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Controlling the stimulated Brillouin scattering of self-focusing nanosecond laser
pulses in silica glasses
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We numerically investigate the interplay between Kerr self-focusing (SF) and transient stimulated Brillouin
scattering (SBS) for nanosecond pulses in bulk silica. The influences of the input power, phase, or amplitude
modulations in the pump pulse together with the incident beam shape on the filamentation dynamics are discussed.
We show that appropriate amplitude modulations dividing nanosecond laser pumps into picosecond-long pulse
trains inhibit SBS at any power. In contrast, phase-modulated pulses with comparable spectral width undergo
multiple filamentation and earlier beam collapse due to modulational instabilities. We demonstrate, however, the
existence of a critical pump bandwidth above which SBS can be efficiently suppressed by phase modulations
even at high powers. This observation also holds for squared beam shapes with much broader spatial spectra,
which decay more easily into multiple filaments over short distances. Intensity profiles of the reflected Stokes
waves for such broad pumps are finally discussed.
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I. INTRODUCTION

In nonlinear optics, stimulated Brillouin scattering (SBS)
is a prominent process that occurs in various settings, such
as optical fibers [1], nanostructured materials [2], or silica
devices employed in high-power laser systems [3–6]. Because
SBS generates frequency-shifted coherent light as well as
phase conjugate waves, its application areas are numerous,
from fiber-optical telecommunication technology to the de-
velopment of tunable laser sources or Brillouin amplifiers
and sensors. Moreover, SBS plays an important role in slow
light propagation [7–9], light storing [10], and stimulated
Rayleigh-Bragg scattering [11].

In the absence of optical absorption, SBS is excited by
electrostriction of the bulk medium, which tends to become
more dense in the regions of high fields through the increase of
the local pressure. Nanosecond laser pulses can then excite an
acoustic wave on which a Stokes wave scatters in the backward
direction mainly [12,13]. The amplitude of this backward-
propagating Stokes wave grows exponentially and can damage
the front surface of the sample at sufficiently high input
powers.

Since its first observation in the 60s, SBS has been
extensively studied in many configurations applied to narrow
or broadband pump lasers [14–20]. However, most of these
works remained confined to one-dimensional (1D) geometries
and they discarded the Kerr optical response of the mate-
rial, apart from a few investigations limited to low pump
intensities [21,22]. For many practical applications involving
powerful pump pulses propagating in bulk (3 + 1)-dimensional
geometries, however, the coupling between Kerr and SBS non-
linearities becomes highly relevant. In particular, for powers
above the critical value for self-focusing (SF), the (forward)
pump pulse can suffer severe modulational instabilities and
even wave collapse [23]. These sharp dynamics are currently
met in the optics of large-scale laser facilities devoted to
inertial confinement fusion [24]. In this context, high-energy
nanosecond pulses often initiate front damage in silica glasses

due to SBS [4,6] and they moreover cause rear and bulk
damages driven by Kerr filamentation [3]. Preventing laser-
induced damage of dielectrics has thus become a challenging
issue. For this purpose, exploiting multimode broadband
pump pulses has been proposed to suppress at least SBS at
infrared (1064 nm, 1ω) and ultraviolet (355 nm, 3ω) center
wavelengths. Such multimode pumps are, however, reported
to decrease substantially the SF distances, making filaments
occur earlier inside the material at high power levels [3].

Therefore, the goal of this paper is to examine SBS
efficiency in the presence of Kerr nonlinearities triggering
either single or multiple filamentation, depending not only on
the pump beam shape but also on specific input modulations
currently used to weaken SBS. By means of fully space-
time resolved (3D) simulations, we show that for powerful
pumps a broad spectral bandwidth sustained by rapid phase
modulations may not be efficient enough to avoid SBS-driven
damages at the front surface of the propagation sample,
whenever the modulation frequency lies below a critical value.
In contrast, suitable amplitude modulations can drastically
attenuate the stimulated scattering [25], at the expense of a
halved average beam energy.

The paper is organized as follows. Section II recalls the
model equations and their basic properties. Deviations to the
propagation equations introduced by dispersion or plasma
generation are discussed in the Appendix. Numerical results
are presented in Sec. III. Whereas phase modulations with
moderate bandwidths of ∼100 GHz can suppress SBS at low
input powers, this property, however, no longer holds at high
laser powers for which Kerr self-focusing comes into play.
Only amplitude modulations creating ps-short pulse trains are
found capable of eliminating backscattering, unless the pump
spectral bandwidth supported by phase modulations with
minimum number of modes exceeds a critical value. Finally,
in Sec. IV, we investigate the multiple filamentation regime
and how it develops depending on the initial pump beam
shape.
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II. MODEL EQUATIONS AND BASIC PROPERTIES

We first outline the set of equations describing the coupling
between Brillouin and Kerr self-focusing effects. Basic prop-
erties of 1D SBS-active materials and multidimensional Kerr
systems are then briefly reviewed.

