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Two-dimensional atom localization via spontaneous emission in a coherently driven
five-level M-type atomic system
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A scheme is proposed for two-dimensional atom localization in the subwavelength domain via controlled
spontaneous emission. We consider a five-level M-type atomic system interacting with two orthogonal standing-
wave laser fields and the vacuum of the radiation field. The interaction of the atom with space-dependent
standing-wave fields can provide information about the position of the atom passing through, thus leading
to atom localization. It is found that the localization is significantly improved due to the interference effect
between the spontaneous decay channels and the dynamically induced quantum interference generated by
the two standing-wave fields. By properly varying the system parameters, we can achieve high-precision and
high-resolution atom localization.

DOI: 10.1103/PhysRevA.83.063834 PACS number(s): 42.50.Gy

I. INTRODUCTION

It is well known that measurement of the degree of atom
localization has become an active research topic from both
the theoretical and experimental points of view [1–5], because
of its potential applications in various quantum optical effects
such as laser cooling and trapping of neutral atoms [6,7], atom
nanolithography [8,9], Bose-Einstein condensation [10,11],
and so on. Some earlier works [12–15] regarding atom
localization are based on the concept of virtual optical slits. In
those schemes, the localization of an atom is determined by
measuring the phase shift of the optical field in a cavity due to
the spatially varying atom-field interaction. As is well known,
atomic coherence and quantum interference can lead to some
interesting phenomena, like giant Kerr nonlinearity [16,17],
four-wave mixing (FWM) [18], electromagnetically induced
transparency (EIT) [19], spontaneous emission enhancement
or suppression [20–23], optical bistability (OB) [24,25], etc.
For one-dimensional (1D) atom localization, many schemes
[26–32] are also based on atomic coherence and quantum
interference effects. For example, Herkommer and co-workers
[28] proposed a scheme for 1D atom localization by using
the measurement of the Autler-Townes spontaneous spectrum.
Qamar et al. [29] put forward a simple scheme of 1D atom
localization based on resonance fluorescence from a standing-
wave field. Another related localization scheme was proposed
by Paspalakis and co-workers [30,31] using measurement of
the upper-state population for a three-level atom interacting
with a classical standing-wave field and a weak probe laser
field. Moreover, sub-half-wavelength localization [32] can
be obtained via quantum interference in a four-level ladder-
type atomic system. Alternatively, 1D atom localization can
be realized via coherent manipulation of the Raman gain
process [33]. Recently, Zubairy and colleagues discussed 1D
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atom localization using amplitude and phase control of the
absorption spectrum [34,35].

Apart from the above-mentioned methods, other techniques
[36–38] such as dark resonances or coherent population trap-
ping (CPT) can also be used to achieve 1D atom localization.
More recently, double-dark resonances have been used to
realize two-dimensional (2D) atom localization [39]. Because
there are more practical applications of this kind of 2D
atom localization, many schemes have been put forward.
For instance, Evers et al. [40] presented a 2D localization
scheme for a quantum particle using multiple simultaneous
dispersive interactions of the particle with two orthogonal
standing-wave fields. A method for atom nanolithography
based on 2D atom localization is reported in Ref. [41] by
application of two orthogonal standing-wave fields. Ivanov
and Rozhdestvensky [42] proposed a four-level tripod system
for 2D atom localization by measuring the population of the
atom in two standing-wave fields based on EIT. Afterward,
Wan et al. proposed a scheme for 2D atom localization via
quantum interference in a coherently driven inverted-Y atomic
system [43] or via controlled spontaneous emission from
a driven tripod system [44]. Inspired by these researches,
we present a 2D atom localization scheme via controllable
spontaneous emission in a coherently driven five-level M-type
atomic system.

