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Few-cycle vector solitons of light
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We present a class of few-cycle elliptically polarized solitary waves in an isotropic Kerr medium. It is proved
numerically that they are stable and can be easily excited during pulse propagation. We also propose a method
of producing multisolitons with different polarization states and study their binary collisions. It is shown that
collisional properties strongly depend on their relative polarization rotation.
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I. INTRODUCTION

The recent progress in laser science has established a
new field of “extreme light” where very short laser pulses
comprising only a few optical cycles interact with matter
(see, e.g., [1,2]). It is expected that such few-cycle laser
pulses could shed new light on nonlinear physics, ranging
from ultrabroadband nonlinear optics [3] through attosecond
science [4] and from relativistic nonlinear optics to nonlinear
quantum electrodynamics [5]. Another important area where
few-cycle pulses occur is terahertz radiation [6].

One of the most striking effects in nonlinear physics is
the existence of solitary waves; in particular, in the extreme
nonlinear optics these are few-cycle solitons, which result
from the interplay between dispersion and nonlinearity. Such
localized waves, known as optical solitons in conventional
nonlinear optics [7], play an exceptionally important role in
various areas of physics [8]. In particular, vector or elliptically
polarized solitons represent a very important class of localized
solutions as the nonlinear birefringence induced by the optical
Kerr effect becomes significant and polarization evolution is
altered drastically [9]. This is also highly important, because
elliptically polarized pulses can provide a new dimension of
laser parameters that allows quantum control in molecules
and nanostructures [10,11]. However, in the few-cycle regime
exact soliton solutions were found only recently for linear [12]
and circular [13] polarization of light. Moreover, the basic
wave equation for the linearly polarized field belongs to the
class of completely integrable equations. It is important to
notice that in the limiting case of shortest durations there is
a qualitative difference in the condition of existence of these
two types of solitons (see below) and therefore the existence
of such few-cycle solitons with arbitrary polarizations states
is not trivial.

In this paper we provide an important link between the
linearly and circularly polarized solitons by finding the so-
called few-cycle elliptically polarized solitary waves in an
isotropic Kerr medium. These solitons are characterized by a
fixed polarization ellipse that uniquely rotates at a constant rate
over the propagation distance. Such a rotation is quite similar to
the case of Schrödinger-like solitons in nonbirefringent media
[14,15]. From our point of view this looks very surprising,
since in the conventional nonlinear optics, where the slowly
varying envelope approximation (SVEA) is used, there is no
qualitative difference between linearly and circularly polarized
solitons. It is worth noting that an elliptically polarized
vector soliton (Schrödinger-like) in an isotropic Kerr medium

was recently observed experimentally [15]. We also reveal
novel physics of nontrivial interaction between these solitons
and show that their interaction crucially depends on relative
polarization rotations.

II. BASIC WAVE EQUATION

In general, the vector wave equation for isotropic media
with Kerr nonlinearity can be written in the following form
(see, e.g., [16]):

∂2
z E − 1

c2
∂2
t

∫ t

−∞
ε(t − t ′)E(t ′)dt ′ = 4π

c2
∂2
t Pnl, (1)

∂tPnl = g(E2∂tE) + h[E,[E,∂tE]] = 0, (2)

where ∂i=z,t stands for the respective derivatives, ε is the
isotropic linear permittivity, and g, h are the parameters of
instantaneous Kerr nonlinearity. The response time of the
nonlinearity is assumed to be instantaneous. In the optical
region of transparency, the Fourier representation of the linear
permittivity can be taken in the form ε(ω) = εo − a/ω2 + bω2,
where the frequency-dependent terms are usually very small
compared to the static dielectric permittivity of the medium
εo, i.e., a/ω2,bω2 � εo [13,17]. In the particular case of
electronic-type Kerr nonlinearity (h = 2g/3), by employing
the slowly evolving wave approximation [16], which assumes
the pulse profile only to be slowly varying on a distance
comparable with its duration, we can arrive at a reduced wave
equation for a real electric field with arbitrary light polarization
(see, e.g., [13,18]), which we write in the following form

∂τ

[
∂zU − µ∂3

τ U + ∂τ (|U |2U )
] + U = 0, (3)

where U = (Ex + iEy)(4πχ (3)/a)1/2 is a new complex vari-
able and χ (3) = 5g/3 is the cubic nonlinear susceptibility (see,
e.g., [16]); a new propagation coordinate z → za/(2cε

1/2
o ), and

retarded time τ = t − zε
1/2
o /c are introduced, where c is the

speed of light in vacuum; and the parameter µ = b/a accounts
for the type of dispersion: if µ = 0 (b = 0), anomalous
dispersion takes place in the whole spectral interval.

