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Quantum metrology with imperfect states and detectors
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Quantum enhancements of precision in metrology can be compromised by system imperfections. These may
be mitigated by appropriate optimization of the input state to render it robust, at the expense of making the state
difficult to prepare. In this paper, we identify the major sources of imperfection of an optical sensor: input state
preparation inefficiency, sensor losses, and detector inefficiency. The second of these has received much attention;
we show that it is the least damaging to surpassing the standard quantum limit in a optical interferometric sensor.
Further, we show that photonic states that can be prepared in the laboratory using feasible resources allow a
measurement strategy using photon-number-resolving detectors that not only attain the Heisenberg limit for
phase estimation in the absence of losses, but also deliver close to the maximum possible precision in realistic
scenarios including losses and inefficiencies. In particular, we give bounds for the tradeoff between the three
sources of imperfection that will allow true quantum-enhanced optical metrology
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I. INTRODUCTION

Measurements can be made more precise by using sensor
designs based on quantum-mechanical rather than classical
physical principles. The proximate cause of this enhanced
precision is the reduced measurement noise enabled by
quantum entanglement. The realization of these advantages
therefore hinges upon the preparation of particular nonclassical
states that encode the sensor state parameter in such a manner
as to allow its determination with precision beyond the
standard quantum limit (SQL) [1]. Given a quantum state,
the ultimate limit on the attainable precision is provided by the
quantum Cramér-Rao bound (QCRB) via the quantum Fisher
information (QFI) [2]. Early theoretical efforts in quantum
metrology centered around designing quantum states that
saturate this bound.

A paradigm for quantum-enhanced measurement is optical
interferometry, in which the phase difference between two field
modes is to be estimated. For fixed photon numbers and no
losses, quantum states minimizing the QCRB are the so-called
N00N states, consisting of a superposition of N photons in one
mode and none in the other [3–5]. Unfortunately, N00N states
are exponentially more vulnerable to losses than classical
states, and quickly lose their capacity for enhanced sensing.
More recently, the effects of loss in an interferometer have been
considered [6–9]. The optimal states for lossy phase estimation
are, not surprisingly, dependent on the exact value of the loss
in the interferometer. Consequently, no universal scheme for
their preparation is possible.

However, losses in the interferometer are not the only
imperfections to be dealt with. Preparation of the input state
may be inefficient, delivering only an approximate version of
the desired probe state. Also, the detectors may not be efficient
and may not implement the requisite measurement strategy. In
this paper, we encompass imperfect input state preparation
and sensor output measurement into our analysis. We show,
surprisingly, that such imperfections are more detrimental to
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sensor performance than internal losses. However, we are able
to identify a class of states that are close to optimally robust
against such imperfections, and yet are feasibly constructed
in the laboratory. This gives hope that the challenges of
a palpably nonclassical sensor may be operated in realistic
conditions. Since any implementation of quantum metrology
will inevitably have all three imperfections, our results identify
the range of imperfections and losses under which we can
still demonstrate an objective advantage over classical phase
estimation. They also pinpoint exactly the tradeoffs and
bottlenecks in the path of demonstrating quantum-enhanced
metrology under realistic conditions. Our paper addresses
the fundamental gap between the principle and practice of
quantum metrology. Furthermore, our paper illustrates the
usefulness of nonmaximally entangled states.