A. Propagation equations

A linearly polarized forward pump pulse with nanosecond
duration at center wavelength λ0 is able to generate an acoustic
wave via electrostriction through a few centimeters of bulk
silica [12]. Part of the incident energy is then scattered back on
this sound wave, creating a backward Stokes pulse. Our model
equations describe this coupling between the two optical pump
and Stokes waves and the acoustic wave. Two domains of
optical wavelengths are investigated, namely, ultraviolet (UV,
λ0 = 355 nm) and infrared (IR, λ0 = 1064 nm) wavelengths.
Considering the two-component optical electric field

E =
√

ω0µ0

2k0
[U1e

ik0z−iω0t + U2e
−ik0z−iω0t

+U ∗
1 e−ik0z+iω0t + U ∗

2 eik0z+iω0t ], (1)

where µ0 is the magnetic permeability in vacuum, the slowly
varying envelopes of the forward and backward pulses, U1

and U2, respectively, have center frequencies ωi � ω0 =
2πc/λ0 (i = 1,2) and wave numbers ki � n0ω0/c = k0 in
silica with linear index n0 (c is the speed of light in vacuum).
Governing equations for U1 and U2 are derived from the
inhomogeneous Helmholtz equation

�∇2E − 1

c2
∂2
t E = µ0

(
∂2
t P + ∂tJ

)
, (2)

where P is the polarization vector containing linear and
nonlinear components, i.e.,

P = ε0χ
(1)E + ε0χ

(3)E3 + ε0�εE. (3)

In Eq. (3), the first contribution refers to linear polarization
with χ (1) being the linear susceptibility. The second one
describes the nonlinear optical polarization with the cubic
susceptibility χ (3). Note that we neglect both group-velocity
dispersion (see Appendix A) and nonlinear dispersion; i.e.,
we assume χ (1) ≡ χ (1)(ω0) and χ (3) ≡ χ (3)(ω0,ω0,−ω0) in
the relevant spectral range. The third contribution is the
electrostriction polarization where �ε = γe�ρ/ρ0 represents
variations in the dielectric constant, induced by acoustic den-
sity fluctuations �ρ. Here, the coefficient of electrostriction
γe is taken for a background material density ρ0. Following
Ref. [12], we assume that the density fluctuations obey the
acoustic wave equation[

∂2
t − 
′ �∇2∂t − C2

S
�∇2

]
�ρ = �∇ · �fe, (4)

where 
′ is related to the phonon lifetime, Cs = 5.97 ×
105 cm/s is the sound wave velocity, and �fe is the electrostric-
tive force. For our electric field, which propagates mainly in

the z direction, this force is evaluated by

�∇ · �fe = γe

2n0c
q2[U1U

∗
2 ei(qz−�t) + c.c.], (5)

with �q = �k1 − �k2 and � = ω1 − ω2 (c.c. means complex
conjugate). Hence, we expect density fluctuations of the form

�ρ = ρ̄ei(qz−�t) + c.c., (6)

where ρ̄ is the slowly varying envelope of the acoustic wave.
J is the current density associated with plasma generation and
the dynamic of charged particles (e.g., free electrons). Because
linear dispersion is limited to first order, we can identify the
group velocities of U1 and U2 as k′ � k0/ω0. The phonon wave
has the wave number q � 2k1 and frequency � � �B = Csq.
Equations for the slowly varying envelopes U1, U2, and ρ̄

are derived from substituting Eq. (1) into Eq. (2) and Eq. (6)
into Eq. (4), respectively, and omitting higher-order derivatives
and phonon propagation. Moreover, in the expression for
the polarization [Eq. (3)] we neglect harmonic generation
and retain only self- and cross-phase modulations with
Kerr nonlinear index n2 ≡ 3µ0cχ

(3)/4n2
0 [13,21]. Assuming

moderate fluences Fi ≡ ∫ |Ui |2dt < 12 J/cm2, we further
discard plasma generation (J � 0) responsible for damages
in the material (see also Appendix B). The final equations
describing the coupling between the Kerr nonlinearity and
SBS can then be expressed as

(∂z + k′∂t )U1 = i �∇2
⊥U1

2k0
− g0

2
QU2

+ in2ω0

c
(|U1|2 + 2|U2|2)U1, (7)

(−∂z + k′∂t )U2 = i �∇2
⊥U2

2k0
+ g0

2
Q∗U1

+ in2ω0

c
(|U2|2 + 2|U1|2)U2, (8)

τB∂tQ + Q = U1U
∗
2 + N, (9)

where z is the propagation variable, �∇2
⊥ = ∂2

x + ∂2
y is

the diffraction operator, Q ≡ 2
Bn0cCSρ̄/iqγe denotes the
scaled density fluctuation envelope, τB = 2/
B = 2/q2
′ is
the phonon damping rate, and g0 = ω2

0n
7
0p

2
12/CSc

3ρ0
B �
4.5 cm/GW is the gain factor computed from the bulk density
ρ0 = 2.21 g/cm3 and the elasto-optic coefficient p12 [1,13,21].

B is the Brillouin linewidth related to the full-width at half-
maximum of the Brillouin gain spectrum as �νB = 
B/2π

and it varies like 1/λ2
0. According to Refs. [1,21], the value

of p12 ranges between 0.27 and 0.286 for laser wavelengths
included in the interval 355 � λ0 � 1064 nm. Thus, g0 does
not vary so much with λ0, i.e., 4.4 � g0 � 5.2 cm/GW [4].
Fixing p12 = 0.27, this gives an uncertainty on the self-
focusing distances limited to 10% over all laser wavelengths,
which we ignore in the coming analysis. Numerical values for
the other relevant physical parameters are given in Table I, for
both UV and IR wavelengths. The field envelopes Ui have been
normalized such that Ii = |Ui |2 is their intensities expressed
in W/cm2. The phonon damping length, Cs/
B , is limited to a
few tens of micrometers, which allows us to discard the spatial
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TABLE I. Physical parameters for silica at 355 and 1064 nm.

