calculated theoretically.
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I. INTRODUCTION

For the last decade, single molecule spectroscopy revealed
itself as an effective tool for studying both local environmental
conditions of guest molecules embedded in polymer films
and organic glasses [1–9] and quantum dynamics of complex
organic molecules embedded in condensed matter [10–17].

It is known that complex organic molecules such as
the polymer chain can change their conformations [11,12],
[14–17]. Such conformational changes are accompanied by
changes in polarization or intensity of single molecule flu-
orescence excited by cw-laser light. Jumps in fluorescence
intensity of a single molecule can serve as an important source
of information about conformational changes in the molecule.
If we measure fluorescence from an ensemble of molecules
this source of information is lost because of the summation of
photons emitted by all molecules.

Absorption and emission bands of single molecules mea-
sured at room temperature are very broad due to strong
electron-phonon interaction [11–13]. Therefore the measure-
ment of the band shape gives us extremely little information
about the quantum dynamics of the molecule. Therefore spec-
tral methods are ineffective at room temperature. However,
even first measurements of whole single polymer molecule
fluorescence integrated over the frequency revealed blinking
of the fluorescence intensity [11,12]. By now, blinking in
single organic molecule fluorescence has become a routine
phenomenon.

Quantum dynamics of the single molecule manifest via
blinking fluorescence. We can find this dynamic if we are
able to relate fluctuations in fluorescence with this dynamic.
Blinking fluorescence measured by the Barbara group [11,12]
reveals two levels of intensity: strong and moderate. This fact
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can be related to the existence of two types of conformations
in the polymer molecule. A theoretical model for single
molecule fluorescence from two types of conformation has
been discussed in Ref. [18]. The model was able to describe
many facts found by the Barbara group in the experiment. A
number of rate constants governing dynamics of the molecule
with two types of fluorescence have been found. However,
the functions for the distribution of photons and waiting time
distributions have not been found in Ref. [18].

Recently, an expression for the photon distribution function
wN (T ) for a single molecule with two types of fluorescence
has been derived by Gopich and Szabo [16]. Their theory was
based on the Mandel formula [19]:

wN (T ) =
∫ ∞

0
P (W |T )

WN

N !
e−WdW, (1)

for the photon distribution function. Fast emission processes in
both conformations were described by two Poisson functions.
Slow interconformational transitions were described by the
probability P (W |T ). The probability P (W |T ) has been found
with the help of the two-level model. Such an approach is
certainly an approximation.

Jumps of absorption lines of a guest single molecule
embedded in a polymer film observed in a frequency scale at
low temperature [8,9] can also be considered as a manifestation
of conformational changes in the spectrum of an impurity
center (robust guest molecule with flexible surrounding envi-
ronment). Conformational changes of such type in the impurity
center are considered within the scope of the two-level system
(TLS) model. The rate of jumps in TLS can be in the
millisecond time scale, i.e., it can be comparable with the
rate of photon emission. Such a system cannot be described
by the theory for slow conformational changes.

It must be noted that the first studies on quantum jumps
in single atom fluorescence excited by cw-laser light [20–22]
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FIG. 1. Quantum states of the molecule with conformations “0”
and “2”.

were carried out without addressing Eq. (1). They used the
probability density function (PDF) that exactly N photons are
emitted at times t1,t2,...,tN by the atom in the time interval
t. Unfortunately, this approach generates N-fold integration if
we try to find the photon distribution function. In later works,
the method using the PDF function f (t,tN ,tN−1,...,t1) was
modified so that the photon distribution function wN (T ) was
expressed via two- and threefold integrals [23–26].

Until recently, solely systems in which the PDF function
f (t,tN ,tN−1,...,t1) is factorized have been discussed [20–26].
In these systems the PDF function is a product of N elementary
densities of the probabilities s(tj − tj−1) called “waiting time
distribution” [21] or the start-stop correlator [3,7].

Very recently, the authors of Ref. [27] have discussed
moments of the distribution function for the systems in which
the PDF function f (t,tN ,tN−1,...,t1) is not factorized. These
systems were called the “systems with memory.” A molecule
with two types of conformation has been classified in Ref. [27]
to a system with memory.

The main goal of the paper is to derive the distribution
functions for single molecule fluorescence with two types of
emitted photons and without any restrictions on the rate of
interconformational jumps. This means that the task for two
types of photons modulated by interconformational jumps has
to be solved exactly. It will be done in this paper by a method
not using Eq. (1).

II. DYNAMICS OF THE MOLECULE WITH TWO
CONFORMATIONS

It has been pointed out in the Introduction that complex
organic molecules can have several conformational forms. This
is especially typical for open-chain molecules such as the poly-
mer molecule. This molecule is able to jump spontaneously
from one conformation to another. Some physical properties of
the molecule can be different for different conformations. For
instance, intensity or polarization of fluorescence in various
conformational forms can be different. In this case, a change of
conformation can be detected with the help of single molecule
fluorescence.

Consider a single molecule which can change its confor-
mation being in the ground electronic state. Such a molecule
can be described by the energy scheme shown in Fig. 1.

Here 0 and 1 mark the ground and the excited state of the
molecule in conformation “0,” and 2 and 3 mark the ground
and the excited states of the molecule in conformation “2.” k0

and k2 are rates of light absorption, G1 and G3 are rates of
light emission in conformations “0” and “2,” and A and a are
rates of interconformational transitions.

The number of photons emitted in each time interval of
duration T will fluctuate because of the random character
of photon creation instants. It is obvious that the number
of emitted photons exceeds the number of photoelectric
pulses created in a photomultiplayer tube (PMT), i.e., de-
tected events. In fact, the distribution function w′′

N (T ) of
emitted photons, the distribution function w′

N (T ) of photons
arrived at the PMT, and, finally, the distribution function
wN (T ) of photoelectric pulses created in the PMT are
different. A relation between w′′

N (T ) and w′
N (T ) was found in

Refs. [25,26]. The expression for w′
N (T ) can be cal-

culated if we are able to calculate the expression
for w′′

N (T ). A relation between moments of the dis-
tributions w′

N (T ) and wN (T ) was found by introduc-
ing a coefficient η of the quantum efficiency of the
PMT [19,21].

Another approach for finding a relation between w′
N (T )

and wN (T ) was used in Ref. [28]. A molecule and PMT
were considered as two parts of the united dynamical system
in which the PMT is characterized by the probability α of
photoeffect and by dead time 1/β. The theory presented
in Ref. [28] enabled one to find relations between w′

N (T )
and wN (T ) for “fast,” “moderately fast,” and “slow” PMTs.
The distribution of detected events depended on both rate
constants of the molecule and rate constants α and β of
the PMT. For a “fast” PMT we have found the following
relation: wN (T ) ∼= w′

N (T ). Then, the distribution of detected
events in fluorescence of a single molecule having only one
conformation can be described by the following expression
[28]:

wN (T ) = 1

τ0

∫ T

0
(T − t){[s(λ)N−1]t

− 2[s(λ)N ]t + [s(λ)N+1]t }dt, (N � 1), (2a)

w0(T ) = 1

τ0

∫ ∞

0

[
1 −

∫ T +t

0
s(x)dx

]
dt. (2b)

The distribution is expressed via a single function, s(t).
Here s(λ) = s(iω) = ∫ ∞

0 s(t)ei(ω+i0)t dt is the Laplace trans-
form of the start-stop correlator. The function [s(λ)N ]t means
the inverse Laplace transformation of s(λ)N . The function s(t)
describes the correlation between two consequently created
photoelectric pulses. Therefore it was called the photoelectric
start-stop correlator because

dS(t) = s(t) dt (3)

describes the probability of finding the second event in the
time interval (t,t + dt), if the preceding event was detected
at t = 0. Hence, s(t) describes the density of the probability
of finding two adjacent photoelectric pulses separated by time
interval t (waiting time distribution). The constant

τ0 =
∫ ∞

0

[
1 −

∫ t

0
s(x)dx

]
dt =

∫ ∞

0
ts(t) dt (4)

determines an average time interval between adjacent events.
The start-stop correlator s(t) can be found from dynamical

equations for the system [23,25,26,28]. Therefore, one can
suppose that if we know dynamical equations for the molecule
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FIG. 2. Sequence of detected events. Random time moments of
detected events of 0 type are shown by short vertical segments and
events of 2 type by long vertical segments.

having two conformations, we can find the start-stop correlator
s(t) and use Eq. (2a). However, this assumption will be wrong.