Our scheme, shown in Fig. 1, starts with N photons in
each of two modes given by |�〉 = |N〉|N〉, which can be
generated in a heralded manner with nonlinear processes such
as parametric down conversion and photon-number-resolving
detectors (PNRDs) [10], incident onto a 50:50 beam splitter.
The resulting state [see Eq. (1)], which we denote HB(N ), was
proposed by Holland and Burnett [11], has a photon-number
variance quadratic in N , and thus is capable of attaining
the Heisenberg limit for phase estimation [2]. They are
more feasible in terms of laboratory resources than N00N

and optimal states, yet their performance is not drastically
diminished in the presence of losses [12]. Recent work has
demonstrated a scalable route to prepare highly pure HB(N )
states, relying on production of Fock states without complex
linear-optical networks [10]. In contrast, N00N states require
not only the generation of N photons, but also a manipulation
of these photons by means of a complex linear-optical network
[13]. The output of such a network is probabilistic since
it relies on a particular detection (or nondetection) event of
ancillary photons. This success probability usually decreases
exponentially with increasing photon numbers. Schemes that
can, in principle, generate N00N states with high success
probability require either high nonlinearity [14] or actively
controlled cavities [15], which challenge current technology.
This decreasing probability of production necessitates post
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FIG. 1. (Color online) A schematic interferometer involving
HB(N ) states. BS1 and BS2 are 50/50 beam splitters, φ denotes
the phase shift of mode c, and PNRD is a photon-number-resolving
detector. η is the loss in the interferometer arm, while ηp and ηd are the
preparation and detection imperfections. η = ηp = ηd = 1 denotes a
perfect setup.

selection on the outcomes to exhibit any perceived quantum
enhancements.

II. HOLLAND-BURNETT STATES

We show that, for HB(N ) states, the QFI for phase esti-
mation can be achieved with PNRDs. Fisher information also
allows for an objective, situation-independent, resource-based
certificate for our metrology scheme. We begin by calculating
the QFI for phase estimation attainable with HB(N ) states
in an ideal interferometer (Fig. 1). After BS1,

√
2a† →

c† + d†,
√

2b† → c† − d†, and the phase shifter c† → eiφc†,

|�〉=
N∑

n=0

An|2n,2N − 2n〉, An =
√

2n!(2N − 2n)!

2Nn!(N − n)!
e2inφ,

(1)

where φ is the parameter to be estimated. The QFI quantifies
changes in the initial state as a result of accumulating
phase. This gives d|�〉/dφ ≡ |�φ〉 = ∑N

n=0 2nAn|2n,2N −
2n〉, leading to a QFI of [2]

J = 4(〈�φ|�φ〉 − |〈�|�φ〉|2). (2)

Since 〈�φ|�φ〉 = N (3N + 1)/2, and 〈�|�φ〉 = iN ,

J = 2N (N + 1). (3)

This quantity, through the QCRB, �φ � 1/
√
J , provides the

absolute attainable precision in phase estimation [2] using
HB(N ) states. The quadratic behavior of the QFI with the num-
ber of particles involved shows that we attain the Heisenberg
limit. The original suggestion [11] of measuring the number
difference in the two modes after BS2 (Fig. 1) contains no
information about the phase [16]. A parity measurement �N on
one of the resulting modes leads to 〈�N 〉 = PN (cos 2φ), where
PN (· · · ) are Legendre polynomials. This provides a bound
commensurate with Eq. (3). Parity measurements are possible
on the field mode [19], but require additional resources
including a local oscillator reference beam that is well matched
to the probe state. Our endeavor here is to introduce a set of
measurements that attains this limit, can be built from feasible
laboratory resources, and is robust to imperfections such as
inefficient detectors.

We show that a beam splitter and PNRDs suffices
to saturate the QCRB. Mixing modes f and d on
BS2 yields

√
2f † → p† + q†,

√
2d† → p† − q†. Number-
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FIG. 2. (Color online) QFI for phase estimation as a function of
the transmissivity η for 20 input photons. Blue (dotted line): standard
quantum limit. Red (dashed line): HB(10) states. Black (solid line):
N00N states. Green (dotted-dashed line): optimal states [7]. Inset:
QFI for phase estimation as a function of the photon number N for
η = 0.9 (top) and η = 0.6 (bottom).