Physical parameters λ0 = 355 nm λ0 = 1064 nm

n0 1.4762 1.454
Pcr (MW) 0.35 4.27
n2 (cm2/W) 3.6 × 10−16 2.7 × 10−16

ω0 (fs−1) 5.31 1.77
τB (ns) 1.1 10

dynamics of the acoustic wave envelope. In Eq. (9), N models
a thermally driven Gaussian random noise that initiates SBS,
with zero mean 〈N (�r,t)〉 = 0 and

〈N (�r,t)N∗(�r ′,t ′)〉 = ANδ(�r − �r ′)δ(t − t ′), (10)

where AN = (2n0c/qγe)2(2kBTρ0
B) depends on γe �
n4

0p12 ≈ 1.6, the bulk temperature T = 300 K, and Boltzmann
constant kB [17]. In the following, Eqs. (7)–(9) are numerically
integrated in full 3D geometry, first for an input pump with
spatial and temporal Gaussian profiles

U1(z = 0) =
√

I1(0) exp
[ − (x2 + y2)/w2

0 − t2/t2
p

]
, (11)

initial waist w0 = 150 µm, and 1/e2 duration tp = 2.12 ns
(Sec. III), and then for supergaussian spatial profiles
(Sec. IV C). The silica sample thickness is either L = 5 cm
or L = 10 cm. Because SBS is a source of damage at the
front surface of the sample, pump pulses with appropriate
phase or amplitude modulations will be examined in order to
limit backscattering. We use a split-step parallel spectral code
running over 128 processors with the longitudinal grid spacing
�z = �t/k′, down to 12 µm, where k′ = n0/c and �t is the
time step. Spatial resolutions in the transverse diffraction plane
are �x = �y = 3.9 µm.

B. Basic behaviors

Equations (7)–(9) describe the interplay between SF and
SBS. The typical length scales for diffraction, Ldiff = 2k0w

2
0,

self-focusing, LSF = c/ω0n2I1(0), and SBS, LB = 1/g0I1(0),
obey the inequality LB < LSF � Ldiff for pump intensities
above 5 GW/cm2.

Because the product 
Btp is of order unity, SBS develops in
a transient regime, for which the 1D gain [no (x,y) dependency
of the fields], assuming the large gain limit, is classically
evaluated in the undepleted pump approximation [15,19] by

U2(z,t)

U2(L,t)
∝

∫ t

−∞
e− 
B

2 (t−t ′)+
√

g0
B (L−z)
∫ t

t ′ |U1(η)|2dη

×U1(z,t)U ∗
1 (z,t ′)dt ′. (12)

For a plane-wave pump, the nonstationary intensity gain is
mainly given by GT ∼ 2

√

Btp(L − z)/LB . In the stationary

limit reached when 
Btp → +∞, the classical stationary gain
GS = (L − z)/LB is recovered by maximizing the exponential
argument of Eq. (12).

Besides, the Kerr response, although originally weak
(ω0n2/g0c < 2 × 10−2), is expected to cause wave collapse at
high powers Pi ≡ ∫

Iid�r⊥ [26]. For negligible SBS (g0 → 0),
the mean-square radius integrals of the two counterpropagat-
ing pump and Stokes components evolve along the z axis

as d2
z

∫
r2
⊥(I1 + I2)d�r⊥ = 4HSF/k0, where HSF denotes the

Hamiltonian for self-focusing

HSF =
∑
i=1,2

∫ [
| �∇⊥Ui |2

2k0
− n2ω0

2c

(
I 2
i + 4I1I2

)]
d�r⊥. (13)

By applying Schwarz and Sobolev inequalities [26], forward
(pump) blowup is found to require an input power satisfying
P1(0) � Pcr/(1 + 2R), where R ≡ P2(0)/P1(0) and Pcr ≡
3.72λ2

0/(8πn0n2) is the usual critical power for self-focusing.
In the limit P2(0) → 0, the SF threshold for a single wave
is retrieved. Note that we neglect here any power exchange
between the forward and backward waves (g0 → 0), which
leads to a decrease of the effective blowup power threshold.
When the backward wave is created via SBS, we expect a
delayed self-focusing dynamics (increase of blowup threshold)
for the forward pump due to energy depletion. In the pure
forward case [P2(0) → 0] and for an unperturbed Gaussian
beam, the collapse distance can be estimated by Marburger’s
formula [27]

zc � LM = 0.092Ldiff

[(
√

P1(0)/Pcr − 0.852)2 − 0.0219]1/2
. (14)

Pump pulses containing many critical powers can instead
decay into multiple filaments seeded by modulational insta-
bility [28]. In that case, beam collapse takes place at earlier
distances,

zc � LSF = λ0/2πn2I1(0), (15)

yielding a direct dependence on the initial pump power
zc ∼ 1/P1(0) [29,30]. In Eq. (15), the right-hand side is
nothing else but the inverse of the maximum growth rate
γ1 = n2ω0I1(0)/c of oscillatory perturbations acting on a
single plane-wave pump. The filamentation behavior, single
or multiple, also depends on the initial beam-shape [31].
For example, for high-order supergaussian profiles, multiple
filamentation is promoted on the edges of the beam, whereas
Gaussian beams undergo single filamentation at moderate peak
powers.

III. SINGLE FILAMENTATION OF THE PUMP

We now determine the power threshold from which a
single filament can emerge from the coupling between SBS
and Kerr effects affecting a Gaussian pump beam. Different
modulations are then applied to the incident pulse in order to
weaken SBS. In the following two subsections, characteristic
behaviors reported in Ref. [25] are briefly recalled.