As a matter of fact, the molecule described by the energy
scheme shown in Fig. 1 has two electronic transitions, 1→0
and 3→2, accompanied by photon emission. We shall call
photons emitted from conformation “0” and “2” as photons
of 0 and 2 type. Therefore the PMT will detect events of
0 and 2 type. Schematically the situation looks as Fig. 2
shows.

In accordance with Fig. 2 there are four types of adjacent
events. Four start-stop correlators sαβ(t) in which α and β can
be 0 or 2 form a matrix. They are shown in Fig. 2. Hence,
instead of Eq. (3) we have the following equation in the matrix
form:

dSαβ (t) = sαβ(t) dt. (5)

Here dSαβ(t) determines the probability of finding an event
of α type in time interval (t,t + dt), if the preceding event of
β type was detected at t = 0.

If events of 0 and 2 type differ by some physical parameter,
for instance by polarization, we can detect events solely of
one type. Then short or long vertical segments will be absent
in Fig. 2. and the matrix sαβ(t) is reduced to a single start-
stop correlator, say s00(t). In this case we may use Eq. (2a)
with s(t) = s00(t). However, if events of 0 and 2 types are
indistinguishable, we are forced to use whole matrix sαβ(t). In
this case Eq. (2a) should be substituted by another expression.
This expression is derived in Appendix A.

III. MATRIX FOR THE START-STOP CORRELATORS

In “fast” PMT, times 1/α and 1/β are shorter as compared
with the average time of the order of 1/k between adjacent
absorption events. In this case, the distribution of photoelectric
pulses created in the PMT is similar to the distribution of
photons arrived at the PMT [28]. However, the distribution
of photons arrived at the PMT can be calculated if we know
the losses of fluorescence photons [25,26]. Therefore our task
is reduced to calculating the distribution of emitted photons.
This distribution is determined by quantum dynamics of a
single molecule excited by cw-laser light. Dynamics of the
molecule described by the energy scheme shown in Fig. 1 are
determined by the following set of equations:

ρ̇0 = −(k0 + A)ρ0 + G1ρ1 + aρ2,

ρ̇1 = k0ρ0 − G1ρ1,

ρ̇2 = Aρ0 − (k2 + a)ρ2 + G3ρ3,

ρ̇3 = k2ρ2 − G3ρ3. (6)

FIG. 3. Quantum states and transitions in an open system from
which photons of two types can leave.

Here ρj is the probability of finding the molecule in a quantum
state j . The physical meaning of all rate constants has already
been explained.

The set of Eq. (6) describes a so-called closed system in
which full probability is conserved because ρ̇0 + ρ̇2 + ρ̇1 +
ρ̇3 = 0. However, start-stop correlators can be found from a set
of equations for a so-called open system in which fluorescence
photons leave the system. Therefore, full probability in the
open system is not conserved. The energy scheme with
possible transitions for the open system from which photons
of two types leave looks as Fig. 3 shows.

Here inclined arrows show the photons going to the PMT.
The set of equations for this scheme looks as follows:

Ẇ0 = −(k0 + A)W0 + aW2,

Ẇ1 = k0W0 − G1W1,
(7)

Ẇ2 = AW0 − (k2 + a)W2,

Ẇ3 = k2W2 − G3W3.

Here Wj is the probability of finding an open system in a
quantum state j . We find from Eq. (7) the following equation:

3∑
j=0

Ẇj = −G1W1 − G3W3. (8)

The terms G1W1 and G3W3 describe the rate of counted events
of 0 and 2 types, respectively.

If an event of 0 type happened at t = 0, the system reached
state 0. Therefore

W0(0) = 1,W2(0) = W1(0) = W3(0) = 0. (9)

By carrying out the Laplace transformation in Eq. (7) we
arrive at the following set of algebraic equations:

(λ − k0 − A)W ′
0 + aW ′

2 = −1,

k0W
′
0 + (λ − G1)W ′

1 = 0,
(10)

AW ′
0 + (λ − k2 − a)W ′

2 = 0,

k2W
′
2 + (λ − G3)W ′

3 = 0.

The Laplace transform of the start-stop correlator s00

corresponding to two adjacent events of 0 type looks as
follows:

s00(λ) = G1W
′
1(λ). (11)

The Laplace transform of the start-stop correlator s20

corresponds to the situation in which after an event of 0 type
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FIG. 4. (Color online) Four start-stop correlators for the molecule
with two conformations. (a) s00(solid line), 100s22(dotted line);
(b) 50s20(solid line), s02(dotted line)

the next event is of 2 type. This correlator is described by the
following equation:

s20(λ) = G3W
′
3(λ). (12)

Consider a situation in which the molecule reached state 2,
i.e., the molecule emitted photons of 2 type at t = 0. This fact
corresponds to the following initial condition:

W2(0) = 1,W0(0) = W1(0) = W3(0) = 0. (13)

By carrying out the Laplace transformation in Eq. (7) we
arrive at the following set of algebraic equations:

(λ − k0 − A)W ′′
0 + aW ′′

2 = 0,

k0W
′′
0 + (λ − G1)W ′′

1 = 0,
(14)

AW ′′
0 + (λ − k2 − a)W ′′

2 = −1,

k2W
′′
2 + (λ − G3)W ′′

3 = 0.

The Laplace transform of the start-stop correlator s22

corresponding to two adjacent events of 2 type looks as
follows:

s22(λ) = G3W
′′
3 (λ). (15)

The Laplace transform of the start-stop correlator s02

corresponds to the situation in which after an event of 2 type
the next event is of 0 type. This correlator is described by the
following equation:

s02(λ) = G1W
′′
1 (λ). (16)

Laplace transforms marked by one prime and two primes
can be found from Eqs. (10) and (14) with the same
determinant but with a different right-hand side.

By solving the set of Eqs. (10) and (14) we arrive at the
following matrix for the start-stop correlator:

ŝ(λ) =
(

s00(λ) s02(λ)

s20(λ) s22(λ)

)

= 1

(G1 − λ)(G3 − λ)(λ0 − λ)(λ2 − λ)

×
(

s̄00(λ) s̄02(λ)

s̄20(λ) s̄22(λ)

)
. (17)

Here

s̄00(λ) = (G3 − λ)G1k0(k2 + a − λ),

s̄02(λ) = (G3 − λ)G1k0a,
(17a)

s̄20(λ) = (G1 − λ)G3k2A,

s̄22(λ) = (G1 − λ)G3k2(k0 + A − λ),

and roots of the equation Dets = 0 look as follows:

λ1,3 = G1,3, λ0,2 = k0 + A + k2 + a

2

±
√(

k0+A−k2 − a

2

)2

+ aA. (18)

After an inverse Laplace transformation we find the
following expressions for the start-stop correlators:

s00(t)= G1k0(k2 + a − λ0)

(G1 − λ0)(λ2 − λ0)
e−λ0t + G1k0(k2 + a − λ2)

(G1 − λ2)(λ0 − λ2)
e−λ2t

+ G1k0(k2 + a − G1)

(λ0 − G1)(λ2 − G1)
e−G1t , (19a)

s20(t) = k2AG3

[(
e−λ0t

G3 − λ0
− e−λ2t

G3 − λ2

)
1

(λ2 − λ0)

+ e−G3t

(λ0 − G3)(λ2 − G3)

]
, (19b)

s22(t)= G3k2(k0 + A − λ0)

(G3 − λ0)(λ2 − λ0)
e−λ0t + G3k2(k0 + A − λ2)

(G3 − λ2)(λ0 − λ2)
e−λ2t

+ G3k2(k0 + A − G3)

(λ0 − G3)(λ2 − G3)
e−G3t , (19c)

s02(t) = k0aG1

[(
e−λ0t

G1 − λ0
− e−λ2t

G1 − λ2

)
1

(λ2 − λ0)

+ e−G1t

(λ0 − G1)(λ2 − G1)

]
. (19d)

The correlators calculated with the help of these formulas
for the following set of parameters,

k0 = 104s−1, k2 = 102s−1, a = 10s−1,A = 20s−1,

G1 = G3 = 108s−1,

are shown in Fig. 4.
Consider first diagonal elements s00 and s22 of the matrix

for the start-stop correlators. In accordance with Fig. 4(a) we
may conclude that the correlator s00 equals zero at t > 10−3 s,
whereas the correlator s22 is nonvanished in this time region.
However, such a conclusion will not be true. This proves Fig. 5.

