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Optomechanical sideband cooling of a micromechanical oscillator close to the quantum ground state
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Cooling a mesoscopic mechanical oscillator to its quantum ground state is elementary for the preparation and
control of quantum states of mechanical objects. Here, we pre-cool a 70-MHz micromechanical silica oscillator
to an occupancy below 200 quanta by thermalizing it with a 600-mK cold 3He gas. Two-level-system induced
damping via structural defect states is shown to be strongly reduced and simultaneously serves as a thermometry
method to independently quantify excess heating due to the cooling laser. We demonstrate that dynamical back
action optical sideband cooling can reduce the average occupancy to 9 ± 1 quanta, implying that the mechanical
oscillator can be found (10 ± 1)% of the time in its quantum ground state.
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I. INTRODUCTION

The quantum regime of macroscopic mechanical systems
has received significant interest over the past decade [1–4]. Me-
chanical systems cooled to the quantum ground state may al-
low probing quantum-mechanical phenomena on an unprece-
dentedly large scale, could enable quantum-state preparation
of mechanical systems, and have been proposed as an interface
between photons and stationary qubits [5]. To achieve ground-
state cooling, two challenges have to be met: first, most me-
chanical oscillators have vibrational frequencies �m/(2π ) <

100 MHz, such that low mode temperatures Teff are required
to achieve h̄�m > kBTeff (h̄ is the reduced Planck constant
and kB is the Boltzmann constant). Second, quantum-limited
measurements of mechanical motion must be performed at the
level of the zero point motion xzpf = √

h̄/(2meff�m) in order
to probe the state of the oscillator of mass meff .

Recently, a piezomechanical oscillator has been cooled
to the quantum regime [6]. Due to its GHz resonance
frequency, conventional cryogenics could be employed for
cooling while it was probed using its piezoelectrical coupling
to a superconducting qubit. In contrast, cooling schemes
based on dynamical backaction [7,8] can be applied to a
much wider class of nanomechanical and micromechanical
oscillators. Following the observation of optical cooling based
on a photothermal effect [9], dynamical backaction cooling
by radiation pressure [10–13], as predicted more than 40
years ago [7], was demonstrated. This scheme is based on
parametric coupling of an optical and mechanical resonance
and simultaneously allows sensitive detection of mechanical
motion. In analogy to the case of trapped ions, in which
sideband cooling has led to the preparation of the vibrational
ground state [14], dynamical backaction sideband cooling
has been theoretically shown to allow reaching the quantum
ground state of a mechanical mode [15–17].

Despite major progress, ground-state cooling using this
approach has remained challenging, owing to insufficiently
low starting temperatures and/or excess heating by the
electromagnetic field used for cooling [18–20]. Here, we
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demonstrate an experimental optomechanical setting that
successfully addresses these challenges and achieve cooling
to only 9 ± 1 quanta, implying that the oscillator resides
10 ± 1% of its time in the quantum ground state. Our
experiment operates in the temperature regime below 1 K,
where the coupling of the mechanical mode to two-level
systems (TLS) induces significant mechanical dissipation.
The temperature-dependent effects of TLS in glass can be
harnessed for an independent thermometry method, in addition
to conventional noise thermometry of the mechanical modes.
Using two independent methods for the determination of the
mechanical oscillator’s temperature, we are able to reliably
quantify resonant and off-resonant heating by the cooling
laser. Our measurements demonstrate that resonant heating
is negligible for the chosen experimental system, enabling a
wide range of future experiments in quantum optomechanics.

II. EXPERIMENT

We use silica toroidal resonators, which support whispering
gallery modes (WGM) of ultrahigh finesse co-located with a
low-loss mechanical radial breathing mode (RBM) [21,22]
and large mutual optomechanical coupling. The devices used
here have been optimized for narrow optical linewidths κ ,
and moderately high mechanical frequencies �m, thereby
operating deeply in the resolved sideband (RSB) regime
(�m ≈ 2π × 70 MHz � 10κ), while at the same time the
pillar geometry was engineered for low mechanical dissipation
[23,24] (Fig. 1).

For the cryogenic laser cooling experiments, we subject
these samples directly to a 3He gas evaporated from a reservoir
of liquid 3He. At a pressure of ∼0.7 mbar, the gas provides a
thermal bath at a temperature of about 600 mK. However,
it is essential to verify thermalization of the toroid to the
exchange gas. To this end, a low-noise fiber laser is coupled
to a WGM through a fiber taper positioned in the near field of
the mode via piezoelectric actuators (Attocube Systems AG).
The displacement fluctuations of the RBM can be extracted
and used to infer its noise temperature [25,26]. As shown in
Fig. 1(b), it follows the temperature of the helium gas down to
temperatures of 600 mK for weak probing (i.e., < 1 µW input
laser power).
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FIG. 1. (Color online) Cooling a micromechanical oscillator. (a)
High-Q mechanical and optical modes are co-located in a silica
microtoroid. The simulated displacement pattern of the mechanical
radial breathing mode (RBM) is shown. The optical whispering
gallery mode (WGM) is confined to the rim. (b) Thermalization of
the RBM to the temperature of the 3He gas, with the lowest achieved
temperature corresponding to a mean occupancy of the RBM below
200 quanta. (c) Optical setup used for displacement monitoring of
the mechanical mode, based on homodyne analysis of the light re-
emerging from the toroid’s WGM (see text for detailed description).