resolving measurements |n〉p|2N − n〉q on the two modes
yield pn = n![P N−n

N (cos φ)]2/(2N − n)!, where 0 � n � N ,
and P l

N (· · · ) are the associated Legendre polynomials. The
expression for N � n � 2N is obtained by substituting n →
2N − n. A simple yet interesting case is when we only make
the measurement |N〉p|N〉q . The resulting probability function
pN = [PN (cos φ)]2 has the same periodicity as the result of
a parity measurement, and the Fisher information for this
situation scales exactly as the Heisenberg limit in Eq. (3),
just like the parity measurement [17]. Thus, the Heisenberg
limit for phase estimation with lossless interferometers can be
attained with just one pair of PNRDs. In essence, the external
local oscillator necessary for the parity measurement has
been replaced by the other arm of the interferometer, greatly
simplifying the experimental demands. Photon-number mea-
surements still suffice when there are losses and imperfections,
but the required number of measurements rises quadratically
with N .

III. LOSSY INTERFEROMETRY

A. Loss in the interferometer

Analysis of the performance of HB(N ) states in interfer-
ometry in the presence of losses starts with Eq. (1), the loss in
a single arm of the interferometer being modeled as c† →√

ηf † + √
1 − ηe†, e being an unaccessible environment

mode. Most of the loss occurs when the light interacts with the
sample for phase accumulation, thus motivating treatment of
loss in only one arm. Loss in both arms can be treated similarly,
but requires numerical analysis and is beyond the scope of the
current work. The subsequent state is

|�〉= 1

2N

N∑
n=0

2n∑
m=0

CnBn,m|2n − m〉f |2N − 2n〉d |m〉e,

where Cn =2n!
√

(2N − 2n)!e2inφ/n!(N − n)!, Bn,m =
ηn−m/2(1 − η)m/2/

√
(2n − m)!m!, and m is the number of

photons lost to the environment. The resulting state obtained
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by tracing over mode e is mixed, but its QFI can be calculated
as shown in Appendix A. To start with, for N = 1,

J(N=1) = 8
η2

1 + η2
, (4)

which is the same as that obtained for two-photon N00N

states in [7], as expected, since they are identical to HB(1)
states. For higher photon numbers, N00N and HB(N ) states
differ, and HB(N ) states are more resilient to losses than the
corresponding N00N states with the same number of photons.
This is shown in Fig. 2 for N = 10, where the QFI for HB(10)
exceeds the standard quantum limit for η > 0.45 and adheres
close to that of the optimal states for each value of the loss [7].

B. Imperfect state preparation

We now analyze the performance of HB(N ) states in a more
realistic situation where their preparation is not ideal. This is
more than just with an eye toward experimental demonstration,
although that provides part of the motivation. More vital is
our desire to address the gap between the theory and practice
of quantum metrology. To that end, we will work with the
classical Fisher information F obtainable with PNRDs.

We model a scenario where the input state might not
necessarily be a twin Fock state |N〉|N〉, as in Fig. 1.
Independent of the physical nature of the probes, having
exactly an equal number of bosons in two modes is difficult
to realize experimentally. In an optical implementation, Fock
states can be prepared by heralding [10,18]. In practice,
the heralding efficiency is not unity. We can model this
situation with ideal Fock state sources followed by a beam
splitter of transmissivity ηp in each mode before it is incident
on the 50:50 beam splitter. Such a beam splitter leads
to |N〉 → ρ ≡ ∑N

n=0( N

n )ηn
p(1 − ηp)N−n|n〉〈n|. The resulting

classical Fisher information, assuming perfect transmission
and detection with PNRDs, has a maximum for φ = 0, given
by F max

ηp
= 2N (N + 1)ηN+1

p . Interestingly, the minimum is

attained for φ = π/2, giving F min
ηp

= 2N (N + 1)η2N
p .