Both the correlator s00 and the correlator s22 are nonvan-
ished at t > 10−3 s. However, they differ strongly by value
in this time domain. The probability of finding two adjacent
events of 0 type separated by t > 10−3 s is 5×103 times less as
compared to two adjacent events of 2 type. On the contrary, the
probability of finding two adjacent events of 0 type separated
by t < 10−3 s is k0/k2 = 100 times larger as compared to two
adjacent events of 2 type.

The correlators s20 and s02 differ from zero in the same
time domain as Fig. 4(b) shows. However, the correlator s02 is
G1k0a/G3k2A = 50 times larger as compared to the correlator
s20. This ratio is already seen from Eqs. (19b) and (19d).
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FIG. 5. (Color online) Comparison of the correlator s00multiplied
by 5 × 103, (solid line) with the correlator s22 (dotted line) at long
time.

After integration of Eq. (5) we arrive at the following
functions of time t0:

Sαβ(t0) =
∫ t0

0
sαβ(t) dt. (20)

They determine the probability of finding an event of α

type prior to time moment t0 if the preceding event of β type
happened at t = 0. It is obvious that the function

Sβ(t0) =
∫ t0

0

∑
α

sαβ(t) dt (21)

determines the probability of finding the second event of any
type prior to time moment t0 if the preceding event of β type
happened at t = 0. By using Eqs. (19a)–(19d) we find the
following relation:

Sβ(∞) = 1. (22)

IV. MATRIX OF FULL CORRELATOR

So far we have considered solely start-stop correlators, i.e.,
pairs of adjacent events separated by time interval t . However,
one can consider pairs of any events separated by time interval
t not taking into account how many events happened between
the two events of this pair. Then dP (t) = p(t) dt determines
the probability of finding an event in time interval (t,t + dt)
after the first event happened at t = 0. Correlation of events
in such a pair has been called full correlator p(t) [3,7]. Full
correlator p(t) plays an important role in the fluorescence of
single molecules. For fluorescence from the molecule without
conformational changes, the autocorrelation function g(2)(t)
can be expressed via p(t) as follows [22,29]:

g(2)(T ) = 〈I (t)I (t + T )〉
〈I (t)〉2

= p(T )

p(∞)
. (23)

It is obvious that if fluorescence consists of photons of 0
and 2 types we can consider four full correlators pαβ(t). They
correspond to four possible pairs of events. Full correlators
can be found from the set of Eq. (6) for a closed system.

If an event of 0 type happened at t = 0 the probability of
finding the molecule in state 0 equals 1. Therefore we can
write:

ρ0(0) = 1, ρ2(0) = ρ1(0) = ρ3(0) = 0. (24)

By carrying out the Laplace transformation in Eq. (6) we
arrive at the following set of algebraic equations:

(λ − k0 − A)ρ ′
0 + G1ρ

′
1 + aρ ′

2 = −1,

k0ρ
′
0 + (λ − G1)ρ ′

1 = 0,
(25)

Aρ ′
0 + (λ − k2 − a)ρ ′

2 + G3ρ
′
3 = 0,

k2ρ
′
2 + (λ − G3)ρ ′

3 = 0.

Laplace transform of the correlator p00 corresponding to
two events of 0 type is given by

p00(λ) = G1ρ
′
1(λ). (26)

The correlator p20 corresponds to the situation in which the
first event was of 0 type and the second event was of 2 type.
Therefore the Laplace transform of this correlator is given by
the following formula:

p20(λ) = G3ρ
′
3(λ). (27)

If an event of 2 type happened at t = 0 the probability of
finding the molecule in state 2 equals 1. Therefore we can
write:

ρ2(0) = 1, ρ0(0) = ρ1(0) = ρ3(0) = 0. (28)

By carrying out the Laplace transformation in Eq. (6) we
arrive at the following set of algebraic equations:

(λ − k0 − A)ρ ′′
0 + G1ρ

′′
1 + aρ ′′

2 = 0,

k0ρ
′′
0 + (λ − G1)ρ ′′

1 = 0,
(29)

Aρ ′′
0 + (λ − k2 − a)ρ ′′

2 + G3ρ
′′
3 = −1,

k2ρ
′′
2 + (λ − G3)ρ ′′

3 = 0.

The correlator p22 corresponds to two events of 2 type. Its
Laplace transform is given by

p22(λ) = G3ρ
′′
3 (λ). (30)

The correlator p02 corresponds to the situation in which the
first event was of 2 type and the second event was of 0 type.
Therefore the Laplace transform of this correlator is given by
the following formula:

p02(λ) = G1ρ
′′
1 (λ). (31)

Equations (25) and (29) have the same determinant but a
different right-hand side in accordance with different initial
conditions.

By solving Eqs. (25) and (29) and by using Eqs. (26) and
(27), and Eqs. (30) and (31), we find four elements of the
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matrix p̂ for the full correlator:

p̂(λ) =
(

p00(λ) p02(λ)

p20(λ) p22(λ)

)

= 1

−λ(�1 − λ)(�2 − λ)(�3 − λ)

×
(

p̄00(λ) p̄02(λ)

p̄20(λ) p̄22(λ)

)
. (32)

Here

p̄00(λ) = s̄00(λ) − k0k2G1G3, p̄02(λ) = s̄02(λ),
(32a)

p̄20(λ) = s̄20(λ), p̄22(λ) = s̄22(λ) − k0k2G1G3.

Here 0, �1, �2, and �3 are roots of the equation Detρ = 0,
in which Detρ is the determinant of Eqs. (25) and (29). This
determinant can be written in the following form:

Detρ = Dets − G1(λ − G3)k0(λ − k2 − a) − G3

× (λ − G1)k2(λ − k0 − A) + k0k2G1G3. (33)

Here Dets is the determinant of Eqs. (10) and (14) for
finding the start-stop correlator. It is given by the following
expression:

Dets = (G1 − λ)(G3 − λ)(λ0 − λ)(λ2 − λ). (34)

By using Eqs. (32) and (17) we arrive at the following
relation between matrices p̂ and ŝ for the full correlator and
the start-stop correlator:

p̂(λ) = ŝ(λ)

1 − ŝ(λ)
. (35)

By carrying out an inverse Laplace transformation in
Eq. (35) we arrive at the following equation for the matrices
p̂(t) and ŝ(t):

p̂(t) = ŝ(t) +
∫ t

0
ŝ(t − x)p̂(x) dx. (36)

By carrying out an inverse Laplace transformation of
matrix elements in Eq. (32) we find the following expression

FIG. 6. (Color online) Full correlators for fluorescence of
the molecule with two conformations and for the following set
of parameters: k0 = 104 s−1, k2 = 102 s−1, a = 10 s−1, A = 20 s−1,
G1 = G3 = 108 s−1; p00(1), p02(2), p22(3), p20(4).

for pαβ(t):

pαβ(t) = p̄αβ(0)

�1�2�3
+ p̄αβ(�1)e−�1t

−�1(�2 − �1)(�3 − �1)

+ p̄αβ(�2)e−�2t

−�2(�1 − �2)(�3 − �2)

+ p̄αβ(�3)e−�3t

−�3(�1 − �3)(�2 − �3)
. (37)

These full correlators calculated for a set of parameters used
also in Fig. 4 for the start-stop correlators are shown in Fig. 6.

In contrast to start-stop correlators, full correlators ap-
proach constant values at long times. These values are
determined by the following formulas:

p00(∞) = p02(∞) = G1G3k0a

�1�2�3
,

(38)

p20(∞) = p22(∞) = G1G3k2A

�1�2�3
.