For optomechanical sideband cooling, we employed a
frequency-stabilized Ti:sapphire laser and a homodyne detec-
tion scheme [18] for quantum-limited detection of mechanical
displacement fluctuations [Fig. 1(c)]. Spectral analysis of the
homodyne signal provides direct access to the mechanical
displacement spectrum, from which the mechanical damping
and resonance frequency can be extracted. The spectra are
calibrated in absolute terms by applying a known frequency
modulation to the laser using an electro-optic modulator
(EOM) as detailed in Refs. [18,26]. After the acquisition of
each spectrum, the precise detuning of the laser from the
cavity resonance is determined by sweeping the modulation
frequency of the EOM and recording the demodulated homo-
dyne signal with a network analyzer [27].

The independent thermometry method we are presenting is
based on the strong temperature dependence of the material’s
mechanical properties caused by the presence of structural
defects modeled as two-level systems [25,28]. Relaxation of
the TLS under excitation from an acoustic wave modifies the
mechanical susceptibility, leading to a change in mechanical
resonance frequency �m and a change of the damping rate
�m = �m/Qm (with the mechanical quality factor Qm).

Two different relaxation regimes have to be considered
(cf. Appendix A) for sample temperatures T between 0.6
and 3 K: tunneling-assisted relaxation [29,30] and single-
phonon resonant interaction [30]. Thermally activated re-
laxation [31] dominates the frequency shift at temperatures
above 3 K, but is negligible in the temperature range at
which the laser cooling experiments are performed. In the
presence of tunneling relaxation (“tun”) and resonant inter-
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FIG. 2. (Color online) TLS-induced change of the resonance fre-
quency [�m(T )] (a) and inverse mechanical quality factor [Q−1

m (T )]
(b) of the radial breathing mode. Measured data (points) agree
well with the models (solid lines) described in Eqs. (1) and
(2). Subtraction of the temperature-independent clamping damping
(line iii) yields the theoretically possible material-limited damping
values (squares and line ii). At very low temperatures, damp-
ing by resonant interaction with TLS (line iv) would be dominant.
�0 is the mechanical angular frequency �m(T ) measured at the
arbitrary temperature T = 620 mK. The model parameters are given
in Appendix A.

actions (“res”), the mechanical oscillator properties can be
expressed as

�m(T ) = �upt + δ�tun(T ) + δ�res(T ), (1)

Q−1
m (T ) = Q−1

cla + Q−1
tun(T ) + Q−1

res (T ), (2)

where �upt is the unperturbed angular frequency in the absence
of TLS-induced effects and �mQ−1

cla is the damping rate due to
the clamping of the resonator to the substrate, dominating
�m at room temperature. For readability, we simply take
�m = �m(Tcryo) with Tcryo being the independently measured
temperature crysotat, when the TLS-induced thermal depen-
dence of the frequency is quantitatively neglected over the
temperature range of interest (relative shift of the order of
10−4). For the damping however, since the TLS significantly
alter its value, the short notation Qm = Qm(T ) and �m =
�m(T ) still signifies that the thermal dependence is taken
into account. The respective temperature dependencies in the
relevant regimes of TLS damping are detailed in Appendix A.
In contrast to previous experiments using 4He [18,19], where
Qm was limited to ∼3000 at T ≈ 3 K due to TLS damping, Qm

reaches values exceeding 104 with significant contributions
from clamping losses for the lowest temperatures of 600 mK.
Such values are sufficient to enable ground-state cooling since
Qm/n̄i � 1 and n̄i�m/Qm � κ (n̄i is the initial occupancy)
[32]. The temperature dependence of the mechanical Q is in
excellent quantitative agreement with the one caused by TLS
defects (Fig. 2). This well-understood temperature dependence
of the TLS-induced effects [Eqs. (1) and (2)] enables its use as a
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“thermometer” of the sample temperature T after a calibration
measurement, as shown in Fig. 2, has been performed once.
Importantly, this method can reveal excess heating by the
cooling laser.