It has been reported that an M-type atomic system [45]
with two closely spaced upper levels interacting with the
same modes of the vacuum radiation field can exhibit an
interference effect between the spontaneous decay channels,
thus giving rise to greatly enhanced, suppressed, and quenched
spontaneous emission line shapes. This leads us to pose
another question: If a similar atomic system interacts with
two orthogonal standing-wave fields rather than with two
traveling-wave coupling fields, what will be the resulting
atom localization when the atom passes through the standing-
wave fields? Although 2D atom localization has been in-
vestigated in some schemes [39–44], most discussions are
limited to considering the spontaneous emission in a single
decay channel. In contrast, in this paper, we focus on the
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measurement of spontaneous emission from two coherent
decay channels, and thus we investigate 2D atom localization.
With two spontaneous emission channels, there is potentially
an improvement in the precision. Because of the spatial-
position-dependent atom-field interaction, the spontaneously
emitted photon carries information about the position prob-
ability distribution; as a result, the atom can be localized
when the spontaneously emitted photon is detected. The
detection of different frequencies of spontaneous emission
allows us to determine different spatial structures of the
filter function, such as wavelike, latticelike, mountainlike, and
spikelike patterns. These interesting features result from the
joint quantum interference effects, that is, the interference
effect between the spontaneous decay channels owing to the
two upper levels interacting with the same modes of the
vacuum radiation field and the dynamically induced quantum
interference which is created by two standing-wave laser fields.
The field-induced quantum interference effects in two adjacent
�-type structures are connected by vacuum-induced decay
interference in our considered model. Consequently, we can
achieve high-precision and high-resolution atom localization
by adjusting the system parameters under the action of the
dynamically induced decay-interference effects.

The remainder of this paper is organized as follows. In
Sec. II, we present the atomic model under consideration and
derive the conditional position probability distribution after
interaction in the Raman-Nath regime. In Sec. III, we give a
detailed analysis and explanation for the position distribution
of the atom. Finally, our conclusions are summarized in
Sec. IV.

II. THEORETICAL MODEL AND BASIC FORMULA

Let us consider a five-level M-type atomic configuration
which consists of three lower levels |0〉, |1〉, and |2〉 and two
upper levels |3〉 and |4〉 as depicted in Fig. 1. The atomic
transitions from the upper levels |3〉 and |4〉 to the lower
level |0〉 are coupled by vacuum modes (ωλ) in free space. In
addition, two orthogonal standing-wave laser fields are applied
to drive the transitions |3〉 ↔ |1〉 and |4〉 ↔ |2〉, respectively.
The corresponding Rabi frequencies are dependent on the

FIG. 1. Schematic diagram of a five-level M-type atomic system
interacting with two orthogonal standing-wave fields. The five-level
atomic model consists of two upper levels |3〉 and |4〉 and three
lower levels |0〉, |1〉, and |2〉, in which two standing-wave fields are
used to drive the transitions |1〉 ↔ |3〉 and |2〉 ↔ |4〉. �1 and �2 are
respectively the detunings of the corresponding transitions. γ30 and
γ40 are the decay rates from the two upper levels |3〉 and |4〉 to the
lower level |0〉 in the free space.

position and can be defined by �1 sin(k1x) and �2 sin(k2y),
with k1 = ω1/c and k2 = ω2/c being the wave vectors of the
two fields. Therefore, the interaction between the atom and the
standing-wave fields is space dependent on the x-y plane. Here
we assume that the center-of-mass position of the atom along
the directions of the standing-wave fields is nearly constant
and neglect the kinetic part of the atom in the Hamiltonian
by applying the Raman-Nath approximation [46]. Under these
assumptions, the Hamiltonian which describes the dynamics
of this system in the interaction picture and the rotating-wave
approximation (RWA) can be written as (taking h̄ = 1)

HI = �1 sin(k1x)e−i�1t |3〉〈1| + �2 sin(k2y)e−i�2t |4〉〈2|
+

∑
λe

g30
λee

−iδλ3t |3〉〈0|b̂λe

+
∑
λe

g40
λee

−iδλ4t |4〉〈0|b̂λe + H.c., (1)

where H.c. means the Hermitian conjugate. The quantities
�1 = ω1 − ω31 and �2 = ω2 − ω42 stand for the frequency
detunings of the coherent standing-wave field ωi (i = 1,2)
from the corresponding atomic resonance transition fre-
quencies. δλj = ωλ − ωj0 (j = 3,4) represents the detuning
between the λth vacuum mode and the resonance transition
|j 〉 → |0〉. Here λ and e denote the momentum vector and
polarization of the emitted photons, respectively. b̂λe and b̂

†
λe

are, respectively, the annihilation and creation operators for
the λth vacuum mode with frequency ωλ.