Here �1�2�3 = G1G3(a + A) + G1k2A + G3k0a. De-
crease of the correlators p00(t),p22(t) at short times of the
order of 1/G1,1/G3

∼= 10−8 s reveals antibunching of events.
Decrease of the correlators p00(t),p22(t) at long times of the
order of 1/A,1/a describes bunching of events. The correlators
approach p00(∞) = p02(∞) and p20(∞) = p22(∞) at long
times. Bunching of events is well pronounced at k0/k2 = 100,
used in Fig. 6.

V. DISTRIBUTION OF PHOTONS

If fluorescence consists of photons of two types we cannot
use Eqs. (2a) and (2b) because we have four start-stop
correlators sαβ(t). Therefore, derivation of the expression for
the distribution function wN (T ) should be carried out anew.

Operating with photons of two types presents a new
problem. Indeed, if a photon was detected in time interval
T we do not know exactly what type of photon this is. We can
only say the photon could be of 0 type with the probability n0

or of 2 type with the probability n2. Obviously, n0 + n2 = 1.
The probabilities n0 and n2 must depend on both rates k0

and k2 of events and the duration that the molecule stays in
conformations 0 and 2. Intervals of staying in conformations 0
and 2 are seen in Fig. 2. Their average durations are determined
by values 1/A and 1/a. Allowing for these reasons we take
the probabilities in the following form:

n0 = k0/A

k0/A + k2/a
= k0a

k0a + k2A
,

(39)

n2 = k2A

k0a + k2A
.

It is obvious that the following scalar function,

s(t) =
∑
α,β

sαβ(t)nβ = (1,1)ŝ(t)

(
n0

n2

)
= 〈�1|ŝ(t)|�n〉, (40)

determines the density of the probability of finding an event of
any type at time t if the preceding event of any type happened
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at t = 0. The preceding event can be of 0 type or of 2 type with
the probability n0 or n2. Therefore the scalar function

S(t0) =
∫ t0

0
s(t) dt, (41)

determines the probability of finding an event of any type prior
to time moment t0 if the preceding event of any type happened
at t = 0. By using Eqs. (21) and (22) we arrive at the following
formula:

S(∞) = 1, (42)

which expresses the law of conservation of total probability.
In accordance with Eq. (A25) of Appendix A the distribu-

tion of photons of any type in time interval T is given by the
following expression:

wN (T )= 1

τ0
〈�1|

∫ T

0
dxN

∫ xN

0
dxN−1 · · ·

∫ x2

0
dt1ŝ(xN − xN−1)

× ŝ(xN−1 − xN−2) · · · ŝ(x2 − x1)ŵ(x1)

−
∫ T

0
dx

∫ x

0
dxN

∫ xN

0
dxN−1 · · ·

∫ x2

0
dx1ŝ(x − xN )

× ŝ(xN − xN−1) · · · ŝ(x2 − x1)ŵ(x1)|�n〉, N � 1

(43)

w0(T ) = 1

τ0

∫ ∞

0

[
1 −

∫ T +t0

0
s(t) dt

]
dt0. (43a)

Here

τ0 =
∫ ∞

0
[1 − S(t)] dt =

∫ ∞

0
ts(t) dt (44)

is an average time interval between photons; s(t) is determined
by Eq. (40). The matrix ŵ(x) looks as follows:

ŵ(x) = Ŝ(∞) − Ŝ(x). (45)

Existence of N-fold integrals in Eq. (43) is a serious obstacle
for numerical calculation. However we can solve this problem
by using the method developed in Refs. [23,25,26]. Let us carry
out a Laplace transformation

∫ ∞
0 dtF (t)ei(ω+i0)t = F (iω) =

F (λ) of both sides of Eq. (43). We arrive at the following
equation:

wN (λ) = 1

−λτ0
〈�1|[ŝ(λ)N−1 − ŝ(λ)N ]ŵ(λ)|�n〉. (46)

The following relation,

Ŝ(∞) |�n〉 = |�n〉 , (47)

is shown in Appendix B. Therefore, by carrying out the Laplace
transformation of both sides of Eq. (45) we arrive at the
following equation:

ŵ(λ) |�n〉 = 1 − ŝ(λ)

−λ
|�n〉 . (48)

After substitution of Eq. (48) into Eq. (46) we find

wN (λ) = 1

λ2τ0
〈�1|ŝ(λ)N−1 − 2ŝ(λ)N + ŝ(λ)N+1|�n〉. (49)

After an inverse Laplace transformation in Eq. (49) we ar-
rive at the following final expression for the photon distribution

function:

wN (T ) = 1

τ0

∫ T

0
(T − t)〈⇀

1|{[ŝ(λ)N−1]t − 2[ŝ(λ)N ]t

+ [ŝ(λ)N+1]t }|�n〉dt, (N � 1). (50)

Equation (50) is an analog of Eq. (2a). However, Eq. (50)
can be used for calculation of photon distribution in fluores-
cence with several types of photons.

The function 〈�1|[ŝ(λ)N+1]t |�n〉 depends on time; it can be
written in the following form:

〈�1|[ŝ(λ)N+1]t |�n〉 =
∫ t

0
dtN

∫ tN

0
dtN−1 · · ·

×
∫ t2

0
dt1f (t,tN ,tN−1, . . . ,t1). (51)

Here f is PDF, which has already been discussed in the
Introduction. For the molecule with several conformational
forms PDF looks as follows:

f (t,tN ,tN−1, . . . ,t1) = 〈�1|ŝ(t − tN )ŝ(tN − tN−1) · · ·
× ŝ(t2 − t1)ŝ(t1)|�n〉. (52)

The function 〈�1|[ŝ(λ)N+1]t |�n〉 has a simple physical mean-
ing. It determines the probability of finding N events in time
interval (0,t). The interval is open and closed by an event
of any type. Equation (50) describes so-called time-averaged
probability and Eq. (51) describes so-called event-averaged
probability [30]. The function f (t,tN ,tN−1, . . . ,t1) is not
factorized. However this fact does not stem from some kind
of memory. It is a consequence of the matrix character of the
start-stop correlator.

Equation (50) differs considerably from Eq. (2a) for
fluorescence with a single type of emitted photon. However,
Eqs. (43a) and (44), and Eqs. (2b) and (4) look similar to
each other. The difference stems from the equation s(t) =∑

α,β sαβ(t)nβ for the start-stop correlator. This very sum must
be used in Eqs. (43a) and (44). The sum includes four start-stop
correlators whereas s(t) in Eqs. (2b) and(4) includes only one
function, say s00(t).

The method developed in Refs. [23,25,26] for calculation of
wN (T ) consists in expression of the function 〈�1|[ŝ(λ)N+1]t |�n〉
via the product of Poisson functions without transition to
Eq. (51). However substitution of the function s(t) by the
matrix ŝ(t) creates a new problem because we have to calculate
the Nth degree of the matrix ŝ(λ). The difficulties can be
overcome with the help of the Silvester formula for the degree
of a matrix. Calculation of ŝ(λ)N is presented in Appendix C.

Consider a single molecule in which interconformational
transitions are two orders of magnitude less as compared
with rates of photon emission. The photon distribution in
fluorescence of such a molecule was considered by Gopich and
Szabo [16] with the help of Eq. (1). Results of our calculation
with the help of Eq. (50) in which the event-averaged
probabilities 〈�1|[ŝ(λ)N ]t |�n〉 are determined by Eqs. (C26) and
(C27) are shown in Fig. 7 by solid lines.
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FIG. 7. (Color online) Distribution of photons wN (5 ms)calculated with the help of Eq. (50), (solid lines) and by the Monte Carlo method
(circles), at k0 = 104 s−1, A = 20 s−1, a = 10 s−1, and G1 = G3 = 108 s−1 and for various intensity of fluorescence from conformation 2:
(a) k2 = 0 s−1, (b) 102 s−1, (c) 103 s−1, (d) 3×103 s−1, (e) 6×103 s−1, and (f) 104 s−1. Squares show Poisson distribution.

In this case of slow conformational changes our result
coincides with the result obtained with the help of the Gopich
and Szabo formula [16].