III. RESULTS

We studied optomechanical cooling [10–12] by performing
a series of experiments in which mechanical displacement
noise spectra were recorded while varying the laser detuning
�̄ ≡ ωl − ω̄c. Here, ωl is the laser’s (angular) frequency and ω̄c

is the WGM frequency (cf. Appendix B). To model radiation-
pressure-induced dynamical backaction [7] for the present
microresonators, we take into account that backscattering of
light couples modes a� and a� with opposite circulation
sense [33,34]. This lifts the degeneracy between the system’s
eigenmodes a± = (a� ± a�)/

√
2, the resonance frequencies

of which are split by the scattering coupling rate γ . During a
detuning series as reported here, both modes are populated with
a mean field ā± = √

κex/2 L±(�̄)sin, where Pin = |sin|2h̄ωl

is the driving laser power, κex is the coupling rate to the
fiber taper, |ā±|2 is the mean photon population in the new
eigenmodes, and L±(�̄) ≡ [−i(�̄ ± γ /2) + κ/2]−1 is the
modes’ Lorentzian response.

In the context of cavity optomechanics, it is important to
realize that three-mode interactions [35] can be neglected in the
present configuration (cf. Appendix B). The radiation pressure
forces induced by the light in these modes can therefore simply
be added. The usual linearization procedure [36,37] then yields
an inverse effective mechanical susceptibility

[χeff(�)]−1 = [χm(�)]−1 − i�mmefff (�), (3)

in which the bare mechanical susceptibility χm(�) is modified
by the dynamical backaction term

f (�) = 2g2
0

∑
σ=±

|āσ |2{Lσ (�̄ + �) − [Lσ (�̄ − �)]∗} (4)

with the vacuum optomechanical coupling rate [26]
g0 ≡ Gxzpf and G = dωc/dx. For moderate driving
powers [32], the susceptibility of the mechanical mode is the
one of a harmonic oscillator with effective damping rate and
resonance frequency of

�eff ≈ �m(T ) + Re[f (�m)], (5)

�eff ≈ �m(T ) + Im[f (�m)]/2. (6)

For the sample of radius R ≈ 25 µm studied in the
following, a coupling rate of |g0| ≈ 2π × (1.2 ± 0.2) kHz is
determined from the coupling parameter |G| = ωc/R ≈ 2π ×
16 GHz/nm and effective mass meff = 20 ± 5 ng. Figure 3
shows the results of a detuning series, which was taken
with an input laser power of 2 mW, with the temperature
of the 3He gas stabilized to Tcryo = 850 mK at a pressure
of 2.8 mbar. We found it necessary to give more weight in
the coupled fit to the optical spring effect (relative weight
0.9) than the damping rate, since the mechanical resonance
frequency can be extracted from the spectra with higher
accuracy than the damping rate. The obtained fit parameters κ ,
γ , and sin are found to be in good agreement with independent
results deduced from the frequency modulation measurement
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FIG. 3. (Color online) (a) Effective resonance frequency and (b)
linewidth of the RBM when a 2-mW power laser is tuned through the
lower mechanical sideband of the split optical mode (inset). Points
are measured data extracted from the recorded spectra of thermally
induced mechanical displacement fluctuations, and solid lines are a
coupled fit using the model of Eqs. (1)–(6), taking into account res-
onant and off-resonant (stray light) heating, modifying temperature-
dependent damping and frequency shift caused by the TLS.

(κ ≈ 2π × 6 MHz, γ ≈ 2π × 30 MHz) and the measured
laser power.

The excellent quality of the fit, together with the measured
temperature dependence of the TLS effects on the mechanical
mode, furthermore, allows us to extract the temperature T of
the sample. Importantly, for large detunings |�̄| � κ , the TLS
thermometer reveals (via a decrease of the mechanical quality
factor to Qm = 5970) an increase of the sample temperature
by δTstray ≈ 220 mK, which we attribute to heating induced
by absorbed stray light scattered from defects on the taper
fiber, which were observed to aggregate upon its production.
As the laser is tuned closer to resonance, more light is coupled
into the WGM, leading to the appearance of an additional
(detuning-dependent) temperature increase

T ≈ Tcryo + δTstray + δTWGM. (7)

Here, δTWGM = βκabs(|a+|2 + |a−|2)h̄ωl denotes the increase
in temperature following the cavity’s double-Lorentzian
absorption profile, κabs � κ − κex is the photon absorption
rate, and β is the temperature increase per absorbed power.
This heating term will lead via the TLS-dependent mechanical
susceptibility (cf. Fig. 2) to additional changes in �eff and
�eff in the detuning series (cf. Fig. 3), from which the amount
of additional resonant heating (δTWGM) can be extracted.
Applying this procedure to the data yields a temperature
increase of δTWGM ≈ 70 mK on the lower sideband (i.e., for
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FIG. 4. (Color online) Cooling factor (Tcryo + δTstray)/Teff

and phonon occupancy of the RBM vs laser detuning �̄ for (a)
Pin = 2 mW and (b) Pin = 4 mW. Points are phonon occupancies
derived from the measured noise temperature, while solid lines
correspond to the occupancies expected from the dependency of
sample temperature and (intrinsic and effective) damping extracted
from the detuning series as shown in Fig. 3. A minimum phonon
number of n̄ = 9 ± 1 is obtained. The inset shows a mechanical
displacement noise (DN) spectrum at the optimum detuning
(�̄ = �̄opt), illustrating the high signal-to-noise ratio achieved
despite the low occupancy for Pin = 2 mW.