III. FEW-OPTICAL-CYCLE SOLITONS

Paying particular attention to the case of anomalous
dispersion (µ = 0) where few-cycle solitons can exist and
assuming solutions of Eq. (3) in the form

U (z,τ ) = A(z,τ )eiϕ(z,τ ), (4)

063832-11050-2947/2011/83(6)/063832(7) ©2011 American Physical Society

http://dx.doi.org/10.1103/PhysRevA.83.063832


A. V. KIM AND S. A. SKOBELEV PHYSICAL REVIEW A 83, 063832 (2011)

(a) (b) (c)

FIG. 1. (Color online) Temporal profile of few-cycle shortest-duration solitons for (a) circularly and (b) linearly polarized fields, and their
spectra (c). All quantities normalized as in the text.

we obtain for real functions A(z,τ ) and ϕ(z,τ ) the following
set of equations:

Azτ − Aϕzϕτ + A + (A3)ττ − A3ϕ2
τ = 0, (5)

Aϕzτ + Azϕτ + Aτϕz + 2(A3)τ ϕτ + A3ϕττ = 0. (6)

The type of polarization is now defined by ϕ(z,τ ). The two
limiting cases of linear and circular polarization, where exact
soliton solutions for few cycles are found, are now well
developed. For the simplest case of circular polarization, the
soliton solutions of Eqs. (5) and (6) can be represented as [13]

A(z,t) = γ 1/2AS(ξ ), (7)

ϕ(z,τ ) = ω(τ + γ z) + 
S(ξ ), (8)


S(ξ ) =
∫ ξ

−∞

A2
S

(
3 − 2A2

S

)
2
(
1 − A2

S

)2 dξ ′, (9)

where ξ = ω(τ − γ z), ω is the soliton carrier frequency, and
γ −1 is the soliton group velocity. The intensity profile AS(ξ ) is
a solitonlike solution of the second-order ordinary differential
equation for the stationary envelope distribution taking place
at δ2 = 1/γω2 − 1 � δ2

c = 1/8. It should be noted that the
existence of the limiting soliton with the shortest duration is
defined by the constraint

∫ ∞
−∞ Udτ = 0, which is one of the

integrals of Eq. (3): at δ = δc the shortest duration is equal to
τ ∗
s = 2.31ω−1.

The limiting circularly polarized soliton and its spectrum
are depicted in Fig. 1(a). The case of linear polarization
corresponds to ϕ(z,τ ) = const = ϕo, where the vector of
electric field makes an angle ϕo with the x axis. In this
case Eq. (3) without loss of generality can be reduced to one
equation for A(z,τ ) with ϕ = 0, which at µ = 0, as was shown
in Ref. [12], is an integrable equation that may be rewritten
through a chain of transformations as a sine-Gordon equation.
Thus starting from breather solutions of the sine-Gordon
equation we can obtain an exact form of linearly polarized
solitons. Note that there is a qualitative difference between
linearly and circularly polarized solitons. It comes from the
fact that for solitons with linear polarization in the limiting
case of the shortest duration the first time derivative of the
field [as(z,τ )]τ → ∞, i.e., shock-wave formation occurs in the
field profile [see Fig. 1(b)]. We would like to emphasize this
point, indicating that self-steepening of the real field profile is
much more efficient for linearly polarized pulses, whereas for
circularly polarized pulses it occurs over the intensity profile
only. However, it is worth noting that the spectrum of the

soliton with circular polarization is broader than with the linear
one, as is clearly seen in Fig. 1(c). This occurs because of
strong self-phase modulation over the intensity profile for the
circularly polarized field, which is reflected in the solution of
Eq. (9). This means that, in general, linearly polarized solitons
cannot be represented as a pair of counter-rotating circularly
polarized solitons, unlike the case of vector solitons described
by two coupled nonlinear Schrödinger equations [14].

Let us now try to identify pulses with polarizations other
than circular or linear ones that propagate as solitary waves. We
have performed numerical studies in this intermediate regime
to prove the existence of elliptically polarized solitary waves
and their stability as well. To solve Eq. (3) we use the split-step
Fourier method in which the spatial and temporal steps were
chosen as �z = 0.02 and �τ = 0.115 in order to provide
conservation of the Hamiltonian of Eq. (3),

H =
∫ +∞

−∞

[
|U |4

2
+ µ|∂τU |2 −

∣∣∣∣
∫ τ

−∞
Udτ

∣∣∣∣
2
]

, (10)

with the accuracy of 10−5 (the number of points over time is
214).