The dynamics of this system can be described by using the
probability amplitude equations. Then the wave function of
our considered system at time t can be expressed in terms of
the state vectors as

|�(t)〉=
∫ ∫

dxdyf (x,y)|x〉|y〉[A1,0λ
(x,y; t)|1,0λ〉

+A2,0λ
(x,y; t)|2,0λ〉 + A3,0λ

(x,y; t)|3,0λ〉
+A4,0λ

(x,y; t)|4,0λ〉+
∑
λe

A0,1λ
(x,y; t)|0,1λ〉

]
, (2)

where the probability amplitude Aj,0λ
(x,y; t) (j = 1–4) stands

for the state of the atom at time t and |0λ〉 implies that there is
no emitted photon in the λth vacuum mode, A0,1λ

(x,y; t) gives
the probability amplitude of finding the atom in level |0〉 with
one emitted photon in the λth vacuum mode, and f (x,y) is the
center-of-mass wave function of the atom.

The 2D atom localization scheme in our system is based
on the fact that the spontaneously emitted photon carries
information about the position of the atom in the x-y plane
due to the spatial-position-dependent interaction between the
atom and standing-wave fields. Therefore, the measurement
of the atomic position is conditioned on the detection of the
frequency of the spontaneously emitted photon. When we
have detected a spontaneously emitted photon at time t in
the vacuum mode of wave vector λ, the atom is in its internal
state |0〉 and the state vector of the system, after making
appropriate projection over �(t), is simplified to

∣∣ψ0,1λ

〉 = N 〈0,1λ|�(t)〉
= N

∫ ∫
dxdyf (x,y)|x〉|y〉A0,1λ

(x,y; t), (3)
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where N is a normalization constant. Thus, the conditional
position probability distribution, that is, the probability of
finding the atom in the (x,y) position at time t , is

P (x,y; t |0,1λ) = |N |2∣∣〈x|〈y∣∣ψ0,1λ

〉∣∣2

= |N |2|f (x,y)|2∣∣A0,1λ
(x,y; t)

∣∣2
, (4)

which can be derived from the probability amplitude
A0,1λ

(x,y; t).
We now calculate an analytical expression for the probabil-

ity amplitude A0,1λ
by solving the time-dependent Schrödinger

wave equation i∂|�(t)〉/∂t = HI |�(t)〉 with the interaction
Hamiltonian [Eq. (1)] and the atomic wave function of our
system [Eq. (2)]. The coupled equations of motion for the
time evolution of the atomic probability amplitudes can be
readily obtained as

i
∂A1,0λ

(t)

∂t
= �1 sin(k1x)ei�1tA3,0λ

(t), (5a)

i
∂A2,0λ

(t)

∂t
= �2 sin(k2y)ei�2tA4,0λ

(t), (5b)

i
∂A3,0λ

(t)

∂t
= �1 sin(k1x)e−i�1tA1,0λ

(t)

+
∑
λe

g30
λee

−iδλ3tA0,1λ
(t), (5c)

i
∂A4,0λ

(t)

∂t
= �2 sin(k2y)e−i�2tA2,0λ

(t)

+
∑
λe

g40
λee

−iδλ4tA0,1λ
(t), (5d)

i
∂A0,1λ

(t)

∂t
= g03

λee
iδλ3tA3,0λ

(t) + g04
λee

iδλ4tA4,0λ
(t). (5e)

We proceed by performing a formal time integration of
Eq. (5e) with respect to t ′ and substitute the results into
Eqs. (5c) and (5d) to eliminate A0,1λ

(t); then we obtain the
integro-differential equations

∂A3,0λ
(t)

∂t
= −i�1 sin(k1x)e−i�1tA1,0λ

(t)

−
∫ t

0
K33(t − t ′)A3,0λ

(t ′)dt ′

−
∫ t

0
e−iω43tK34(t − t ′)A4,0λ

(t ′)dt ′, (6a)

∂A4,0λ
(t)

∂t
= −i�2 sin(k2y)e−i�2tA2,0λ

(t)