Figure 7(a) shows the distribution of events in fluorescence
when the molecule in conformation 2 does not fluoresce. In
this case we shall see on and off intervals as Fig. 8 shows.
The distribution of events in Fig. 7(a) is of super-Poisson type,
i.e., it is broader as compared with Poisson distribution. The
distribution has a narrow peak and a broad wing extended
to small values of N. Distributions of such type have been
already discussed in Refs. [25,26] for three methods of photon
counting. Appearance of a narrow peak and a broad wing can
be easily explained with the help of Fig. 8.

Some intervals of time will fall into on intervals entirely.
We will count many events in these intervals. These intervals
form a narrow peak in the distribution function. However, some
intervals will cover the end or the beginning of on intervals
as Fig. 8 shows. We will count few events in these intervals.
These intervals form a broad wing extended to small values
of N.

FIG. 8. Sequence of events in blinking fluorescence and two types
of intervals of time in which events are counted.

If the molecule fluoresces in conformation 2, off intervals
will be filled by photons. The distribution of events in such
fluorescence is shown in Fig. 7. If intensity of fluorescence
from the conformation 2 increases, the second peak at small
values of N emerges. Maximum of this peak approximately
equals k2T . For Fig. 7(d) we find the following position of
the maximum: Nmax = k2T = 3 × 103 × 5 × 10−3 = 15. At
k2 = k0 the distribution of events looks as Fig. 7(f) shows. It
is of Poisson type as shown by squares in Fig. 7(f).

Consider now how the photon distribution presented in
Fig. 7(c) is transformed if the frequency of interconformational
jumps is increased and approaches the frequency of photon
emission. This situation cannot be considered on the basis
of the Gopich-Szabo formula. Results of our calculation are
shown in Fig. 9.

In order to verify our calculations with the help of Eq. (50)
we carried out independent calculations by the Monte Carlo
method with the utilization of four constants: k0 + A, G1,
k2 + a, and G3. Our Monte Carlo method of calculation was
similar to that used by Budini [31] for calculation of the start-
stop correlator.

The molecule leaves state 0 with the rate k0 + A for state
2 or state 1. It reaches state 2 with the probability A/(k0 + A)
and state 1 with the probability k0/(k0 + A). Leaving state 1,
the molecule reaches state 0 with the rate G1. By leaving state 2
with the rate k2 + a, the molecule reaches state 0 with the prob-
ability a/(k2 + a) or state 3 with the probability k2/(k2 + a).
Leaving state 3, the molecule reaches state 2 with the rate
G3 and so on. By considering 106 of such steps we find the
sequence of random events shown in Fig. 10.
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FIG. 9. (Color online) Changes in the photon distribution function wN (5 ms) with an increase of the rate of interconformational transitions.
(a) k0 = 104 s−1, k2 = 103 s−1,G1 = G3 = 108 s−1, and A = 20 s−1, a = 10 s−1; (b) A = 100 s−1, a = 50 s−1; (c) A = 300 s−1, a = 150 s−1;
(d) A = 800 s−1, a = 400 s−1; (e) A = 103 s−1, a = 5 × 102 s−1; (f) A = 3 × 103 s−1, a = 1.5 × 103 s−1. Calculations were made with
Eq. (50) (solid lines) and the Monte Carlo method (circles).

Intervals of 0 type with frequent events alternate intervals
of 2 type with infrequent events as Fig. 10(a) shows. The
duration of these intervals shown in Fig. 10(a) is much
longer as compared with intervals between adjacent events. In
this case frequent intraconformational jumps and infrequent
interconformational jumps can be considered separately as
Gopich and Szabo did. However, if the frequency of inter-
conformational jumps increases we cannot consider intra- and

interconformational jumps separately. This is clearly seen in
Fig. 10(f); it corresponds to the case in which the frequency of
interconformational jumps is comparable with the frequency
of intraconformational jumps in conformation 2.

The sequence of events shown in Fig. 10 enabled us to
calculate the distribution of events without using Eq. (50). For
this purpose the whole time axis was covered by equal time
intervals of 5×10−3 s. We counted the number of events in

FIG. 10. Sequence of random events of 0 type (short segments), and of 2 type (long segments) calculated by the Monte Carlo method, with
rate constants k0 = 104 s−1, G1 = G3 = 108 s−1, and k2 = 103 s−1,and with rates of conformational transitions A and a relating to the photon
distributions shown in Figs. 9(a)–9(f)
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FIG. 11. Fluctuations of fluorescence intensity at bin time of 5 ms obtained with the help of sequences of events like those shown in
Figs. 10(a)–10(f) and with the same set of parameters.

each time interval. The distribution of counted events in all
time intervals is shown in Figs. 7 and 9 by circles. There is a
coincidence of circles with solid lines. This coincidence proves
the accuracy of both methods of calculation.

The distribution of events presented in Fig. 10 can be related
to an experiment if experimental conditions permit us to count
each event. If all counted events are stored at a bin we shall
measure chaotic fluctuations of fluorescence intensity. For a
bin time of 5 ms, the sequences of events like those shown in
Fig. 10 are transformed to fluctuations of fluorescence intensity
shown in Fig. 11.

The ratio k0/k2 equals 10 for all tracks shown in Fig. 11.
However, values of constants A and a responsible for intercon-
formational jumps increase within two orders of magnitude if
we move from Fig. 11(a) towards Fig. 11(f).

Figures 11(a), 10(a), and 7(c) show fluctuations of events
and the distribution of events for the case of infrequent
interconformational jumps. Fluorescence shown in Fig. 11(a)
still has the so-called “on-off stricture”. “On-off stricture”
disappears if we increase the rate of interconformational
jumps. Figure 11(f) demonstrates this fact clearly.

VI. AUTOCORRELATION FUNCTION OF
FLUORESCENCE

Measurement of autocorrelation function g(2)(t) of fluo-
rescence (AF) is a standard treatment of experimental data
in works dealing with fluctuating fluorescence. In accordance
with Mandel [32], the second factorial moment of the photon
distribution is expressed via g(2)(t) as follows:

〈N (N − 1)〉t =
∫ t

0
dt2

∫ t

0
dt1〈T̂ [Î (t2)Î (t1)]〉

= 2〈I 〉2
∫ t

0
dt2

∫ t2

0
dt1g

(2)(t2 − t1). (53)

On the left-hand side of Eq. (23) we see the function g(2)(t)
measurable in experiment. On the right-hand side of Eq. (23)
we see the function which can be calculated theoretically for a
given microscopic model. However, Eq. (23) was derived for
fluorescence with a single type of photon. If the full correlator

is substituted by the matrix, Eq. (23) is not correct. How can we
modify Eq. (23) for fluorescence with several types of emitted
photons?

In order to derive an analog of Eq. (23) we shall use
Eq. (53). Equation (53) is rather general and can be used for
the distribution of events of various types. Carrying out the
Laplace transformation in Eq. (53) we arrive at the following
expression:

〈N (N − 1)〉λ = 2〈I 〉2g(2)(λ)/λ2. (54)

However, the left-hand side of Eq. (54) can be calculated
with the help of the following formula:

〈N (N − 1)〉λ =
∞∑

N=0

N (N − 1)wN (λ). (55)

Here wN (λ) is determined by Eq. (49). After substitution
of Eq. (49) into Eq. (55) we arrive at the following expression:

〈N (N − 1)〉λ

= 1

λ2τ0

∞∑
N=0

N (N − 1)〈�1|ŝ(λ)N−1 − 2ŝ(λ)N + ŝ(λ)N+1]|�n〉.