�̄ = −�m − γ /2 corresponding to the optimum detuning
�̄opt in the deep RSB regime). This modest increase can be
explained by the large sideband factor [23], which implies
that only little optical power (∼κabs|a+|2h̄ωl � Pin/1300) can
be absorbed in the cavity when �̄ = �̄opt. Importantly, we
can test the consistency of the derived detuning-dependent
quantities [T , �m(T ) , and �eff] by comparing the expected
effective temperature of the RBM due to optomechanical
cooling, i.e., Teff = T · �m(T )/�eff , with the effective
temperature derived from noise thermometry via integration
of the calibrated noise spectra [18].

Figure 4(a) shows this comparison for the detuning series
discussed above. Using the model of Eqs. (2)–(6), adjusted
to the data of Fig. 3, we obtain good agreement for the
effective temperatures obtained in both ways. To achieve
this level of agreement, it is necessary to take into account
the optomechanical deamplification [38] of the laser phase
modulation used for calibrating the mechanical fluctuation
spectra in absolute terms.

Figure 4(b) shows the same comparison for a cooling run
at a high laser power (4 mW), for which we observe slightly
increased heating by δTstray ≈ 400 mK, while additional heat-
ing by δTWGM could not be discerned in this measurement.
In spite of the reduced mechanical quality factor Qm(Tcryo +

δTstray) = 4880, the lowest extracted occupancy is n̄ = 10
according to the detuning series fit. The lowest inferred
noise temperature of a single measurement is even slightly
lower, corresponding to n̄ = 9 ± 1, where the uncertainty is
dominated by systematic errors, which we estimate from the
deviations of the effective temperature derived in the two inde-
pendent ways described above. Note that this occupancy im-
plies already a probability of P (n = 0) = (1 + n̄)−1 = (10 ±
1)% to find the oscillator in its quantum ground state. From this
measurement, we can also extract an imprecision-backaction
product [18] (cf. Appendix C for detailed derivations) of√

S im
xxSFF = (49 ± 8)h̄/2 if the total Langevin force noise is

(conservatively) considered as measurement backaction. Due
to the resolved-sideband operation, force noise coming from
quantum backaction (as yet only observed on cold atomic
gases [39]) is expected to be nearly two orders of magnitude
weaker and therefore negligible.

IV. CONCLUSION

We have cooled a mechanical oscillator using a combination
of cryogenic 3He exchange gas pre-cooling and optomechan-
ical sideband cooling [23] to 9 ± 1 quanta, implying that
the mechanical oscillator occupies the ground state 10 ± 1%
of the time. This is the lowest phonon occupancy that has
been achieved with optomechanical sideband cooling so far.
It is possible to populate the quantum ground state with
higher probability by avoiding excess heating due to fiber
contamination, by using higher cooling laser powers and by
improving g2

0/�m, which can be achieved by engineering
mechanical modes [24] for lower mass and clamping losses.
Simultaneously, such a system bears promise to give access to
the regime of strong optomechanical coupling [32,40] in which
the coherent coupling rate

√
n̄pg0 exceeds the cavity decay

rate κ and the thermal decoherence rate kBT/(h̄Qm) of 2π ×
2.6 MHz in the present experiment (n̄p is the average cavity
photon number). For occupancies n̄ � 1, individually resolved
anti-Stokes and Stokes sidebands [15,23] of an independent
resonant readout laser will display a measurable asymmetry of
n̄/(n̄ + 1) arising from the nonzero commutator of the ladder
operators describing the mechanical harmonic oscillator in
quantum terms. In addition, the described system may give
experimental access to the regime where quantum backaction
becomes comparable or exceeds thermal noise, allowing
pondermotive squeezing [36] or QND photon measurements.
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APPENDIX A: TWO-LEVEL SYSTEMS

Tunneling systems in SiO2 play an important role in
cryogenic operation of silica mechanical oscillators. They
lead to a temperature-dependent frequency shift (via a change
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FIG. 5. Double-well potential with relevant levels and naming
convention.

in speed of sound) of the considered mechanical mode and
temperature-dependent mechanical quality factor. We will
discuss these effects in the following and give the relevant
formulas that have been used to fit the data in the main part
of the manuscript. An extensive study of TLS effects can be
found in Refs. [28,30] and we summarize here the essential
results.