−
∫ t

0
eiω43tK43(t − t ′)A3,0λ

(t ′)dt ′

−
∫ t

0
K44(t − t ′)A4,0λ

(t ′)dt ′, (6b)

where Kjl(t − t ′) (j,l = 3,4) is the delay Green function with
definition

Kjl(t − t ′) =
∑
λe

g
j0
λeg

0l
λee

−iδλl (t−t ′). (7)

Since the atomic transitions from the two upper levels
to the lower level |0〉 are coupled by the reservoir of free

vacuum modes, the process is Markovian, so we can apply the
Weisskopf-Wigner theory [47] to obtain

Kjl(t − t ′) = pjl

2
√

γj0γl0δ(t − t ′), (8)

with pjl = δjl + p(1 − δjl); here δjl is the Krönecker delta
function, p (0 � p � 1) represents the quantum interference
in the atomic transitions coupled to the free vacuum modes and
is given by p = �µ30· �µ40

| �µ30|| �µ40| , and �µ30 and �µ40 stand for the dipole-
matrix moments correspond to the transitions |3〉 → |0〉 and
|4〉 → |0〉, respectively. Obviously, the existence of quantum
interference depends on the nonorthogonality of dipole matrix
elements �µ30 and �µ40. When the two dipole-matrix moments
are orthogonal, p = 0, implying that there is no quantum
interference between the two transitions; when the dipole-
matrix moments are parallel or antiparallel, p = 1, indicating
that the quantum interference is maximal between the two
transitions; otherwise, 0 < p < 1. γj0 and γl0 denote the decay
rates from the levels |j 〉 and |l〉 to the lower level |0〉 in the
free space, respectively.

By applying the Laplace transform method and the final
value theorem, the probability amplitude A0,1λ

in the long
time limit can be obtained as

A0,1λ
(x,y; t → ∞) = −ig03

λeÃ3,0λ
(s = −iδλ3)

− ig04
λeÃ4,0λ

(s = −iδλ4), (9)

where Ãj,0λ
(s) (j = 3,4) is the Laplace transform of Aj,0λ

(t)
with s = −iδλj .

Next, by carrying out the Laplace transformations for
Eqs. (5a), (5b), (6a), and (6b), we have the results

Ã3,0λ
(s = −iδλ3) = BC − p

√
γ30γ40

2 D

AB − p2 γ30γ40

4

, (10a)

Ã4,0λ
(s = −iδλ4) = AD − p

√
γ30γ40

2 C

AB − p2 γ30γ40

4

, (10b)

where

A = γ30

2
− iδλ3 + i�2

1 sin2(k1x)

δλ3 − �1
,

B = γ40

2
− iδλ4 + i�2

2 sin2(k2y)

δλ4 − �2
,

C = A3,0λ
(0) + �1 sin(k1x)

δλ3 − �1
A1,0λ

(0),

D = A4,0λ
(0) + �2 sin(k2y)

δλ4 − �2
A2,0λ

(0).

Finally, the conditional probability of finding the atom in level
|0〉 with a spontaneously emitted photon of frequency ωλ in
the vacuum mode λ is then given by

P (x,y; t → ∞|0,1λ) = |N |2|f (x,y)|2∣∣A0,1λ
(x,y; t → ∞)

∣∣2

= |N |2|f (x,y)|2∣∣g03
λeÃ3,0λ

(s = −iδλ3)

+ g04
λeÃ4,0λ

(s = −iδλ4)
∣∣2

. (11)

Due to the center-of-mass wave function of the atom f (x,y)
is assumed to be nearly constant over many wavelengths of the
standing-wave fields in the x-y plane, the conditional position
probability distribution P (x,y; t → ∞|0,1λ) is determined by
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the last term in Eq. (11). From this, we can define the filter
function as

F (x,y) = ∣∣g03
λeÃ3,0λ

(s = −iδλ3) + g04
λeÃ4,0λ

(s = −iδλ4)
∣∣2

= γ30

∣∣Ã3,0λ
(s = −iδλ3)

∣∣2 + γ40

∣∣Ã4,0λ
(s = −iδλ4)

∣∣2

+p
√

γ30γ40
[
Ã3,0λ

(s = −iδλ3)Ã∗
4,0λ

(s = −iδλ4)

+ Ã∗
3,0λ

(s = −iδλ3)Ã4,0λ
(s = −iδλ4)

]
. (12)

Equation (12) shows that the conditional position probability
distribution depends on the detunings of the standing-wave
driving fields and the population in the upper or lower levels,
as well as the frequency of spontaneously emitted photon. As
a consequence, we can obtain the position information of the
atom by measuring the spontaneous emission under proper
conditions.