Our starting point is the analytical solutions for solitons
with circular polarization given by Eqs. (7) and (8) that are used
as the initial condition. Indeed, if the input field distribution is
represented in the form of Eqs. (7) and (8) but with different
amplitudes of the (x,y)-field components, i.e.,

Re(U ) = γ 1/2AS(τ ) cos ϕs (11)

Im(U ) = (1 − ε)γ 1/2AS(ξ ) sin ϕs , (12)

any elliptically polarized solitary wave can be easily excited
during pulse propagation. In such an input pulse there are
actually two governing parameters: soliton amplitude or δ

and ε, allowing proper excitation of the elliptically polarized
soliton with given ellipticity.

A typical example of a single elliptically polarized soliton
excitation is shown in Fig. 2, where the input parameters are
ω = 1, δ = 0.32, and ε = 0.95. Linear dispersion length for
these parameters is Ld � 15. In this case, after a transient stage
when part of pulse energy is emitted in the form of continuous
waves, a solitary wave is formed with a duration of about
1.5 optical cycles and polarization ellipse with ellipticity of
about 0.95 uniquely rotating along the propagation distance,
for which a longitudinal period of ellipse rotation is about
L � 1536.

Another problem of fundamental as well as of practical
interest is generation of predictable multisoliton pulses with
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FIG. 2. (Color online) Single elliptically polarized soliton excita-
tion with input pulse parameters ω = 1, δin = 0.32, and εin = 0.95.
After a transient stage a few-cycle soliton with ellipticity 0.95 is
formed. Linear dispersion length for these parameters is Ld � 15.
All quantities normalized as in the text.

different polarization states. Since we now know how to
generate a single elliptically polarized solitary wave, it is
natural to use the concept of higher-order solitons, which
plays an exceptionally important role in the theory of the
nonlinear Schrödinger equation and has been used for op-
tical pulse compression of circularly polarized pulses down
to single-cycle duration [13]. Indeed, by introducing the
higher-order soliton number N as a parameter and defining
an initial field distribution in the form U (z = 0,τ ) = NUS ,
where US is the solitonlike solution of Eq. (3) with a given
polarization state (see above), it is really possible to produce
[N ] soliton pulses [[N ] is the integer of N ]. As an example,
Fig. 3 shows the dynamic evolution of a solitonlike pulse
with N = 2, δ = 0.1, and ε = 0.9. As is seen from this
simulation, the first significant pulse compression occurs at

z � 500, which is similar to the Schrödinger scenario of
higher-order soliton propagation, except for the fact that
essential asymmetry appears in the field profile and this is
due to the nonlinear group velocity effect. Further, the pulse
decays and eventually two solitary waves are formed with
different polarization states. The rate of ellipse rotation, as was
to be expected, is higher for intense solitons and they rotate
in one direction. Thus the concept of higher-order solitons
gives a meaningful prediction of the number of generated
solitons, but the drawback of this procedure is that there is no
regular recipe of generating solitons with needed polarization
ellipticity.

IV. THE ROLE OF HIGH-FREQUENCY DISPERSION
(µ �= 0)

The next important issue in terms of feasibility of solitons
with elliptic polarization is their dynamics, taking into consid-
eration the high-frequency component of medium dispersion
(µ �= 0) that we have neglected before. It is known that
introduction of the fourth derivative into Eq. (3) may change
the dispersive properties significantly, in particular, there
may appear a point of zero group velocity dispersion ωcr =
(3µ)−1/4.

With the high-frequency dispersion taken into account, all
the mentioned properties of elliptically polarized solitons were
retained when the wave pattern spectrum was in the region ω <

ωcr . The main question here is what happens if a substantial
part of the pulse spectrum is in the region with normal group
velocity dispersion. The evolution of the wave field specified
at the input to the nonlinear medium as an elliptically polarized
soliton shown in Fig. 2 for µ = 0.08 is illustrated in Fig. 4. For
the given parameters, ωcr is 1.43, so that the point of zero group
velocity dispersion is at the high-frequency end of the pulse
spectrum [Fig. 4(b)]. Clearly, for the chosen parameters about
15% of the optical pulse energy is initially in the region with
normal group velocity dispersion [see Fig. 4(b) for z = 0].
As was to be expected, this leads to division of the initial
spectrum into two parts: the right-hand part of the spectrum

FIG. 3. (Color online) Evolution of elliptically polarized pulse during propagation for the case of an input pulse in the form of a higher-order
soliton with N = 2, δ = 0.1, ε = 0.9, and ω = 1: (a) temporal profiles of x-field component and (b) snapshots of polarization ellipse at different
propagation distances. Two output solitons are generated with ellipticities of about ε1 � 0.96 and ε2 � 0.8. Their polarization ellipses rotate
with the periodicity along the propagation direction equal to L1 � 1984 and L2 � 4288. All quantities normalized as in the text.
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FIG. 4. (Color online) Snapshots of field distribution (a) and spectrum (b) along the propagation distance. Input pulse is a few-cycle soliton
with ωin = 1 and δin = 0.32; ωcr = 1.43, ε = 0.95. Dispersion length for these parameters is Ld � 15. The blue dashed line shows the position
of the point of zero group velocity dispersion. All quantities normalized as in the text.