A. Low powers

We begin with low input powers P1(0) < 14Pcr leading
to slow self-focusing inside a silica sample with thickness
L = 5 cm. Figures 1(a) and 1(b) show the maximum intensities
and partial energies Ei(z) ≡ ∫

Fid�r⊥ of the pump and Stokes
waves for an unmodulated pump pulse with power P1(0) =
5Pcr. We carefully checked that the conservation law E1(z) −
E2(z) = const. was fulfilled in all our numerical simulations.
We observe in Fig. 1(a) that, without any modulation, the
pump intensity slowly increases due to self-focusing and a
Stokes wave is generated inside the 5-cm-thick sample via
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FIG. 1. (Color online) Peak intensities [(a), (c)] and partial ener-
gies [(b),(d)] for 355-nm Gaussian input pulses with w0 = 150 µm,
tp = 2.12 ns, and P1(0) = 5Pcr. Top figures refer to an unmodulated
beam and bottom ones show the case of a phase-modulated beam for
which m = 21 and νm = 2 GHz. Blue (dark gray) curves refer to the
pump pulse and green (light gray) curves represent the Stokes pulse.
Solid lines correspond to the complete Eqs. (7)–(9) whereas dotted
lines discard the full Kerr response. Insets detail Stokes and pump
fluence distributions in a 400 × 400 µm2 section of the (x,y) plane
at z = 0 and z = L = 5 cm, respectively.

SBS. This effect also clearly manifests in Fig. 1(b), where
the partial energy of the pump is transferred to the Stokes
wave.

SBS may be inhibited by phase modulations of the pump.
It is indeed well-known [18,32] that multimode pumps with
broad bandwidths �ν trigger weaker Brillouin-reflected
fluences. Assuring a small enough coherence length,
n0�νLB/c � 1, guarantees that the Stokes modes
evolve independently of each other and only interact
with their corresponding pump mode [33]. For this purpose,
introducing a phase modulation U1 → M(t) × U1 with
M(t) = exp [im sin (2πνmt)] creates a multimode spectrum
of 1/e bandwidth �ν � 2mνm (see Fig. 13 in Appendix A),
where 2m is approximately the number of modes and νm

the modulation frequency. We used a modulation depth
m = 21 and frequency νm = 2 GHz, providing a mode
spacing larger than the Brillouin gain spectrum to prevent
acoustic field enhancement by the neighboring pulse lines.
The overall spectral bandwidth satisfying �ν � �νB

should result in the net decrease of the SBS gain. Since
exp [im sin (2πνmt)] = ∑l=+∞

l=−∞ Jl(m)e2iπlνmt , where Jl(x)
is the lth-order Bessel function [

∑
l J

2
l (m) = 1], such

phase modulation is expected [according to Eq. (12)]
to decrease the SBS growth rate as I2(z,t)/I2(L,t) ∼
I1(0)

∑
l J

2
l (m) exp [L−1

B (L − z)/(1 + 16π2l2ν2
m/
2

B)] at
maximum gain in the plane-wave approximation. Indeed,
when a phase modulation is applied to the incident pulse
[Figs. 1(c) and 1(d)], the pump intensity still slowly increases
via Kerr self-focusing but the Stokes intensity stays to zero,
which is confirmed by the constant partial energies. The pump
maximum intensity even increases to higher level because of
the absence of SBS depletion. As evidenced by the dotted
curves corresponding to numerical simulations discarding
self- and cross-phase modulation terms, the Kerr response
always increases the peak intensity of the two components in
the sample.

FIG. 2. (Color online) Peak intensities for 355-nm (a) unmod-
ulated, (b) phase-modulated, and (c) amplitude-modulated input
Gaussian pulses with w0 = 150 µm, tp = 2.12 ns, P1(0) = 16Pcr

(dashed curves), and P1(0) = 27Pcr (solid curves). Blue (dark gray)
curves refer to the pump pulse and green (light gray) curves represent
the Stokes pulse. Corresponding partial energies for (d) unmodulated,
(e) phase-modulated, and (f) amplitude-modulated pump pulses.

B. High powers

At larger powers 14Pcr < P1(0) < 27Pcr, the pump col-
lapses inside the 5-cm-long sample [Fig. 2(a)]. The self-focus
point zc of the pump clearly lies beyond that corresponding
to the pure collapse of a single Gaussian wave (LM � 3.4
cm). At the front and rear surfaces, reflected Stokes and
transmitted pump pulses can attain comparable intensities
above the TW/cm2 level, respectively. The Kerr response
amplifies the two components near the pump focus zc in the
sample. Cross-phase modulation terms (∼ n2IiUj , with i �= j )
were observed to influence the growth of the Stokes intensity
and participate in the SF process in the vicinity of this focus.
Despite the important contribution of the Kerr nonlinearities,
the pump nonlinear focus remains at comparable distances,
zc � 4–4.5 cm, due to the pump depletion that significantly
decreases the pump power in the early stage of propagation.
In Fig. 2(d), we indeed see that the pump energy is rapidly
depleted to the benefit of the Stokes component in the ratio
E1(zc)/E1(0) � 1/3–1/4 for increasing powers. Inspection
of the numerical data reveals that the Stokes fluence can
approach the damage threshold [F max

2 (0) � 11.4 J/cm2],
which suggests to employ pulse shaping techniques breaking
the laser coherence to decrease this backward fluence.

However, it turns out that phase modulation is less efficient
for high power pulses triggering SF, as evidenced in Fig. 2(b)
where the Stokes wave sharply increases. The reason is
that inhibiting SBS through phase modulation leads also
to a much weaker pump depletion, E1(L)/E1(0) � 0.88,
over the sample thickness due to the reduced SBS gain
[Fig. 2(e)]. Consequently, the pump gets stronger focused by
the Kerr nonlinearities and self-focuses at shorter propagation
distances. The reflected fluence is reduced, but it may still
attain significant levels ∼7 J/cm2 [25].