As first considered by L. Pauling in 1930 [41], tunneling of
atoms occurs in solids with a certain degree of disorder where,
in the local environment of an atomic site, several potential
minima exist. This can be the case in the vicinity of defects
in crystals or, more frequently, in amorphous materials. For
amorphous solids at low temperatures, the tunneling dynamics
can be well captured in a simple model consisting of an
ensemble of two-level systems, each of which is described
by a generic double-well potential (Fig. 5). This potential is
parametrized only by the barrier height V , the initial energy
asymmetry �0, and the spatial separation between the two
potential minima d. A tunneling coupling strength

�1 = h̄�1e
−λ (A1)

with the intrinsic oscillation angular frequency �1 within the
individual atomic sites can then be deduced, with the tunneling
parameter

λ ≈
√

2mV

h̄2

d

2
(A2)

depending on the atomic mass m. Due to this tunnel coupling,
the new eigenmodes of the coupled system exhibit an energy
splitting of

E =
√

�2
0 + �2

1. (A3)

Phonons couple to TLS via their strain field that leads
to a deformation of the TLS potential (notably leading to a
change in the barrier height V ). As a consequence, the TLS
are driven out of thermal equilibrium and relaxation processes
will exchange energy with the heat bath. Transitions between
the two energy levels are induced by several distinct processes
that become dominant in different temperature regimes.

(i) At very low temperatures (T � E/kB), the density of
thermal phonons is low, such that relaxation processes only
play a minor role. Here, a significant population imbalance
between lower and excited state exists, and the most efficient

transition mechanism is resonant absorption of phonons of a
frequency �m = E/h̄. This mechanism exhibits, as in the case
of other two-level systems, a saturation behavior [42].

(ii) At temperatures T � E/kB (typically a few Kelvin), the
number of thermal phonons has increased to a level at which
Raman processes involving a tunneling through the barrier
become predominant. It is mainly this temperature range that
will be relevant for the description of the phenomena seen in
the present cooling experiment.
(iii) At even higher temperatures, thermally activated relax-

ation dominates. In this case, multiphonon processes with an
excitation across the barrier take place.

1. Relaxation contribution

If relaxation is the dominant process, the general expression
for the mean-free path of a phonon of frequency �m is given
by [28,30]

l−1(T ) = 1

ρc3
s

∫∫ (
− ∂n0

∂E

)
4B2 �2

0

E2

�2
mτ

1 + �2
mτ 2

× P̄ (�0,λ) d�0 dλ. (A4)

The integration is performed over all TLS that can interact
with the phonon. Here, P̄ (�0,λ) is the volume density of TLS
with energy asymmetry between �0 and �0 + d�0 and tunnel
parameter between λ and λ + dλ,

n0 = 1

eE/kBT + 1
(A5)

is the thermal equilibrium Boltzmann repartition function, cs

is the speed of sound, ρ is the mass density of the solid,
τ is the relaxation time of the individual TLS, and B is the
coefficient linking a deformation δe to a change of E via
δE = 2B(�0/E)δe.

A mechanical quality factor of

Q−1
m (T ) = csl

−1(T )

�m
(A6)

can then be deduced. For the corresponding relative change
in the speed of sound (i.e., frequency shift of a mechanical
resonance), one obtains from the Kramers-Kronig relations

δ�m(T ) = − �m

2ρc2
s

∫∫ (
− ∂n0

∂E

)
4B2 �2

0

E2

1

1 + �2
mτ 2

× P̄ (�0,λ) d�0 dλ. (A7)

a. Tunneling-assisted relaxation

Within the framework of the so-called tunneling model
[28,30], the relaxation time is given by

τ = τm
E2

�2
1

(A8)

with the maximum relaxation rate

τ−1
m = 3

c5
s

B2

2πρh̄4 E3 coth

(
E

2kBT

)
. (A9)
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Parametrizing the integrals in terms of the energy splitting E

and the parameter u = τ−1/τ−1
m yields [28,30]

Q−1
tun(T )

= 2P̄ B2

ρc2
s

∫ ∞

0

(
− ∂n0

∂E

)
�mτm

∫ 1

0

√
1 − u

u2 + �2
mτ 2

m

du dE

(A10)

and

δ�tun(T ) = −�mP̄ B2

ρc2
s

∫ ∞

0

(
− ∂n0

∂E

)

×
∫ 1

0

u
√

1 − u

u2 + �2
mτ 2

m

du dE, (A11)

where it is assumed that the density P̄ (E,λ) = P̄ is constant,
which is consistent with experiments. A prominent feature in
this regime is a plateau of the quality factors for temperatures
of a few Kelvins with Q values of

Q−1
plateau = π

2

P̄ B2

ρc2
s

. (A12)

b. Thermally activated relaxation

At higher temperature, the rate is given by the Arrhenius
law and only depends on the energy barrier height

τ−1
th = τ−1

0 e−V/kBT , (A13)

where τ0 represents the period of oscillation in individual wells
[28,31].

2. Resonant processes

For resonant interaction between phonons and TLS, it can
be shown that [28,30]

Q−1
res (T ) = πP̄B2

ρc2
s

tanh

(
h̄�m

2kBT

)
, (A14)

δ�res(T ) = �mP̄ B2

ρc2
s

ln

(
T

T0

)
, (A15)

where T0 is a reference temperature. While resonant processes
do not significantly contribute to the mechanical quality factors
in our experiment, they dominantly contribute to the frequency
shift.