C. Imperfect detection

Finally, we address the scenario where the detectors,
PNRDs, are imperfect as well. This situation is modeled by
placing beam splitters with transmissivity ηd in front of our
PNRDs. We deal with the two simplest cases N = 1 and N = 2
in order to illustrate key features of the system’s performance.
These will allow us to identify regimes within which we can
unambiguously demonstrate quantum advantage in metrology,
once again in a lossy scenario with nonideal sources and
detectors. The procedure for obtaining the Fisher information
for this scenario explicitly can be found in Appendix B.
When there is no loss in the interferometer, F (φ = 0) =
2N (N + 1)(ηpηd )N+1, illustrating the general principle that
the quantum and classical Fisher information are symmetric
under exchange of ηp and ηd .

To judge the performance of the HB(k) state in providing
genuine quantum advantage in phase estimation, we need
to surpass the corresponding standard quantum limit, given
by F SQL = 2kηηd. This is the standard quantum limit for a
classical experiment performed on an apparatus identical to the

quantum one, assuming that the classical (coherent) state can
be prepared with certainty. The figure of merit for a quantum
advantage is the ratio

ðk(ηp,η,ηd ) = F(N=k)

F SQL
� 1. (5)

We begin with HB(1), in which case

ð1(ηp,η,ηd ) = 4η2
pηdη

1 + η2
> 1. (6)

An expression such as this is very beneficial as it demonstrates
the tradeoffs involved in state preparation, interferometer
construction, and detection imperfection, which allows exper-
imentalists to direct their efforts appropriately. For instance,
if ηd < 0.5, its is impossible to beat the standard quantum
limit with HB(1) states, thereby rendering moot any discussion
about the nature of the source and the interferometer. The
asymmetry between preparation and detection imperfections
in the final reckoning is due to the fact that the state attaining
the SQL, a coherent state, can be produced with unit efficiency.

The quantum advantage for HB(2) is addressed by
ð2(ηp,η,ηd ) = F(N=2)/4ηηd, where the right-hand side is
maximized over φ. To get an idea of the requirements for
an experiment, we find numerically that 0.687, 0.135, and
0.547 are the minimum values of ηp, η, and ηd , respectively,
required to beat the SQL when the other two are unity. The
complete region where ð2(ηp,η,ηd ) � 1 is depicted in Fig. 3.
In general, higher photon number states are more resilient to
losses in the interferometer but they also put stricter demands

FIG. 3. (Color online) Plot of the feasibility region for beating
the standard quantum limit using HB(2) states in the parameter
space of preparation inefficiency, interferometer loss, and detector
inefficiency ηp, η, and ηd , respectively. The bottleneck in beating
the standard quantum limit is the detector imperfection, followed by
the preparation imperfection, and, lastly, losses in the interferometer.
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FIG. 4. (Color online) Plot of the feasibility region for beating the standard quantum limit using HB(1) states (left) in the parameter space
of preparation inefficiency, interferometer loss, and detector inefficiency ηp, η, and ηd , respectively. The bottleneck in beating the standard
quantum limit is the detector imperfection, followed by the preparation imperfection, and, lastly, losses in the interferometer. Same for HB(3)
states (right).

on ηp and ηd. Thus, with increasing photon numbers, the
feasibility region would shrink along the two axes denoting the
imperfections, and extend along that denoting loss, as shown
in Fig. 4. It is also easy to see that this particular pattern
is universal. The detector and preparation imperfections are
identical as far as F(N=k) is concerned, so we can think in
terms of only ηp. As discussed previously, the HB state is
quite resilient to losses in the interferometer, but to achieve this
performance relies on precisely preparing the twin Fock state
and performing Fock-state-projection measurements. Thus, ηp

and, consequently, ηd have more stringent requirements than η.

To experimentally realize an improvement over its classical
counterpart, quantum phase estimation with HB states requires
high-quality state preparation and detection in addition to
low-loss interferometers. In a realistic experiment with 95%
interferometer transmission and 60% detection efficiency (at
the high end for commercially available Silicon avalanche
photodiodes), the HB(2) state preparation must be better
than ηp � 0.91, which is well beyond the current state of
the art [10]. Using the best PNRDs available, with detection
efficiencies approaching 0.98 [20], relaxes the preparation of
the HB(2) state to ηp � 0.71, which is within the currently
attainable values of 0.4 � ηp � 0.85 [18].