In contrast, nonperturbative amplitude modulations, using
M(t) = cos [m sin (2πνmt)] with the same values of m and νm,
keep the reflected Stokes intensity and energy close to zero,
as shown by Figs. 2(c) and 2(f). Backscattering is suppressed
and the pump wave undergoes SF at Marburger distance. The
main reason for this behavior is the following: Mathematically,
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U1(z,t) in Eq. (12) has an autocorrelation function equal to
I1(0)

2

∑
2k J 2

2k(m) cos [4kπνm(t − t ′)], averaging all orders in
the integral to zero. Physically, these modulations break the
pump into pulse trains of short periods 1/mνm ∼ 24 ps, which
prevents the creation of acoustic matter waves. The resulting
dynamic of the pump pulse is a wave collapse in the sense
of a blowup singularity, as shown by Fig. 2(c). In this case,
the solution for the pump U1 does no longer exist for z >

zc. Of course, in real-world experiments, plasma generation
due to medium ionization or higher-order nonlinearities would
eventually kick in and stop the collapse.

In a more detailed analysis we numerically identified
a threshold frequency, ωcr � 0.8 ns−1, below which the
amplitude modulations do not suppress SBS anymore. This
threshold frequency corresponds to modulation periods ap-
proaching the phonon damping rate τB . Similar results hold for
simpler modulations, i.e., M(t) = | cos(2mπνmt)| or M(t) =
cos2(2mπνmt). The price to pay for the previous technique is,
however, that the average energy and power available in the
overall modulated pulse (for fixed peak intensity) are divided
by a factor close to 2. Indeed, we can evaluate the mean value
of the beam power over k � 1 optical periods as

Paveraged = ω0P1(0)

2kπ

∫ 2kπ/ω0

0
M2(t)e−2t2/t2

pdt. (16)

Equation (16) reduces to P1(0)/f with a factor f varying
between 2.6 and 3.2 following the amplitude functions.

Figure 3 shows the intensity profiles of unperturbed, phase-
and amplitude-modulated pumps in the (z,t) plane and the
corresponding Stokes profiles for P1(0) = 16Pcr. Close to the
nonlinear focus, with no phase modulation, the pump front

FIG. 3. (Color online) Intensity profiles in the (z,t) plane with
maximum intensity for P1(0) = 16Pcr: without any modulation,
(a) I1max(z) and (d) I2max(z); with a phase modulation, (b) I1max(z) and
(e) I2max(z); with an amplitude modulation, (c) I1max(z) and (f) I2max(z)
(note the factor 10−5 in the intensity scale). (g,h,i) Corresponding
spatial profiles of the pump in the (x,t) plane near the collapse
distance zc = 4.4 cm without modulation, zc = 0.6 cm with a phase
modulation, and zc = 3.4 cm with an amplitude modulation.

is depleted near the instant t � −1 ns, from which a sharp
Stokes spike emerges, grows at decreasing z while it covers
the remaining pump extent in time. A singly peaked structure is
amplified in the pump (zc � 4.35 cm) and in the Stokes pulses
[Figs. 3(a), 3(d), and 3(g) ]. In the case of a phase modulation,
both forward and backward optical components break up into
multiple peaks first in time, with forced periodicity ≈1/νm,
and then in space through space-time couplings, as shown
by Figs. 3(b), 3(e), and 3(h). Modulational instabilities are
amplified, which drastically affects the filamentation dynamics
(see Sec. IV A). In contrast, with an amplitude modulation,
acoustic waves have no time to form, so that SBS is almost
completely suppressed [Figs. 3(f) and 3(i)]. The maximum
backscattered intensity remains negligible while the pump
envelope is preserved. These behaviors are generic for the
whole range of incident powers studied here.

At λ0 = 1064 nm, the numerical data display the same
dynamics for unmodulated pumps, whose depletion again
takes place around t � −1 ns, as well as for both phase
and amplitude modulations. A noticeable difference lies in
the intensity threshold Ith for the raising of a backward
component, which is higher than for UV beams, namely, Ith ≈
35 GW/cm2 at IR wavelength, whereas Ith ≈ 13 GW/cm2 at
UV wavelength. The power threshold Pth necessary to reach
the collapse regime also changes: Pth = 13Pcr = 4.9 MW for
the UV wavelength whereas Pth = 3Pcr = 12.8 MW in the
infrared domain. These differences can be attributed to the
fact that the Kerr factor n2ω0/c and the Brillouin linewidth

B = 2/τB are smaller for λ0 = 1064 nm (see Table I).
With moderate bandwidths �100 GHz, turbulent dynamics
comparable with Figs. 3(b), 3(e), and 3(h) develop, and
they vanish, as well as the Stokes wave, when amplitude
modulations are applied.