(56)

After calculations of sums over N we arrive at the following
simple equation:

〈N (N − 1)〉λ = 2

λ2τ0
〈�1| ŝ(λ)

1 − ŝ(λ)
|�n〉= 2

λ2τ0
〈�1|p̂(λ)|�n〉. (57)

Comparing the right-hand sides of Eqs. (54) and (57) we
find

g(2)(λ) = 1

τ0〈I 〉2
〈�1|p̂(λ)|�n〉. (58)

Because

1/τ0 = 〈I 〉 = 〈�1|p̂(t = ∞)|�n〉 (59)
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FIG. 12. (Color online) Autocorrelation function of fluorescence
with two types of photons at k0 = 104 s−1, A = 20 s−1, a = 10 s−1,
and G1 = G3 = 108 s−1, and for various values of the ratio (a)
k2/k0:k2 = 0 s−1, (b) 102 s−1, (c) 103 s−1, (d) 104 s−1.

is an average fluorescence intensity we find after the Laplace
transformation of the left- and right-hand sides of Eq. (58) this
final expression:

g(2)(T ) = 〈�1|p̂(T )|�n〉
〈�1|p̂(∞)|�n〉 . (60)

The formula establishes a relation between the function
g(2)(T ) measurable in the experiment and the matrix p̂(t)
of the full correlator. This matrix can be calculated for
given microscopic model. Figure 12 shows the autocorrelation
function calculated with the help of Eq. (60) for various ratios
of intensity of fluorescence from conformations 0 and 2.

First of all, antibunching is inherent in all curves. The
curve “a” corresponds to blinking fluorescence with on and
off intervals. It demonstrates bunching of events. Bunching
disappears if the intensity of fluorescence from conformation 2
approaches the intensity of fluorescence from conformation 0.
In fact, the curve “d” corresponds to fluorescence of a two-level
molecule.

VII. CONCLUSION

We have studied fluorescence of single complex molecules
or a single impurity center with two conformations (0 and 2)
excited by cw-laser light. Such a molecule can emit light from
each conformation with different intensity or polarization. The
molecule being in conformation 0 (2) emits photons of 0 (2)
type.

A theory for the photon distribution function for a single
molecule, revealing itself like two emitters (emitter 0 and 2),
has been already developed by Gopich and Szabo [16] with an
approximation in which the rates of intra- and interconforma-
tional transitions have been considerably different.

We have used another approach and developed a theory
which is free of such approximation. Figure 9 demonstrates
this fact. The theory for fluorescence consisting of photons of
two types has a complicated character as compared with the
theory for fluorescence with emitted photons of a single type.
All mathematical difficulties have been overcome and details
can be found in the three following Appendixes.

After the microscopic model was formulated, our theory
enabled one to (i) calculate the matrix sαβ(t) for the start-
stop correlator (waiting time distributions), (ii) calculate the
matrix pαβ(t) for the full correlator and to find a relation
between autocorrelation function g(2)(t) and the matrix pαβ(t),
(iii) calculate the distribution function wN (T ) for events
measured in time interval T, (iv) calculate fluctuations of
fluorescence intensity relating to the formulated microscopic
model.

In order to verify our calculations with the help of Eq. (50)
we carried out independent calculations of the distribution
functions by the Monte Carlo method. Both methods of
calculations yield identical distributions as Figs. 7 and 9 show.

By starting from the microscopic model we arrived at
fluctuating fluorescence as Fig. 11(c) shows. The fluctuations
of such type could indeed be measured in a real experiment.
Can information about the microscopic model be extracted
from such a method? We hope that our theory in which such
method is related to the distribution function shown in Fig. 9(c)
and to a definite microscopic model can help researchers to find
a positive answer to this question.
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APPENDIX A: DERIVATION OF THE FUNCTION FOR THE
DISTRIBUTION OF EVENTS

Matrix elements [ŝ(t)]αβ = sαβ(t) of the start-stop correla-
tor determine the density of the probability of finding adjacent
events of α and β type separated by time interval t . Then
matrix elements

[Ŝ(t0)]αβ = Sαβ(t0) =
∫ t0

0
sαβ(t) dt (A1)

determine the probability of finding an event of α type prior
to time moment t0 if the preceding event of β type happened
at t = 0. Then

Sβ(t0) =
∫ t0

0

∑
α

sαβ(t) dt (A2)

describes the probability of finding an event of any type prior
to time moment t0. It is obvious that

S(t0) = (1,1)Ŝ(t0)
(

n0

n2

)

= 〈�1|Ŝ(t0)|�n〉 =
∫ t0

0
s(t) dt (A3)

is the probability of finding an event of any type prior time
moment t0 if the preceding event happening at t = 0 was an
event of 0 or 2 type with the probability n0 or n2, respectively.
Equation (A3) looks like that in the case of fluorescence
consisting of photons of a single type [25,26]. However, for
the molecule emitting photons of various types, the expression
for s(t) looks as follows:

s(t) =
∑
α,β

sαβ(t)nβ = (1,1)ŝ
(

n0

n2

)
= 〈�1|ŝ|�n〉. (A4)
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FIG. 13. (a) Time interval without events and with one and two
events (circles).

Consider the probability of not finding any event in time
interval (t0,T + t0) whose onset is separated by time t0 from
an event that happened at t = 0. The situation is shown in the
first line in Fig. 13. It is obvious the function

w(t0) = 1 − S(t0) (A5)

is the probability of finding no event in time interval (0,t0) if an
event happened at t = 0. Then, the probability of not finding
an event in time interval (0,T + t0), if an event happened at
t = 0, will be given by the following expression:

w(T + t0) = w0(T + t0,t0)w(t0). (A6)

The probability

w0(T + t0,t0) = w(T + t0)

w(t0)
= 1 − S(T + t0)

1 − S(t0)
(A7)

determines the absence of an event in time interval (t0,T + t0).
In contrast to the conditional probability w(t) the probability
w0(T + t0,t0) is of the nonconditional type. It does not depend
on the time history prior to time t0.

It is obvious that the function

P (t0) = w(t0)

/ ∫ ∞

0
w(t0) dt0 =w(t0)/τ0 (A8)

is the density of the probability of not finding an event in time
interval (0,t0). Here the constant

τ0 =
∫ ∞

0
w(t) dt =

∫ ∞

0
ts(t) dt (A9)

is the average time interval between two adjacent events. The
probability of finding time interval T without events can be
found with the help of Eqs. (A7) and (A8) as follows:

w0(T ) =
∫ ∞

0
w0(T + t0,t0)P (t0) dt0 = 1

τ0

∫ ∞

0
w(T + t0) dt0

= 1

τ0

∫ ∞

T

w(x)dx. (A10)

Consider now the second line in Fig. 13. Here we see a
single event in time interval (t0,T + t0). The probability of
finding any event in time interval (t0,T + t0) if the preceding

event at t = 0 was an event of β type is given by

[ρ1(T + t0,t0|0)]β

=
∫ T +t0

t0

dt1

{[
1 −

∫ T +t0

t1

dt
∑

α

sα0(t − t1)

]
s0β(t1)

+
[

1 −
∫ T +t0

t1

dt
∑

α

sα2(t − t1)

]
s2β(t1)

}
. (A11)

Expressions in the square brackets determine the probabil-
ity of finding no event in time interval (t1,T + t0). Since an
event of β type can happen at t = 0 with the probability nβ ,
the function

ρ1(T + t0,t0) =
∑

β

[ρ1(T + t0,t0|0)]βnβ

= 〈�1|
∫ T +t0

t0

dt1ŝ(t1) −
∫ T +t0

t0

dt1

×
∫ T +t0

t1

dt ŝ(t − t1)ŝ(t1)|�n〉 (A12)

will describe the probability of finding any event in time
interval (t0,T + t0)if the preceding event of any type happened
at t = 0.