IV. CONCLUSIONS

We have identified benchmarks for the preparation, detec-
tion, and interferometer quality in a practical demonstration
of quantum-enhanced metrology. Most importantly, we have
shown the first two of these to be the most detrimental to
beating the SQL. We have shown that HB states deliver close
to the best possible precision in the presence of all these
imperfections and losses. Since a scalable route for preparation

of the HB states has been proposed [10], we concluded that,
if one considers the whole gamut of issues involved in a
metrological setup, including state preparation and the final
measurement, and uses the objective tool of classical and
quantum Fisher information, HB states and PNRDs provide a
scalable and practically realizable setup for quantum-enhanced
metrology.

ACKNOWLEDGMENTS

This work was funded in part by EPSRC (Grant No.
EP/H03031X/1), the European Commission (FP7 Integrated
Project Q-ESSENCE, Grant No. 248095, and the EU-Mexico
Cooperation Project No. FONCICYT 94142), and the US
European Office of Aerospace Research and Development
(Grant No. 093020).

APPENDIX A: QUANTUM FISHER INFORMATION OF A
LOSSY HB(N) STATE

Since mode e of the state in Eq. (4) of the text is to be traced
over, we can rewrite it as

|�〉 =
2N∑

m=0

|ψm〉|m〉e, (A1)

with

|ψm〉 = 1

2N

N−� m
2 �∑

k=0

Ck+� m
2 �Bk+� m

2 �,m|2k〉d |2N − 2k〉f (A2)

for m even. For odd m, replace 2k → 2k + 1 in the ket. The
expressions for B and C are provided in the text. Evaluation of
the quantum Fisher information for phase estimation with the
lossy states in Eq. (A1) is simplified by their block diagonal
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form. Setting |ψ̃m〉 = |ψm〉/√Nm, with Nm = 〈ψm|ψm〉, we
get J = ∑2N

m=0 NmJ (|ψ̃m〉). Here, J is given by Eq. (2) in the
text and leads to

J (|ψ̃m〉) = 16

22NNm

N−� m
2 �∑

k=0

(
k +

⌈m

2

⌉)2
C2

k+� m
2 �B

2
k+� m

2 �,m

×
(

1 −
C2

k+� m
2 �B

2
k+� m

2 �,m
Nm

)
. (A3)

APPENDIX B: CLASSICAL FISHER INFORMATION FOR
LOSSY INTERFEROMETER AND IMPERFECT SOURCES

AND DETECTORS

Let Uab(η) = eiθ(a†b+ab†) denote a beam splitter across
modes a,b with transmissivity η = cos2 θ. Then, using the

abbreviation

X ◦ Y ≡ XYX†, (B1)

the state just after BS1 in modes c and d, σ 1
cd is

σ 1
cd = Uab ◦ (ρa ⊗ ρb), (B2)

where ρa = ∑N
n=0( N

n )ηn
p(1 − ηp)N−n|n〉〈n|. If ϑx denotes the

vacuum in a mode x, then the state after BS2 is given by

σ 2
pq = Tre

[
Uf d

(
1
2

) ◦ Uce(η) ◦ (Pc ⊗ Ide) ◦ (
σ 1

cd ⊗ ϑe

)]
, (B3)

where Pc = eiφc†c is the phase accumulation operator and
η denotes the interferometer loss. If the vacuum modes
associated with the lossy detectors on modes p,q are labeled
p′,q ′, then the probabilities at the two PNRDs are now given by

pmn = 〈m,n|Tr p′q ′
{
[[Upp′(ηd ) ⊗ Uqq ′ (ηd )] ◦ (

σ 2
pq ⊗ ϑp′ ⊗ ϑq ′

)}|m,n〉, (B4)

where m,n � 0 and m + n � 2N . Additionally, pmn = pnm.
Thus, there are in general (N + 1)2 independent measurement
outcomes. The resulting classical Fisher information,
expressed as