C. Critical frequency for phase modulations

We have seen that phase modulations with bandwidth
�100 GHz appear barely efficient to suppress SBS at high
pump power. However, we may wonder whether there exists
a critical bandwidth, depending on the initial intensity, above
which phase modulations recover efficiency to inhibit SBS.
Discarding the Gaussian noise N for simplicity, let us consider
the equation for the rescaled density envelope Q [Eq. (9)].
Defining the phonon power by W = ∫ |Q|2d�r⊥, one finds

∂tW + 
BW = 
B

g0
(−∂z + k′∂t )P2 = −
B

g0
(∂z + k′∂t )P1,

(17)

which can be integrated in time to yield

dzE1 = dzE2 = −g0

∫ ∫ +∞

−∞
|Q̂(ω)|2dωd�r⊥ (18)

with Parseval-Plancherel theorem and zero boundary condi-
tions. Here, the phonon density is expressed in the Fourier
domain (symbol ̂ ) as

|Q̂(ω)|2 =
(


B

2

)2 |Û1U
∗
2 |2

ω2 + (
B/2)2
. (19)
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According to Ref. [15], with the relative phases of U1 and
U2 being random, Û1U

∗
2 ≡ 1√

2π

∫
U1(z,�r⊥,t)U ∗

2 (z,�r⊥,t)eiωtdt

gives

|Û1U
∗
2 |2 � 1

�ω
〈I1(z,r⊥,t)〉

∫
I2dt = 〈I1〉

�ω
F2. (20)

Here, 〈I1〉 is the time average of the pump intensity with
spectral width �ω ≡ 2π�ν. We thus find that the evolution
of the Stokes energy is given by

−dzE2 = g0π
B

2�ω

∫
d�r⊥〈I1〉F2. (21)

Assuming πw2
0

2 F2 � E2 and
∫

d�r⊥〈I1〉 � P1(0), we obtain

E2(z) ∼ E2(L)e
g0
B

�ωw2
0
P1(0)(L−z)

. (22)

Limiting the growth of the Stokes energy then demands

�ν � �νcr = 1
4
Bg0I1(0)L, (23)

yielding a minimum value of the pump spectral bandwidth
necessary to arrest SBS, as a function of the incident pump
intensity.

Simulations have been performed to check the validity
of Eq. (23). Figure 4(a) shows results for the numerically
evaluated critical value of �ν (solid curves) and for a slightly

FIG. 4. (Color online) (a) Maximum pump intensity along z

for P1(0) = 49Pcr [red (light gray) curve] and P1(0) = 16Pcr [blue
(dark gray) curve]. The solid curves correspond to �ν = �νcr,
whereas the dashed curves represent the pump intensity with the
same modulation frequency lowered by 1 GHz. The inset shows
the Stokes intensity profile at z = 0 for P1(0) = 49Pcr at the critical
bandwidth. (b) Mapping of �νcr as a function of the initial pump
intensity. Blue stars (green squares) correspond to λ0 = 355 nm with
L = 5 cm (respectively, L = 10 cm). Orange circles refer to data
for λ0 = 1064 nm in a 5-cm-long sample. Blue dash-dotted (green
dashed) curves report the lower bound of Eq. (23) with λ0 = 355 nm
for L = 5 cm (respectively, L = 10 cm). The orange solid curve
corresponds to the IR wavelength in a 5 cm-long sample.

lower value (dashed curves) at two incident powers: in red
(light gray), P1(0) = 49Pcr, and in blue (dark gray), P1(0) =
16Pcr. If the bandwidth is below critical, self-focusing occurs
at a smaller distance along the optical path and the pump power
profile is perturbed with periodic peaks corresponding to the
modulation frequency (not shown). The Stokes component can
then reach intensities higher than 100 GW/cm2. In contrast,
if a broad enough bandwidth is applied, the pump intensity
purely collapses at Marburger distance with an aborted Stokes
component. The inset shows that the Stokes intensity then
reaches the MW/cm2 range only and becomes meaningless.
In Fig. 4(b), the value of the critical bandwidth estimated
from our numerical simulations is given as a function of
the initial intensity for a 5-cm-long sample. Results are
also shown for a 10-cm-thick glass. Since SBS becomes
more efficient over longer propagation lengths, the critical
bandwidth becomes larger in turn. Almost all numerical results
for the values of �νcr are found superior to the analytical
evaluation given by Eq. (23). Although rough, this evaluation
seems to provide a reliable lower bound for the numerically
evaluated value of the critical bandwidth. Note that this value
varies with the wavelength via 
B and should thus be smaller
in the IR domain. This is actually confirmed: For example,
with I1(0) ≈ 38 GW/cm2, we find a critical bandwidth of
� 730 GHz at IR wavelength, while �νcr � 970 GHz is
requested in the UV domain.

Importantly, ensuring �ν greater than �νcr is not sufficient
because also a large number of modes is necessary to
make phase modulation efficient. For example, numerous
simulations have been made where, for low values of m,
increasing �ν only via the value of the modulation frequency
νm could not reduce the Brillouin gain. On the basis of
Refs. [4,12], an SBS generator medium, where stimulated
scattering is initiated by noise, is expected to produce a Stokes
signal if the exponential gain reaches a threshold GTH which
is, for most of materials, of the order of 25–30 (see also
Refs. [34,35] for long optical fibers). In a nonstationary regime
and assuming that the pump intensity is equally distributed on
the 2m modes [33], the Brillouin gain should thus obey the
condition GT = 2

√

BtpL/LB < GTH

√
2m, or

m > mcr = G2
T /2G2

TH, (24)

providing minimum values of the modulation depth mcr ≈ 5
to 10 for GTH = 25 and 30, respectively. These evaluations are
found in reasonable agreement with our numerical estimates
for mcr, i.e., mcr = 6 for 16Pcr � P1(0) � 27Pcr and mcr =
8 for 38Pcr � P1(0) � 49Pcr. Note that the two criterions,
Eqs. (23) and (24), do not depend on the Kerr parameters.