3. Fitting parameters for Fig. 2

The curves shown in Fig. 2 have been fitted with the
equations given in the previous sections. For the frequency
shift, the sum of the tunneling relaxation and the resonant
contribution has been taken into account. The latter dominates
this effect up to about T = 2 K. The contribution of thermally
activated relaxation has been omitted since it does not
contribute significantly in the considered temperature range.
Fitting of the Q dependency has been done using the sum
of tunneling relaxation, resonant contribution, and a constant
offset accounting for the clamping losses (Q−1

cla ), i.e., loss
of acoustic energy due to leaking into the substrate for this
particular toroid. Here, the resonant contribution plays a minor
role.

For the curves shown in Fig. 2, we used the material
parameters

cs = 5800 m/s, ρ = 2330 kg/m3,

the measured resonance frequency

�m = 2π × 76.3 MHz,

as well as the adjusted parameters

B = 1.1 × 10−19 J,

P̄Qm = 4.6 × 1045 m−3,

P̄�m = 2.5 × 1045 m−3.

For the fitting of the two curves (mechanical quality factor,
resonance frequency shift), two different values for P̄ had to
be used. Given that the two traces are governed by two different
regimes, small differences in the density of contributing TLS
to the two effects seem to be justified. The literature [43] value
of the dimensionless parameter C = P̄ B2/(ρc2

s ) = 3.010−4

shows a reasonable agreement with the parameters of the
resonance frequency (C�m = 7.110−4) and damping (CQm =
3.910−4) fits.

APPENDIX B: DYNAMICAL BACKACTION IN THE
PRESENCE OF MODE SPLITTING

In the framework of coupled-mode theory [44], the two
coupled counterpropagating modes [33,34] in a WGM res-
onator can be described by the equations of motion (in a frame
rotating at the laser frequency)

ȧccw(t) = {i[� − Gx(t)] − κ/2}accw(t) + i
γ

2
acw(t)

+√
ηcκsin(t), (B1)

ȧcw(t) = {i[(� − Gx(t)] − κ/2}acw(t) + i
γ

2
accw(t). (B2)

Here, ηc describes the coupling parameters defined via ηc =
κex

κex+κ0
, where κex describes the output coupling rate, whereas

κ0 denotes the intrinsic loss rate of the cavity.
The fields in the system’s new eigenmodes

a+ = (accw + acw)/
√

2, (B3)

a− = (accw − acw)/
√

2 (B4)

exert a radiation pressure force of

Frp(t) = −h̄G(|a+(t)|2 + |a−(t)|2) (B5)

since the spatial shape of the cross term 2Re[a+(t)a∗
−(t)]

has an azimuthal dependence ∝ cos(mϕ) sin(mϕ) (m is the
angular mode number of the whispering gallery mode), which
averages to zero when projected on the azimuthally symmetric
RBM. The coupled optomechanical equations of motion can
therefore be written as

ȧ+(t) =
[
i

(
� − Gx(t) + γ

2

)
− κ

2

]
a+(t) +

√
ηcκ

2
sin(t),

(B6)

ȧ−(t) =
[
i

(
� − Gx(t) − γ

2

)
− κ

2

]
a−(t) +

√
ηcκ

2
sin(t),

(B7)
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meff
[
ẍ(t) + �mẋ(t) + �2

mx(t)
]

= −h̄G[|a+(t)|2 + |a−(t)|2] + δF (t), (B8)

where δF (t) is an external force, e.g., the thermal Langevin
force.

We then apply the usual linearization

a±(t) = ā± + δa±(t), (B9)

x(t) = x̄ + δx(t) (B10)

assuming |ā±| � |δa±(t)| and |x̄| � |δx(t)|. For the large
mean occupancy of the modes and the mean mechanical
displacement, we then obtain

ā+ =
√

ηcκ/2 s̄in

−i(�̄ + γ /2) + κ/2
=:

√
ηcκ/2 L+(�̄) s̄in, (B11)

ā− =
√

ηcκ/2 s̄in

−i(�̄ − γ /2) + κ/2
=:

√
ηcκ/2 L−(�̄) s̄in, (B12)

x̄ = − h̄G

meff�2
m

(|ā+|2 + |ā−|2). (B13)

The average displacement x̄ induces a small static fre-
quency shift, as does the (usually dominant) static shift
due to absorption-induced heating [45], which are both
absorbed into the mean detuning �̄ = ωl − [ωc(T ) + Gx̄].
One then obtains the equations of motion for small

fluctuations,

δȧ+(t) =
[
i

(
�̄ + γ

2

)
− κ

2

]
δa+(t) − iGā+δx(t), (B14)