III. RESULTS AND DISCUSSION

In this section, we analyze the conditional position proba-
bility distribution of the atom via a few numerical calculations
based on the filter function F (x,y) from Eq. (12), and then
demonstrate 2D atom localization by detecting the frequency
of spontaneously emitted photons in mode λ. It is evident that
the filter function F (x,y) depends not only on the frequency
of the spontaneously emitted photon and the parameters of the
two standing-wave driving fields, but also on the initial atomic
state and the quantum interference effects. There exist two
possible types of quantum interference in our system, that is,
(I) the quantum interference effect between the spontaneous

decay channels due to the two upper levels interacting with
the same vacuum modes and (II) the dynamically induced
quantum interference generated by the two standing-wave
fields. Therefore, a variety of atom localization features can
be controlled by the two standing-wave fields, the joint
quantum interferences, and the preparation of the initial
quantum state of the atom. All the parameters used in this
paper are in units of the decay rate γ30. In the following
discussion, we use some of the detuning parameters, in which
δλ is the detuning of the radiation field from the middle of
the two upper levels, i.e., δλ = ωλ − 0.5(ω30 + ω40) = δλ3 −
0.5ω43 = δλ4 + 0.5ω43; here ω43 = ω40 − ω30 is the frequency
difference of the two upper levels.

First, we consider the case where the atom is initially
prepared in level |3〉, i.e., A3,0λ

(0) = 1, and there is no
quantum interference between the two spontaneous decay
channels (i.e., p = 0). For the sake of simplicity, we first
limit our discussion to the resonant coupling situation, that
is, both the orthogonal standing-wave fields are on resonance
with respect to the corresponding transitions. Under these
conditions, the maxima of the filter function are located
at k1x = ± arcsin( δλ+0.5ω43

�1
) + nπ , where n is an integer. In

Fig. 2, we show a three-dimensional plot of the filter function
F (x,y) as a function of the normalized positions (k1x,k2y). It
can be clearly seen that the peaks of atom localization along
the y axis have a wavelike pattern. The very narrow wavelike
peaks are achieved when the detuning δλ is small [see Figs. 2(a)
and 2(b)], especially in the resonance condition [i.e., δλ = 0
in Fig. 2(a)] k1x 
 0, ± π . In a period of [−π, + π ], which
corresponds to three localization peaks as shown in Fig. 2(a),

FIG. 2. (Color online) The filter function F (x,y), which directly reflects the conditional position probability distribution, as a function of
(k1x,k2y) in dependence on the detuning of the spontaneously emitted photon. (a) δλ = 0; (b) δλ = 4.25; (c) δλ = 8.25; (d) δλ = 9. The other
parameters used are �1 = 9.5, �2 = 10.5, �1 = �2 = 0, γ30 = γ40 = 2, ω43 = 1.0, and p = 0. The atom is initially prepared in level |3〉, i.e.,
A3,0λ

(0) = 1. All parameters in this paper are in units of γ30.
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FIG. 3. (Color online) The filter function F (x,y) as a function of (k1x,k2y) in dependence on the detuning of the spontaneously emitted
photon. (a) δλ = 9.2; (b) δλ = 10; (c) δλ = 11; (d) δλ = 12. The system parameters used are the same as in Fig. 2 except that p = 1 and the
atom is initially prepared in a superposition state of |1〉 and |2〉, i.e., A1,0λ

(0) = A2,0λ
(0) = 1/

√
2.