D. Summary using the breakup integral B

Gathering all the previous dynamics, Fig. 5 shows the so-
called “breakup integral”

B = 2πn2

λ0
I1(0)zc, (25)

which is proportional to the product of the initial pump
intensity and self-focusing distance. The B integral is inde-
pendent of the waist and of the wavelength, which offers a
very convenient way to superimpose our numerical results

063829-6



CONTROLLING THE STIMULATED BRILLOUIN . . . PHYSICAL REVIEW A 83, 063829 (2011)

FIG. 5. (Color online) Mapping of the break-up integral B as
a function of the initial pump power in terms of Pcr. The black
curve refers to Marburger’s formula [27]. Blue squares correspond
to data points for unmodulated beams; triangles report results
from amplitude-modulated pumps. Below, red circles correspond to
phase-modulated pumps with m = 21 and νm = 2 GHz. Single color
symbols refer to ultraviolet (λ0 = 355 nm) wavelengths; symbols
with green interior mark numerical results in the infrared (λ0 =
1064 nm). Orange and violet circles refer to phase modulations
with different number of modes (m = 10 or 42) and frequency
(νm = 14 GHz), respectively. Gray circles stand for phase-modulated
cases with �ν > �νcr. The star symbols recall experimental data
for both wavelengths (see Ref. [3]). The dashed curve represents the
straight line discussed in the text.

at different laser wavelengths. Here we have plotted data
computed from additional numerics performed at 1064 nm. We
also recall experimental data reported in Ref. [3]. For P1(0) �
4.2 MW = 12Pcr at λ0 = 355 nm and P1(0) � 12.8 MW
= 3Pcr at λ0 = 1064 nm, simulations were performed using a
smaller beam waist, in order to trigger a wave collapse inside
the 5-cm glass thickness. The collapse distance is identified
as the longitudinal location of the first pump peak widely
exceeding 20 × I1(0).

With SBS, SF produces a nonlinear focus that does
not significantly vary with the pump power: SF distances
follow the empirical straight line zc = aw2

0 + b/I1(0) with
a � 14.75 × 103 cm−1 and b = 25.5 GW/cm (dashed line). In
contrast, when the pump is modulated in phase with a moderate
bandwidth ∼100 GHz, the breakup integral B saturates around
1.5 rad. This behavior agrees quite well with Fig. 6 of Ref. [3]
and can be explained by the pulse spatiotemporal breakup
undergone by the multimode pump [25]. Recalled by Eq. (15),
the SF distances should then fulfill the relationship

zc � LSF × E1(0)/E1(L), (26)

where we included the partial energy ratio E1(0)/E1(L),
which reflects pump power depletion according to the power
scaling of Ref. [30]. This relation indeed yields B � 1.4 rad.
On the contrary, when we apply a phase modulation with
bandwidth over critical, the self-focusing distance is equal to

FIG. 6. (Color online) Normalized growth rate as a func-
tion of transverse wave number for different values of RS with
(a) g0 = 0.25 cm/GW and (b) g0 = 0.1 cm/GW. The black (lower)
curve corresponds to the transverse modulational instability for a
single pump wave and the red (upper) curve shows the transverse
modulational instability of two equal counterpropagating waves. Blue
and green (middle) curves represent calculations for RS = 0.33 and
RS = 0.67, respectively. Panel (c) shows the normalized instability
threshold intensity γ1L satisfying Eq. (31) in a finite medium for
RS = 10−3. The black curve corresponds to the case discarding SBS
(g0 = 0) whereas the red (gray) curve represents the case with a
reduced Brillouin gain g0 = 4.5/

√
2m ≈ 0.7 cm/GW.

the Marburger distance. Corresponding results are represented
by gray circles on the Marburger (black) curve. Pink triangles
on the same curve refer to amplitude-modulated pumps, for
which SBS is also suppressed. Orange and violet circles refer
to phase modulations with different values of the number of
modes (m = 10 and m = 42) and of the modulation frequency
(νm = 14 GHz), respectively, which demonstrates the generic
nature of our findings.

IV. MULTIPLE FILAMENTATION AND INFLUENCE OF
THE BEAM SHAPE

This section is dedicated to the multiple filamentation
regime. Phase modulations can trigger modulational instabil-
ity, leading to temporal and spatial breakups of both pump and
Stokes waves, which is investigated first. Next, the influence of
the beam shape on the breakup is studied, using supergaussian
profiles.

A. Modulational instabilities

Phase modulations of the pump reduce the effective
Brillouin gain to the benefit of the Kerr nonlinearities. To
explain this feature, we recall that in optical fibers the
pump and Stokes envelopes undergoing rapid phase mod-
ulations become multimode, i.e., Ui = ∑

n Ai,ne
i(ki,nz−ωi,nt)

(i = 1,2) with nonzero group-velocity mismatch. Assuring
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small coherence length compared to LB makes the pump and
Stokes total intensities evolve according to ∂zIi ∼ −γ̄ g0IiIj

(i �= j ) in the stationary limit. Here, Ii = ∑2m
n=1 |Ai,n|2 and

γ̄ = ∑2m
n=1 |A1,nA2,n|2/I1I2 divides the SBS gain factor by

the total number (2m) of modes, when they are assumed with
equal intensity [33]. Modulational instabilities then mainly
follow from the predominance of Kerr terms over SBS.