Using a similar line of reasoning, we can derive the
probability of finding two events of any type in time interval
(t0,T + t0) if the preceding event of any type happened at
t = 0:

ρ2(T + t0,t0|0)

= 〈�1|
∫ T +t0

t0

dt2

∫ t2

t0

dt1ŝ(t2 − t1)ŝ(t1) −
∫ T +t0

t0

dt2

×
∫ T +t0

t2

dt

∫ t2

t0

dt1ŝ(t − t2)ŝ(t2 − t1)ŝ(t1)|�n〉.
(A13)

Such situation is shown in the third line of Fig. 13.
It is obvious that for the probability of finding N events in

time interval (t0,T + t0) we find the following expression:

ρN (T + t0,t0|0)

= 〈�1|
∫ T +t0

t0

dtN

∫ tN

t0

dtN−1 · · ·

×
∫ t2

t0

dt1ŝ(tN − tN−1)ŝ(tN−1 − tN−2) · · ·

× ŝ(t2 − t1)ŝ(t1) −
∫ T +t0

t0

dtN

∫ T +t0

tN

dt

×
∫ tN

t0

dtN−1 · · ·
∫ t2

t0

dt1ŝ(t − tN )

× ŝ(tN − tN−1) · · · ŝ(t2 − t1)ŝ(t1)|�n〉. (A14)

If we take into account∫ T +t0

t0

dtN

∫ T +t0

tN

dt · · · =
∫ T +t0

t0

dt

∫ t

t0

dtN · · ·, (A15)
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Equation (A14) can be rewritten in the following form:

ρN (T + t0,t0|0)

= 〈�1|
∫ T +t0

t0

dtN

∫ tN

t0

dtN−1 · · ·

×
∫ t2

t0

dt1ŝ(tN − tN−1)ŝ(tN−1 − tN−2) · · ·

× ŝ(t2 − t1)ŝ(t1) −
∫ T +t0

t0

dt

∫ t

t0

dtN

∫ tN

t0

dtN−1 · · ·

×
∫ t2

t0

dt1ŝ(t − tN )ŝ(tN − tN−1) · · ·
× ŝ(t2 − t1)ŝ(t1)|�n〉, (N � 1). (A16)

By using Eq. (A16) we arrive at the following equation:

∞∑
N=1

ρN (T + t0,t0|0) =
∫ T +t0

t0

dt1s(t1) = S(T + t0) − S(t0).

(A17)

The probability ρN (T + t0,t0|0) can be written in the
following form:

ρN (T + t0,t0|0) = wN (T + t0,t0)w(t0), N � 1. (A18)

Here w(t0) = 1 − S(t0) is the probability of finding no
event in time interval (0,t0) if an event happened at t = 0,
and wN (T + t0,t0) is the nonconditional probability of finding
N events in time interval (t0,T + t0). It does not depend on
time history prior to t0.

By using Eq. (A17) and Eq. (A18), we find the following
expression for the sum of nonconditional probabilities:

∞∑
N=1

wN (T + t0,t0) = S(T + t0) − 1

1 − S(t0)
+ 1. (A19)

Making use of Eq. (A19) and Eq. (A7) we arrive at the law
of conservation of full nonconditional probability:

∞∑
N=0

wN (T + t0,t0) = 1. (A20)

From Eq. (A18) we can derive the following expression for
nonconditional probability of finding N events in time interval
(t0,T + t0):

wN (T + t0,t0) = ρN (T + t0,t0|0)

w(t0)
, N � 1. (A21)

With the help of this equation and Eq. (A8) we arrive at
the following expression for the probability of finding time
interval T with N events of any type:

wN (T ) =
∫ ∞

0
wN (T + t0,t0)P (t0) dt0

= 1

τ0

∫ ∞

0
ρN (T + t0,t0|0) dt0. (A22)

By making substitution tj = xj + t0 of variables in
Eq. (A16) for ρN (T + t0,t0|0) we arrive at the following
expression:

wN (T ) = 1

τ0
〈�1|

∫ T

0
dxN

∫ xN

0
dxN−1 · · ·

∫ x2

0
dt1

× ŝ(xN − xN−1)ŝ(xN−1 − xN−2) · · · ŝ(x2 − x1)

×
∫ ∞

0
dt0ŝ(x1 + t0) −

∫ T

0
dx

∫ x

0
dxN

×
∫ xN

0
dxN−1 · · ·

∫ x2

0
dx1ŝ(x − xN )

× ŝ(xN − xN−1) · · · ŝ(x2 − x1)
∫ ∞

0
dt0ŝ(x1 + t0)|�n〉.

(A23)

Allowing for the equation∫ ∞

0
dt0ŝ(x1 + t0) =

∫ ∞

0
ŝ(z)dz −

∫ x1

0
ŝ(z)dz

= Ŝ(∞) − Ŝ(x1) = ŵ(x1), (A24)

we can transform Eq. (A23) for the probability of finding time
interval T with N events to the final form:

wN (T ) = 1

τ0
〈�1|

∫ T

0
dxN

∫ xN

0
dxN−1 · · ·

∫ x2

0
dt1

× ŝ(xN − xN−1)ŝ(xN−1 − xN−2) · · · ŝ(x2 − x1)ŵ(x1)

−
∫ T

0
dx

∫ x

0
dxN

∫ xN

0
dxN−1 · · ·

∫ x2

0
dx1

× ŝ(x − xN )ŝ(xN − xN−1) · · ·
× ŝ(x2 − x1)ŵ(x1)|�n〉, N � 1. (A25)

By using this equation we find
∞∑

N=1

wN (T ) = 1

τ0

∫ T

0
〈�1|ŵ(x)|�n〉dx

= 1

τ0

∫ T

0
w(x)dx, (A26)

Taking into account Eq. (A10) for w0(T ) we arrive at the
law of conservation of full probability:

∞∑
N=0

wN (T ) = 1

τ0

∫ T

0
w(x)dx

+ 1

τ0

∫ ∞

T

w(x)dx = 1. (A27)

APPENDIX B: DERIVATION OF THE EQUATION
Ŝ(∞)|�n〉 = |�n〉

By using Eqs. (20) and (22) we can write the matrix Ŝ(∞)
in the following form:

Ŝ(∞) =
(

1 − S20(∞) S02(∞)

S20(∞) 1 − S02(∞)

)
. (B1)

Here

S20(∞) =
∫ ∞

0
s20(t) dt, S02(∞) =

∫ ∞

0
s02(t) dt. (B2)
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Inserting Eqs. (19b) and (19d) for start-stop correlators into
the integrals and performing the integration we find

S02(∞) = k0a/λ0λ2, S20(∞) = k2A/λ0λ2. (B3)

Here λ0 and λ2 are determined by Eq. (18). Allowing for
these formulas and Eq. (39) we arrive at the following equation:

Ŝ(∞) |�n〉 =
(

1 − S20(∞) S02(∞)

S20(∞) 1 − S02(∞)

)(
n0

n2

)

=
(

[1 − S20(∞)]n0 + S02(∞)n2

S20(∞)n0 + [1 − S02(∞)]n2

)

=
(

n0

n2

)
= |�n〉 . (B4)

APPENDIX C: CALCULATION OF THE PROBABILITY
〈�1|[ŝ(λ)N ]t |�n〉 OF FINDING N–1 EVENTS IN TIME

INTERVAL (0,t)

We shall do calculations neglecting antibunching, i.e., we
set G1/(G1 − λ) = 1 and G3/(G3 − λ) = 1. Then the Laplace
transform of the start-stop correlator takes the following
form:

ŝ(λ) = M̂(λ)

(λ0 − λ)(λ2 − λ)
. (C1)

Here

M̂(λ) =
(

k0(k2 + a − λ) k0a

k2A k2(k0 + A − λ)

)
. (C2)

In order to calculate the matrix M̂(λ)N we shall use the
Silvester formula:

M̂(λ)N = MN
2 − MN

0

M2 − M0
M̂(λ)

−M0M2
MN−1

2 − MN−1
0

M2 − M0
. (C3)

Here M0 and M2 are roots of the equation Det(M̂ − M) =
0:

M0,2 = 2k0k2 + k0a + k2A − (k0 + k2)λ

2

∓
√(

k0a − k2A − (k0 − k2)λ

2

)2

+ k0k2aA.

(C4)

The variable λ staying under the square root sign compli-
cates the inverse Laplace transformation in Eq. (C3). However,
u = M0 + M2 and v = M0M2 do not include the square root.
In order to make the transition to new variables we rewrite
Eq. (C3) in the following form:

M̂(λ)N = QN−1(u,v)M̂(λ) − vQN−2(u,v). (C5)

Here

QN (u,v) ≡ MN+1
2 − MN+1

0

M2 − M0
=

N∑
q=0

M
q

0 M
N−q

2 . (C6)

We can derive the following recurring relations for even
and odd values of N:

Q2n(u,v) = u2n

−
n∑

q=1

vq
(
C

q

2n − C
q−1
2n

)
Q2(n−q)(u,v), (C7)

Q2n+1(u,v) = u2n+1

−
n∑

q=1

vq
(
C

q

2n+1 − C
q−1
2n+1

)
Q2(n−q)+1(u,v).