the atom is localized around the nodes of the standing-wave
field �1 sin(k1x), and thus we obtain high precision and high
resolution in the conditional position probability distribution of
the atom. When the detuning parameter is tuned to δλ = 4.25,
the atom is localized at the positions k1x = ±π/6, ± 5π/6 as
shown in Fig. 2(b). As can be seen from Figs. 2(a) and 2(b),
we can achieve much better localization precision than for
the wavelike pattern reported in Refs. [39,42]. As a matter
of fact, this kind of high-precision and high-resolution 2D
atom localization can be attributed to the dynamically induced
interference effect between the two pathways |+〉3 → |0〉 and
|−〉3 → |0〉, in which the levels |±〉3 are the dressed-state
sublevels generated by the resonant driving field �1 sin(k1x).
When there is an increase in the detuning δλ [e.g., δλ = 8.25
in Fig. 2(c)], we have 1/2 < sin2(k1x) < 1; therefore, the two
peaks located at the same side of the coordinates are close
to each other as shown in Fig. 2(c). Furthermore, when the
detuning is detected at an appropriate value, i.e., δλ = 9, we
obtain sin(k1x) = ±1; four maxima merge into two and lie
on the antinodes of the standing-wave field which is aligned
along the y axis [see Fig. 2(d)]. At the same time, the width
of the wavelike peaks becomes larger, which indicates that the
resolution of atom localization is reduced.

These results imply that there is a strong correlation
between the frequency of the spontaneously emitted photon
and the position of the atom. The measurement of a particular
frequency corresponds to the localization of the atom within
a subwavelength region of the standing-wave field. Moreover,
when the atom is prepared in the upper state |3〉, because
there is no quantum interference between the two decay

channels (i.e., p = 0), the population in level |3〉 cannot
be transferred into level |4〉 in the absence of the decay-
interference effect. Therefore, only the decay from level |3〉
affects the atom localization. When the emitted photon is
detected at nonresonance with the middle of the two upper
levels, the destructive quantum interference between the two
pathways |+〉3 → |0〉 and |−〉3 → |0〉 leads to a spectral valley
at k1x = nπ with n being an arbitrary integer.

In the following, let us consider the case that the atom
is initially prepared in a coherent superposition state of
two ground levels �(0) = (|1〉 + |2〉)/√2, that is, A1,0λ

(0) =
A2,0λ

(0) = 1/
√

2. Moreover, there exists quantum interference
between the spontaneous decay channels coupled to the free
vacuum reservoir (i.e., p = 1). Figure 3 displays the filter
function F (x,y) versus the normalized positions (k1x,k2y) in
such a case. As can be seen, the localization of the atom is
different from the situation discussed above because of the
combined action of the standing-wave fields and the vacuum-
induced decay-interference effect. The specific results are as
follows. The conditional position probability is distributed
mostly in the second and fourth quadrants [sin(k1x) sin(k2y) <

0] of the x-y plane with a sharp double-peak structure as
shown in Fig. 3(a), that is, the atom is localized at k1x =
(2m + 1)π/2 and k2y = (2n + 1)π/4 (m,n are integers) in the
second and fourth quadrants. These phenomena are opposite
to those reported in Ref. [44]. In Fig. 3(a) the sharp double-
peak structure is caused by the decay-interference effects in
the pathways |+〉3 → |0〉 → |+〉4 and |−〉3 → |0〉 → |+〉4;
the other double-peak structure results from the quantum
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FIG. 4. (Color online) The filter function F (x,y) as a function of (k1x,k2y) in dependence on the detuning of the spontaneously emitted
photon. (a) δλ = 0; (b) δλ = 7; (c) δλ = 9; (d) δλ = 10. The system parameters used are the same as in Fig. 3 except that the atom is initially
prepared in a superposition state of |3〉 and |4〉, i.e., A3,0λ

(0) = A4,0λ
(0) = 1/

√
2.