δȧ−(t) =
[
i

(
�̄ − γ

2

)
− κ

2

]
δa−(t) − iGā−δx(t), (B15)

meff
[
δẍ(t) + �mδẋ(t) + �2

mδx(t)
]

= − h̄G[ā∗
+δa+(t) + ā∗

−δa−(t) + c.c.] + δF (t). (B16)

Fourier transformation gives

δa+(�) = −iGā+δx(�)

−i(�̄ + γ /2 + �) + κ/2

= −iGā+ L+(�̄ + �) δx(�), (B17)

δa−(�) = −iGā−δx(�)

−i(�̄ − γ /2 + �) + κ/2

= −iGā− L−(�̄ + �) δx(�), (B18)

δx(�)/χm(�) = −h̄G[ā∗
+δa+(+�) + ā∗

−δa−(+�) + c.c.]

+ δF (�), (B19)

with

χm(�) = 1

meff
( − �2 − i��m + �2

m

) . (B20)

Solving equations (B17)–(B19) for δx yields

δx(�) = δF (�)

1/χm(�) − ih̄G2(|ā+|2{L+(�̄ + �) − [L+(�̄ − �)]∗} + |ā−|2{L−(�̄ + �) − [L−(�̄ − �)]∗}) , (B21)

so that we can write
1

χeff(�)
= 1

χm(�)
− ih̄G2(|ā+|2{L+(�̄ + �) − [L+(�̄ − �)]∗} + |ā−|2{L−(�̄ + �) − [L−(�̄ − �)]∗}) (B22)

and, in the regime of weak optomechanical coupling [32], the effective susceptibility is still approximately Lorentzian with a
damping rate and resonance frequency given by

�eff ≈ �m + 2x2
zpfG

2Re(|ā+|2{L+(�̄ + �) − [L+(�̄ − �)]∗} + |ā−|2{L−(�̄ + �) − [L−(�̄ − �)]∗}), (B23)

�eff ≈ �m + x2
zpfG

2Im(|ā+|2{L+(�̄ + �) − [L+(�̄ − �)]∗} + |ā−|2{L−(�̄ + �) − [L−(�̄ − �)]∗}). (B24)

APPENDIX C: CALCULATION OF THE
IMPRECISION-BACKACTION PRODUCT

In the context of quantum measurements [46], it is
interesting to characterize the sources of noise responsible
for the mechanical displacement measurement uncertainty.
For a given mechanical spectra, the measured (double-sided,
symmetrized) spectral density of displacement fluctuations is
given by

Smeas
xx (�) = S imp

xx (�) + |χeff(�)|2SFF (�), (C1)

where S
imp
xx (�) describes the measurement imprecision due

to apparent displacement fluctuations, which are actually
caused by noise in the displacement transducer itself. SFF (�)
is the force noise acting on the mechanical oscillator,
and χeff(�) its effective mechanical susceptibility. It is
particularly interesting to evaluate these quantities for the

lowest occupancy obtained at the optimum detuning of
�̄ = −�m − γ

2 and at the Fourier frequency � = �m.
In our experiment, the measurement imprecision is domi-

nated by shot noise, and we extract a value of

S imp
xx ≡ S imp

xx (�m) = (3.2 × 10−19 m/
√

Hz)2

from the fit to the background of the recorded mechanical
spectrum as shown in Fig. 4. Its measured linear dependence
on the laser input power Pin shows that it is strongly dominated
by the quantum noise of the input laser. This behavior is indeed
expected at the frequencies of interest in our work, where
classical quadrature fluctuations are negligible in Ti:sapphire
lasers.
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The thermal force noise (for kBT
h̄�m

� 1) driving the mechan-
ical oscillator is given by

S the
FF ≡ S the

FF (�m) = 2meffkBT �m(T ), (C2)

which is given by the fluctuation-dissipation theorem. In the
presence of dynamical backaction, we can estimate this force
noise from the more directly measured linewidth �eff and noise
temperature Teff using Teff ≈ T · �m(T )/�eff , and

S the
FF ≈ 2meffkBTeff�eff . (C3)

It evaluates to

S the
FF = [(8 ± 2) × 10−15 N/

√
Hz]2,

where �eff and Teff are extracted from the fits to the detuning
series, evaluated at the detuning �̄ = −�m − γ

2 as described
in the main part of this article. This value gives a conservative
estimate of the classical measurement backaction, considering
effectively all force noise present in the system (including
thermal noise due to the nonzero cryostat temperature) as a
classical backaction of the measurement.

A less conservative estimate on the backaction of the actual
displacement measurement using the laser coupled to the
WGM can be made by separating two different contributions
in the force noise,

S the
FF = S

cryo
FF + Sba

FF , (C4)

where S
cryo
FF is the Langevin force noise due to the finite cryostat

temperature Tcryo and Sba
FF is the thermal backaction in the

form of excess Langevin force noise due to the heating of the
cavity by laser light. Sba

FF gives an estimate of the classical
perturbation of the system by the measurement, the classical
excess backaction, which is technically avoidable.