(ω > ωcr ) is emitting into traveling quasiharmonic waves, and
the left-hand side transforms into a new solitonlike structure
with a small number of field oscillations, but shifted by the
carrier frequency to the red (low-frequency) spectral region.
Further, the newly formed soliton propagates without changes
(Fig. 4). It is worth noting that the spectrum of the formed
structure is fully localized in the region with anomalous group
velocity dispersion [Fig. 4(b)]. Numerical simulation demon-
strates formation of a soliton having ellipticity ε � 0.95 and
period of rotation of the principal axis of polarization ellipse
L � 4608.

The emission of quasiharmonic waves having an isolated
spectrum in the shorter wavelength region has been ac-
tively studied as a route to broadband blue-light generation
in microstructured fibers and mostly attributed to the so-
called fiber-optic Cherenkov radiation (see, e.g., [19] and
references therein). However, it should be mentioned that
when a soliton is formed nothing is emitted into the normal
region of the spectrum. Only on the transient stage of pulse
propagation is the presence of the parametric interaction
between the soliton and continuous waves indicated by the
appearance of an isolated peak [around 2.5 as in Fig. 4(b)],
which then disappears as a result of group pulse spread-
ing (in the numerical scheme the pulse goes beyond the
time limits of the computations). The energy efficiency of
parametric frequency conversion at z = 128 is about 26%
[see Fig. 4(b)].

With a further shift of the central frequency of a few-cycle
soliton to the point of zero dispersion, part of the soliton
spectrum is in the region with the normal law of group velocity
dispersion (ω > ωcr ), leading to stronger modification of the
solitonlike pulse generated. Note that if the central frequency
is in the region of normal dispersion and is close to the point
of zero group velocity dispersion ωcr , effective generation of
the spectral continuum occurs that is accompanied by pulse
spreading in the time domain. Nevertheless, a soliton of longer
duration may be also formed in this case too, as soon as part
of the initial pulse spectrum is localized below the critical
frequency, in conformity with recent experiments [20]. Figure
5 demonstrates results of computer simulations, showing

the dependence of the effective soliton generation on ωcr

[Fig. 5(b)]. The average duration 〈τ 〉 and average frequency
〈ω〉 of the formed soliton are shown in Fig. 5(c) and 5(d), re-
spectively. As the process of soliton formation is accompanied
by emission of waves into a continuous spectrum, this leads
to longer average soliton duration. As follows from Fig. 5(c),
for the parameters corresponding to Fig. 4, the average pulse
duration increased 2.1 times (〈τout〉 � 2.1〈τin〉) and the average
soliton frequency decreased 1.22 times (〈ωout � 1.22〈ωin〉).
Note that Fig. 5 highlights two things: stable generation of
solitons with a small number of field oscillations, and energy
efficiency of this process. Thus solitons with a small number
of field oscillations may be readily excited in a wide parameter
region and, hence, may be regarded to be elementary structures
that play a fundamental role in dynamics of short optical
pulses.

V. BINARY-COLLISION DYNAMICS

It is well known that the result of binary soliton collisions
(see, e.g., [8]) is a very important sign of the fundamental
property of integrability of the basic equation. To shed light on
the dynamics of the collisions we focused special attention on
the circularly polarized solitons, particularly the ones rotating
in opposite directions, and carried out simulations of Eq. (3),
where we scanned input parameters of the soliton-soliton
interactions with different amplitudes, carrier frequencies, and
polarization states.