interference between the pathways |+〉3 → |0〉 → |−〉4 and
|−〉3 → |0〉 → |−〉4. Here, |±〉4 are the dressed-state sublevels
generated by the resonant driving fields �2 sin(k2y). Hence we
obtain a higher probability of finding the atom in the second
and fourth quadrants for a frequency measurement of the
spontaneous emission when the emitted photon has a relatively
small detuning. As the detuning δλ increases, the spontaneous
emission is gradually suppressed, which results in a decrease
in the value of the filter function F (x,y) [see Figs. 3(b)– 3(d)].
It is shown that the peaks of atom localization in this condition
occur at the antinodes of the standing-wave field propagating
along the x axis [see Fig. 3(c)], which is completely opposite to
the situation when the atom is initially prepared in level |3〉 (see
Fig. 2). Therefore, the wavelike localization peaks are aligned
along the x axis. In addition, the high-precision localization is
destroyed when the frequency of the spontaneously emitted
photon is large enough [see Fig. 3(d)]. As a result, when
the atom is trapped in the two ground levels (i.e., |1〉 and
|2〉), the precision of the atom localization is dependent on
the frequency of the spontaneously emitted photon. High-
precision and high-resolution 2D atom localization can be
obtained only when the emitted photon is near resonance
with the corresponding atomic transition. This is due to the
fact that the vacuum-induced quantum interference between
the two spontaneous decay channels decreases with an increase
in the detuning of the radiation field from the middle of the
two upper levels.

In order to explore the effect of the initial population
of the two upper levels on the atom localization, we plot

in Fig. 4 the filter function F (x,y) versus the normalized
positions (k1x,k2y) for different detuning values when the
atom is initially prepared in a coherent superposition state
of the two upper levels, i.e., �(0) = (|3〉 + |4〉)/√2. When
a spontaneously emitted photon with frequency ωλ = (ω30 +
ω40)/2 is detected, the filter function in Fig. 4(a) displays a
normalized latticelike pattern, and the atom is localized at
the edges of these lattices. Because the atom is localized at
the nodes of the two standing-wave fields, such a latticelike
pattern is better than that proposed in Refs. [39,43,44]. When
the detuning is increased to δλ = 7, the maxima of the filter
function can be found in the region between the node and
antinode of the standing-wave field [see Fig. 4(b)]. With a
further increase of the detuning δλ, the two localization peaks
move toward the antinodes of the standing-wave field along
the x axis, and the four peaks merge into two and are located at
the antinodes of the standing-wave field as shown in Fig. 4(c),
whereas the atom localized at k2y = (2n + 1)π/6 (n is an
integer) is slightly shifted toward the antinode. Finally, when
δλ = 10, the localization peaks along the y axis are greatly
suppressed; at the same time, the peaks of localization along
the x axis are close to the antinodes of the standing-wave field
[see Fig. 4(d)]. Distribution of the localization peaks takes a
form similar to that shown in Fig. 3(b); the difference is that
the degree of atom localization is larger than in the situation
in Fig. 3(b). Because the heights of the wavelike peaks for
all values of the position are the same, and thus we obtain a
uniform position distribution. Because the atom is prepared
in an equal superposition of the upper levels |3〉 and |4〉, the
spontaneous emission remains unchanged all the while, and the
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FIG. 5. (Color online) The filter function F (x,y) as a function of (k1x,k2y) in dependence on the detuning of the spontaneously emitted
photon. (a) δλ = 9.2; (b) δλ = 10; (c) δλ = 11; (d) δλ = 12. The system parameters used are the same as in Fig. 3 except that the atom is initially
prepared in a superposition state of |3〉 and |4〉, i.e., A3,0λ

(0) = 1/
√

2 and A4,0λ
(0) = −1/

√
2.

joint quantum interference induced by the vacuum radiation
field and the two standing-wave fields affects the position of
atom localization.

In order to further explicitly show the influences of the
initial atomic state on the 2D atom localization, we consider
the case that the atom is initially prepared in another coherent
superposition state of the two upper levels, that is, �(0) =
(|3〉 − |4〉)/√2. In Fig. 5, we present the results for the
conditional position probability distribution of the atom. When
detecting the detuning δλ = 9.2, the filter function F (x,y)
reaches maxima at positions around k1x = (2m + 1)π/2 and
k2y = (2n + 1)π/4 (m, n are integers) as shown in Fig. 5(a).
In this case, the atom is localized at these sharp peaks. As can
be seen from Figs. 3(a) and 5(a), this kind of high-precision
and high-resolution atom localization cannot be observed in
those schemes which employ only single-channel spontaneous
emission [40–44]. When the frequency detuning is slightly
increased, i.e., δλ = 10, these enhanced localization peaks are
strongly suppressed, as shown in Fig. 5(b). As in the earlier
discussions, with an increase in detuning δλ, four wavelike
peaks of atom localization along the x axis evolve into two
and are situated at the antinodes of the standing-wave field [see
Fig. 5(c)]. As can be seen from Fig. 5(d), the filter function
F (x,y) has a mountainlike pattern when the spontaneously
emitted photon is at a particular frequency. Moreover, the
maxima of the localization peaks are greatly inhibited. As
a result, the atom localization will completely disappear when
a large frequency detuning from the emitted photon and the
middle of the two upper levels is detected. Therefore, in
order to obtain high-precision and high-resolution 2D atom