The thermal force noise originating from the bath

S
cryo
FF = 2meffkBTcryo�m(Tcryo) (C5)

is estimated to

S
cryo
FF = [(5 ± 1) × 10−15 N/

√
Hz]2.

Tcryo and �m(Tcryo) are extracted from independent low input
power measurements where the RBM is thermalized to the
cryostat temperature.

Consequently, the excess classical backaction evaluates to

Sba
FF = [(6 ± 2) × 10−15 N/

√
Hz]2

and accounts for 60% of the thermal force fluctuations driving
the mechanical oscillator.

In addition to classical backaction, the quantum fluc-
tuations of the intracavity photon number give rise to a
quantum measurement backaction for which the force noise is
given by

S
qba
FF ≡ S

qba
FF (�m) ≈ 2h̄G2Pinηc

ω̄c�2
m

= 4g2
0meffPinηc

ω̄c�m
(C6)

in the case of high-resolved sideband factor �m
κ

� 1 [18]
and at the detuning of interest. It is of the order of (1 ×
10−15 N/

√
Hz)2 in our case, which is negligible compared

to the classical backaction.
Therefore, a conservative estimate of the imprecision-

backaction product is given by (for kBT
h̄�m

� 1)

√
S

imp
xx

(
S the

FF + S
qba
FF

) ≈
√

S
imp
xx S the

FF = (49 ± 8)
h̄

2
.

In an ideal quantum measurement [46], this product is equal to
h̄
2 , corresponding to the optimal compromise between quantum
imprecision and quantum backaction, both arising from the
quantum fluctuations of the optical field quadratures.

As it is shown in the main part of this article, laser absorp-
tion heating, which is responsible for the classical excess back-
action Sba

FF , is mainly caused by scattered light off the tapered
fiber being absorbed by the toroid (in our case, by dust particles
on the tapered fiber originating from particles in the air of
our laboratory). It is, thus, within technical reach to strongly
reduce this effect and perform measurements for which
light-induced backaction would be dominated by quantum
fluctuations.
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[40] S. Gröblacher, K. Hammerer, M. R. Vanner, and M. Aspelmeyer,

Nature (London) 460, 724 (2009).
[41] L. Pauling, Phys. Rev. 36, 430 (1930).
[42] S. Hunklinger, W. Arnold, S. Stein, R. Nava, and K. Dransfeld,

Phys. Lett. A 42, 253 (1972).
[43] R. O. Pohl, X. Liu, and E. Thompson, Rev. Mod. Phys. 74, 991

(2002).
[44] H. A. Haus, Waves and Fields in Optoelectronics (Prentice-Hall,

Englewood Cliffs, NJ, 1984).
[45] T. Carmon, L. Yang, and K. J. Vahala, Opt. Express 12, 4742

(2004).
[46] V. B. Braginsky and F. Y. Khalili, Quantum Measurement

(Cambridge University, Cambridge, UK, 1992).

063835-9

http://dx.doi.org/10.1038/nphys1303
http://dx.doi.org/10.1038/nphys1301
http://dx.doi.org/10.1103/PhysRevLett.95.033901
http://dx.doi.org/10.1038/nphys939
http://dx.doi.org/10.1038/nphoton.2008.199
http://dx.doi.org/10.1103/PhysRevA.80.021803
http://dx.doi.org/10.1364/OE.18.023236
http://dx.doi.org/10.1126/science.1195596
http://dx.doi.org/10.1088/0034-4885/50/12/003
http://dx.doi.org/10.1007/BF01401204
http://dx.doi.org/10.1103/PhysRevB.72.214205
http://dx.doi.org/10.1103/PhysRevB.72.214205
http://dx.doi.org/10.1103/PhysRevLett.101.263602
http://dx.doi.org/10.1103/PhysRevLett.101.263602
http://dx.doi.org/10.1364/OL.20.001835
http://dx.doi.org/10.1364/OL.20.001835
http://dx.doi.org/10.1364/OL.27.001669
http://dx.doi.org/10.1364/OL.27.001669
http://dx.doi.org/10.1016/S0375-9601(01)00510-2
http://dx.doi.org/10.1016/S0375-9601(01)00510-2
http://dx.doi.org/10.1103/PhysRevA.49.1337
http://dx.doi.org/10.1103/PhysRevA.49.4055
http://dx.doi.org/10.1103/PhysRevLett.104.133602
http://dx.doi.org/10.1038/nphys965
http://dx.doi.org/10.1038/nature08171
http://dx.doi.org/10.1103/PhysRev.36.430
http://dx.doi.org/10.1016/0375-9601(72)90884-5
http://dx.doi.org/10.1103/RevModPhys.74.991
http://dx.doi.org/10.1103/RevModPhys.74.991
http://dx.doi.org/10.1364/OPEX.12.004742
http://dx.doi.org/10.1364/OPEX.12.004742