F =
∑
m,n

(∂pmn/∂φ)2

pmn

, (B5)

is, in general, a function of the phase to be estimated φ. For
N = 1, the probabilities of the different outcomes can be
arranged in a matrix given by

P1 =

⎛
⎜⎝

p00 p01 p02

p10 p11 0
p20 0 0

⎞
⎟⎠ , (B6)

where

p00 = 1 − (1 + η)ηpηd + 1 + η2

2
η2

pη2
d , (B7a)

p01 = 1 + η

2
ηpηd − 1 + η2

2
η2

pη2
d , (B7b)

p02 = 1 + η2 − 2η cos 2φ

8
η2

pη2
d, (B7c)

p11 = 1 + η2 + 2η cos 2φ

4
η2

pη2
d . (B7d)

The classical Fisher information can easily be calculated
using Eq. (B5), resulting in

F(N=1) = 8η2
pη2

dη
2(1 + η2) sin2 2φ

1 + η4 − 2η2 cos 4φ
. (B8)

This function is maximized at φ = π/4, leading to

F(N=1) = 8η2
pη2

dη
2

1 + η2
. (B9)

For N = 2, the probabilities for the different measurement
outcomes are

P2 =

⎛
⎜⎜⎜⎜⎜⎝

p00 p01 p02 p03 p04

p10 p11 p12 p13 0

p20 p21 p22 0 0

p30 p31 0 0 0

p40 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎠

, (B10)

where

p00 = 1 − 2(1 + η)ηpηd + 5 + 2η + 5η2

2
η2

pη2
d − 3 + η + η2 + 3η3

2
η3

pη3
d + 3 + 3η2 + 2η4

8
η4

pη4
d , (B11a)

p01 = (1 + η)ηpηd − 5 + 2η + 5η2

2
η2

pη2
d + 3 + η + η2 + 3η3

4
η3

pη3
d − 3 + 3η2 + 2η4

4
η4

pη4
d , (B11b)

p02 = 5 + (4 − 6 cos 2φ)η + 5η2

8
η2

pη2
d − 9 + (5 − 6 cos 2φ)η(1 + η) + 9η3

8
η3

pη3
d

− 9 + 10η2 + 9η4 − 6η(1 + η2) cos 2φ

16
η4

pη4
d , (B11c)

p03 = 3(1 + η)(1 + η2 − 2η cos 2φ)

16
η3

pη3
d − 3(1 + η2)(1 + η2 − 2η cos 2φ)

16
η4

pη4
d , (B11d)

p04 = 3

128
(1 + η)(1 + η2 − 2η cos 2φ)2η4

pη4
d, (B11e)
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p11 = 5 + 6 cos 2φη + 5η2

8
η2

pη2
d − 9 + (1 + 6 cos 2φ)η(1 + η) + 9η3

8
η3

pη3
d

− 9 + 2η2 + 9η4 + 6η(1 + η2) cos 2φ

16
η4

pη4
d, (B11f)

p12 = 9 + η + η2 + 9η3 + 6η(1 + η) cos 2φ

16
η3

pη3
d + 9 + 2η2 + 9η4 + 6η(1 + η2) cos 2φ

16
η4

pη4
d , (B11g)

p13 = 3

32
(1 + η4 − 2η cos 2φ)η4

pη4
d, (B11h)

p22 = 1

64
[9 + 4η2 + 9η4 + 12(η + η3) cos 2φ + 18η2 cos 4φ]η4

pη4
d . (B11i)

The classical Fisher information F(N=2) can once again be calculated using Eq. (B5). This expression is then used in the plotting
of Fig. 3 in the text.
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