(C8)

Here C
j

i are binomial coefficients. The functions Q2(n−q)

and Q2(n−q)+1 can be rewritten as polynomials of the new
variables:

Q2n(u,v) =
n∑

q=0

(−v)qD0
qn−qu

2(n−q), (C9)

Q2n+1(u,v) =
n∑

q=0

(−v)qD1
qn−qu

2(n−q)+1. (C10)

Coefficients D0
ij and D1

ij are determined by recurring
relations:

D0
ij =

i∑
k=1

(
Ck

2(i+j ) − Ck−1
2(i+j )

)
D0

i−kj (−1)k+1,

(C11)
D0

0j = 1,

D1
ij =

i∑
k=1

(
Ck

2(i+j )+1 − Ck−1
2(i+j )+1

)
D1

i−kj (−1)k+1,

D1
0j = 1, (C12)

New variables depend on λ as follows:

u(λ) = (k0 + k2)(λ̄ − λ), (C13)

v(λ) = k0k2(λ0 − λ)(λ2 − λ). (C14)

Here λ̄ = 2k0k2+k0a+k2A

k0+k2
and λ0,2 are determined by Eq. (18).

After insertion of Eqs. (C9) and (C10) into Eq. (C5) we arrive
at the following formulas for ŝ(λ)N :

ŝ(λ)2n = (k0k2)2n

n−1∑
q=0

(−1)q
[
D1

qn−1−q

u(λ)2(n−q)−1

v(λ)2n−q
M̂(λ)

−D0
qn−1−q

u(λ)2(n−q)−2

v(λ)2n−q−1

]
, (C15)

ŝ(λ)2n+1 = (k0k2)2n+1

[ n∑
q=0

(−1)qD0
qn−q

u(λ)2(n−q)

v(λ)2n−q+1
M̂(λ)

−
n−1∑
q=0

(−1)qD1
qn−1−q

u(λ)2(n−q)−1

v(λ)2n−q

]
. (C16)

A method permitting us to reduce such expressions to
a product of the Poisson function was developed in Refs.
[23,25,26]. Existence of the variable λ in the numerator of
the ratios complicates the inverse Laplace transformation in
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Eqs. (C15) and (C16). This obstacle can be overcome by using
the following expression,

(
λ̄ − λ

λ0 − λ

)l

=
(

1 + λ̄ − λ0

λ0

λ0

λ0 − λ

)l

=
l∑

s=0

Cs
l

(
λ̄ − λ0

λ0

)s (
λ0

λ0 − λ

)s

,

in ratios staying in Eqs. (C15) and (C16). Then we arrive at

u(λ)l

v(λ)m
= (k0 + k2)l

(k0k2)m

l∑
s=0

Cs
l

(
λ̄ − λ0

λ0

)s

× λs
0

(λ0 − λ)m−l+s

1

(λ2 − λ)m
, (C17)

u(λ)l

v(λ)m
M̂(λ) = (k0 + k2)l

(k0k2)m

l∑
s=0

Cs
l

(
λ̄ − λ0

λ0

)s

× λs
0

(λ0 − λ)m−l+s

M̂(λ)

(λ2 − λ)m
. (C18)

The second ratio in Eq. (C18) can be transformed to the
following expression:

M̂(λ)

(λ2 − λ)m
= M̂(λ2)

(λ2 − λ)m
+

(
k0 0

0 k2

)

× 1

(λ2 − λ)m−1
. (C19)

By substituting Eq. (C19) into Eq. (C18) we can express
Eqs. (C17) and (C18) via the Laplace transform P λi

m (λ) =
λm

i /(λi − λ)m+1 of Poisson functions:

u(λ)l

v(λ)m
= (k0 + k2)l

(k0k2)mλm−l−1
0 λm−1

2

l∑
s=0

Cs
l

(
λ̄ − λ0

λ0

)s

P
λ0
m−l+s−1(λ)P λ2

m−1(λ), (C20)

u(λ)l

v(λ)m
M̂(λ) = (k0 + k2)l

(k0k2)mλm−l−1
0 λm−2

2

l∑
s=0

Cs
l

(
λ̄ − λ0

λ0

)s
[

M̂(λ2)

λ2
P

λ0
m−l+s−1(λ)P λ2

m−1(λ)

+
(

k0 0

0 k2

)
P

λ0
m−l+s−1(λ)P λ2

m−2(λ)

]
. (C21)

Making an inverse Laplace transform in Eqs. (C20) and (C21) we find the following expressions:

[
u(λ)l

v(λ)m

]
t

= (k0 + k2)l

(k0k2)mλm−l−1
0 λm−1

2

l∑
s=0

Cs
l

(
λ̄ − λ0

λ0

)s ∫ t

0
Pm−l+s−1[λ0(t − x)]Pm−1[λ2x]dx (C22)

[
u(λ)l

v(λ)m
M̂(λ)

]
t

= (k0 + k2)l

(k0k2)mλm−l−1
0 λm−2

2

l∑
s=0

Cs
l

(
λ̄ − λ0

λ0

)s
{

M̂(λ2)

λ2

∫ t

0
Pm−l+s−1[λ0(t − x)]Pm−1[λ2x]dx

+
(

k0 0

0 k2

) ∫ t

0
Pm−l+s−1[λ0(t − x)]Pm−2[λ2x]dx

}
. (C23)

Here PM (λx) = (λx)M exp(−λx)/M!. Allowing for 〈�1 | �n〉 = 1, 〈�1| M̂(λ2)
λ2

|�n〉 = λ0 − (k0n0 + k2n2)and 〈�1|( k0 0
0 k2

)|�n〉 = (k0n0 +
k2n2)we can transform Eqs. (C22) and (C23) to the following form:

〈�1|
[

u(λ)l

v(λ)m

]
t

|�n〉 = (k0 + k2)l

(k0k2)mλm−l−1
0 λm−1

2

l∑
s=0

Cs
l

(
λ̄ − λ0

λ0

)s ∫ t

0
Pm−l+s−1[λ0(t − x)]Pm−1[λ2x]dx, (C24)

〈�1|
[

u(λ)l

v(λ)m
M̂(λ)

]
t

|�n〉 = (k0 + k2)l

(k0k2)mλm−l−1
0 λm−2

2

l∑
s=0

Cs
l

(
λ̄ − λ0

λ0

)s
{

[λ0 − (k0n0 + k2n2)]
∫ t

0
Pm−l+s−1[λ0(t − x)]

×Pm−1[λ2x]dx+(k0n0 + k2n2)
∫ t

0
Pm−l+s−1[λ0(t − x)]Pm−2[λ2x]dx

}
. (C25)

For the function 〈�1|[ŝ(λ)N ]t |�n〉 with even and odd N we arrive at the following expressions:

〈�1|[ŝ(λ)2n]t |�n〉 = (k0k2)2n

n−1∑
q=0

(−1)q
{
D1

qn−1−q〈�1|
[
u(λ)2(n−q)−1

v(λ)2n−q
M̂(λ)

]
t

|�n〉 − D0
qn−1−q〈�1|

[
u(λ)2(n−q)−1

v(λ)2n−q

]
t

|�n〉
}

, (C26)
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〈�1|[ŝ(λ)2n+1]t |�n〉 = (k0k2)2n+1

⎧⎨
⎩

n∑
q=0

(−1)qD0
qn−q〈�1|

[
u(λ)2(n−q)

v(λ)2n−q+1
M̂(λ)

]
t

|�n〉 −
n−1∑
q=0

(−1)qD1
qn−1−q〈�1|

[
u(λ)2(n−q)−1

v(λ)2n−q

]
t

|�n〉
⎫⎬
⎭ .

(C27)

Equations (C24)–(C27) express the function 〈�1|[ŝ(λ)N ]t |�n〉
via onefold integrals of two Poisson functions. These
equations enable one to carry out numerical calculations
with the help of Eq. (50). Rate constants λ0 and λ2 in
the Poisson functions determine both quantum dynamics

of the emitter [see expression for sαβ(t)] and photon
statistics of its fluorescence. Hence, the quantum dynam-
ics of the system manifests itself in photon statistics via
rate constants λ0 and λ2 staying in the Poisson func-
tions.
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