localization, the spontaneously emitted photon should be at
resonance with the middle of the two upper levels as much as
possible.

Here we mention again that the above discussions about
2D atom localization refer to on-resonance conditions, i.e., the
two standing-wave fields are resonant with the corresponding
atomic transitions. Under nonresonant conditions, the behavior
of atom localization differs considerably from the results
observed above and is of special interest. Now we investigate
the effects of the detunings of two standing-wave fields on the
2D atom localization. By choosing proper parameters, as can
be seen from Fig. 6, we can achieve high-precision and high-
resolution atom localization. Figure 6(a) displays the resulting
filter function F (x,y) in the case of �1 = �2 = 3.5, which
describes a latticelike pattern with the atom localized at the
edges of these lattices. More interestingly, when the detunings
of the two standing-wave fields are tuned to �1 = �2 = 4.5,
the peaks of atom localization along the x axis completely
vanish, while the localization peaks along the y axis become
quite sharp, as shown in Fig. 6(b), and lie near the nodes of
the standing-wave field. In contrast, when �1 = �2 = 5.5, the
peaks of atom localization lie along the x axis and are located
around the nodes of the standing-wave field �2 sin(k2y) [see
Fig. 6(c)]. Moreover, these localization peaks are greatly
suppressed and become wider. It can be seen from Fig. 6(d)
that when the detunings of the two standing-wave fields are
adjusted to �1 = �2 = 6.5, the filter function F (x,y) exhibits
a spikelike pattern and has maxima at positions corresponding
to the intersections of nodes. Consequently, high-precision
localization is achieved for small values of the detunings.
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FIG. 6. (Color online) The filter function F (x,y) as a function of (k1x,k2y) for different detunings of the two standing-wave laser fields.
(a) �1 = �2 = 3.5; (b) �1 = �2 = 4.5; (c) �1 = �2 = 5.5; (d) �1 = �2 = 6.5. The system parameters used are the same as in Fig. 5 except
that γ30 = γ40 = 1 and δλ = 5.

From the above discussions of Figs. 5 and 6, we can see
that the filter function F (x,y) has a small value when a
large detuning between the emitted photon and the atomic
transition is detected or when the two standing-wave fields are
placed far of resonance. This is mainly due to the suppression
of the spontaneous emission, which is caused by both the
decay-interference effect and the field-induced interference
effect.

IV. CONCLUSIONS

In conclusion, we have investigated the conditional position
probability distribution of a five-level M-type atom as it
passes through two orthogonal standing-wave laser fields,
based on the phenomena of spontaneous emission. Owing
to the spatial-position-dependent atom-field interaction, 2D
atom localization can be achieved by the detection of the
spontaneously emitted photon. Therefore, the measurement of
the spontaneous emission gives immediate information about
the position of the atom and determines the different spatial
structures of the filter function, such as wavelike, latticelike,
mountainlike, and spikelike patterns. These phenomena orig-
inate from the quantum interference effects induced by the
vacuum radiation field and the two standing-wave fields. We
have shown that the precision of atom localization depends

upon the initial-state preparation and the detunings of the two
standing-wave fields. The proper preparation of the initial state
and choice of the frequencies of the two standing-wave fields
leads to spectral line narrowing of the spontaneous emission.
The resolution of the localization peaks can be increased by
changing the relevant frequency of the standing-wave fields.
As a consequence, the atom can be localized with a high
precision and resolution within a certain range. It should
be pointed out that, although the spontaneous emission is a
random process in nature and would require the use of 4π

detectors in principle, it is not necessary to measure every
atom for practical purposes.
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