Since Eq. (3) describes unidirectional pulse propagation,
for studying soliton collisions the soliton with lower group
velocity was placed ahead of the other one. By summarizing
results of the simulation, we can conclude that soliton-
soliton collisions have several distinct features. First, the most
prominent feature is that the interaction strongly depends on
their relative rotation directions. As was shown in Ref. [21],
if colliding solitons rotate in one direction, there are three
different regimes of the interaction, depending on the absolute
phase difference of the colliding pulses: (1) the solitons pass
through each other, (2) they are reflected completely, and (3)
the solitons exactly replicate each other during interaction.
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(a) (b)

(c)
(d)

FIG. 5. (Color online) (a) Wave soliton spectral power S(ω) at the input z = (solid black curve) and for z = 67 776 (red dashed curve),
corresponding to Fig. 4. The blue dashed curve denotes position of the point of zero group velocity dispersion. The spectra are normalized
to unity. (b) The dependence of the ratio of generated pulse energy to input pulse energy as a function of ωcr ; (c) average soliton duration
W · 〈τ 〉 = ∫

τ |U |2dτ as a function of ωcr , where W is pulse energy; (d) average carrier frequency W · 〈ω〉 = ∫
ω · S(ω)dω of the formed

soliton as a function of ωcr . Soliton energy, average carrier frequency, and average soliton duration are normalized to the corresponding initial
values. All quantities normalized as in the text.

However, if soliton carrier frequencies are different and/or
incident amplitudes differ by more than 40%, only one regime
is realized: the solitons pass through each other without any
changes. It is worthy of notice that their interactions are quite
close to the interactions of the Schrödinger solitons.

A qualitatively different situation occurs when colliding
solitons rotate in opposite directions, i.e., assuming
Re(U ) = γ

1/2
1 AS1 cos ϕs1 + γ

1/2
2 AS2 cos ϕs2 and Im(U ) =

γ
1/2
1 AS1 sin ϕs1 − γ

1/2
2 AS2 sin ϕs2, where γ1,AS1,ϕs1,γ2,AS2,

ϕs2 are parameters of two colliding solitons and their solutions
of Eqs. (7) and (8). In this case, the result of the collision
strongly depends on the difference between the carrier frequen-
cies. If they are equal, as shown, for example, for the soliton
parameters δ1 = 0.05,δ2 = 0.1, ω1 = ω2 = 1 in Fig. 6(a),
solitons elastically (to an accuracy of simulation) reflect each
other in the sense that no continuous waves are really emitted
during the interaction. The important argument is that we can
control modeling of Eq. (3) with high precision, since it has the
Hamiltonian H = ∫ ∞

−∞[|U |4/2 + µ|Uτ |2 − | ∫ τ

−∞ Udτ |2]dτ ,
which is very sensitive to an accuracy of simulation, and
additional control is also made by using another constant of
motion — the total energy W = ∫ ∞

−∞ |U |2dτ .
Thus this case of collision strongly differs from the colliding

solitons rotating in one direction when they pass through each
other without energy exchange. We assume that in this case,
since permittivity is modulated with double carrier frequency
(or spatially at half the incident wavelength), the effective

Bragg reflection occurs, leading to complete reflection of
the solitons by each other. However, if the incident wave
frequencies are notably different, the colliding solitons pass
through each other without energy losses [as is clearly seen in
Fig. 6(c)]. In the intermediate case, when the soliton frequen-
cies differ by no more than 5%, they interact inelastically, i.e.,
continuous waves are emitted during the interaction process
and the solitons can lose a substantial part of their energies,
as is shown in Fig. 6(b) for the incident soliton parameters
δ1 = 0.05,δ2 = 0.1, ω1 = 0.98,and ω2 = 1.02, when about
10% of the incident soliton energies is emitted by linear
waves.

VI. CONCLUSION

To conclude, we have found a novel family of solitary
waves in an isotropic Kerr medium — few-cycle, elliptically
polarized solitons which play a central role in the polarization
dynamics of optical pulse propagation. We have proved that
these solitons are stable and can be easily excited by a
proper choice of input pulses. The scheme of multisoliton
generation with different polarization states based on the
extension of the higher-order Schrödinger solitons to the
few-cycle regime with elliptically polarized pulses has been
proposed. For clarification of the basic properties of vector
few-cycle solitons, we have paid specific attention to their
binary collisions and revealed that the collision properties
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FIG. 6. (Color online) Snapshots of field distributions of colliding pulses with polarization ellipses rotating in opposite directions (a) when
carrier frequencies are equal and the pulses elastically reflect each other; (b) when carrier frequencies are different with ω1 = 0.98, ω2 = 1.02,
and the pulses interact inelastically, emitting about 10% of the incident soliton energies by linear waves; and (c) when carrier frequencies are
different with ω1 = 0.9, ω2 = 1.1 and the pulses interact elastically. All quantities normalized as in the text.

strongly depend on their relative polarization rotation. If they
rotate in one direction, the solitary waves interact with each
other, persisting to be solitons in the sense of unit intensity
envelope structure similar to the Schrödinger solitons, whereas
with opposite ellipse rotation they always reflect each other or
interact inelastically.
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