We now evaluate the growth rate of transverse modu-
lations acting on both pump and Stokes waves assuming
“perturbative” actions of the SBS nonlinearities. For the sake
of simplicity, we limit our analysis to static perturbations
(ω = 0) growing along the z axis only. As is well known
[28,29], the maximum growth rate of transverse [(x,y)]
perturbations acting against a single plane-wave pump is given
by γ1 = (n2ω0/c)I1,S where I1,S is the steady-state pump
intensity. The spatial growth rate in the presence of a second
counterpropagating wave can be readily evaluated. For this
purpose, perturbed solutions of Eqs. (7) and (8) are first
searched in the limit g0 → 0 under the form Ui(z,t,�r⊥) =
φie

iλiz[1 + ε(ui + ivi)] (i = 1,2), where φi , ui , and vi are
real functions, ε � 1 and λi = (n2ω0/c)(Ii,S + 2Ij,S) (j �= i),
with I1,S and I2,S being the steady-state plane-wave intensities.
Introducing the reflectivity RS = I2,S/I1,S , the maximum
growth rate can then be expressed as [36]

γmax = γ1

2
[(1 + RS) +

√
(1 − RS)2 + 16RS]. (27)

When pump and Stokes waves have comparable intensities,
γmax can reach values three times higher than for the single
pump alone. The presence of a backscattered wave thus tends
to significantly increase modulational instabilities of both
coupled waves.

The additional coupling to the acoustic wave via g0 alters
the former result to some extent. We suppose that modulational
instability preferentially occurs at z distances where the
pump depletion has almost ceased, so that I1 and I2 keep
nearly constant value near the instability regions. To include
the Brillouin gain, we consider acoustic perturbations such
as Q = QS[1 + ε(δqr + iδqi)] with the real-valued phonon
modes δqr and δqi and the steady-state solution QS =
φ1φ

∗
2ei(λ1−λ2)z. All perturbations are assumed to exhibit an

oscillatory behavior ∼cos (�k⊥ · �r⊥) in the transverse plane. By
linearizing Eqs. (7)–(9), the spectral problem associated with
stationary perturbative modes is found to reduce to the matrix
equation

d2
z

(
u1

u2

)
=

(
M11 M12

M21 M22

) (
u1

u2

)
, (28)

with

M11 = k2
⊥

2k0

(
2n2ω0

c
I1,S − k2

⊥
2k0

)
,

M12 = k2
⊥

2k0

(
4n2ω0

c
− g0

)
I2,S,

M21 = k2
⊥

2k0

(
4n2ω0

c
+ g0

)
I1,S,

M22 = k2
⊥

2k0

(
2n2ω0

c
I2,S − k2

⊥
2k0

)
.

The eigenvalues of Eq. (28) determine the exponential growth
rate of the perturbation modes, i.e.,

γ 2
± =

(
k2
⊥

2k0

)[
2�± − k2

⊥
2k0

]
, (29)

where

2�± = γ1[(1 + RS) ±
√

(1 − RS)2 + RS(16 − β2)], (30)

with β = g0c/n2ω0. We immediately see that whenever g0

gets close to 4n2ω0/c, the growth rate strongly decreases com-
pared with Eq. (27). Reversely, if g0 → 0, corresponding to
suppressed SBS through phase modulations, then perturbative
modes grow much more rapidly along the optical path.

Figures 6(a) and 6(b) show such growth rates as a function
of the transverse wave number for different values of the
Brillouin gain (∝ β). If the Brillouin gain becomes large
and β → 4 [Fig. 6(a)], the growth rate is noticeably reduced
compared to a smaller Brillouin gain [Fig. 6(b)] for nonzero
reflectivity. Thus, since the Brillouin gain is actually weakened
for a phase-modulated pulse, modulational instabilities can be
amplified by the backscattered wave, even if the latter is weak.
This leads to the spatial breakup of both forward and backward
waves. Note that the previous analysis was performed for static
perturbations. Amplified by the rapid temporal fluctuations
owing to phase modulations, time-dependent modes can be
expected to lower the static instability thresholds and further
increase spatiotemporal instability [36].

In the case of an amplitude modulation, the limits g0 → 0
and thereby U2 → 0 must be considered only, as the excitation
of acoustic waves is aborted. This situation corresponds to the
standard Bespalov-Talanov result [28] for one wave, which is
known to be applicable for powerful Gaussian beams [30,31].

Initially applied to infinite media, the previous analysis
should be revisited for a finite thickness of the sample
L < +∞. With boundary conditions, e.g., u1(0) = v1(0) =
u2(L) = v2(L) = 0, the eigenvalues of the spectral problem
must now satisfy the relationship [36](

k+
k−

+ k−
k+

)
sin(k+L) sin(k−L)

+ 2 cos(k+L) cos(k−L) −
(

α−
α+

+ α+
α−

)
= 0, (31)

where k2
± = −γ 2

± and

α± = k2
⊥

k0
(γ1 − �±) . (32)

Equation (31) has been solved numerically for different values
of the reflectivity RS . Its nontrivial solutions, consistent with
the previous boundary conditions, yield the (static) instability
threshold for the forward wave. Figure 6(c) shows the normal-
ized threshold intensity γ1L versus the normalized transverse
wave numbers satisfying this equation for RS = 10−3. The
instability threshold for g0 = 0.7 cm/GW is slightly lower
than the one for g0 = 0. This again confirms that, even for
low reflectivity, a reduced Brillouin gain, e.g., when a phase
modulation is applied, can increase transverse modulational
instabilities.

To check this expectation, we performed numerical sim-
ulations with an unmodulated incident pulse subject to an
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FIG. 7. (Color online) (a) Maximum intensity along the prop-
agation axis of the pump [blue (dark gray) curve] and the Stokes
wave [green (light gray) curve] for an input power P1(0) = 27Pcr

with no phase modulation, but with an artificially reduced Brillouin
gain g0 = 4.5/

√
2m ≈ 0.7 cm/GW. Panels (b) and (c) detail the peak

intensity profiles in the (x,t) plane of the pump wave near collapse
and the Stokes wave at the entrance of the sample, respectively.

artificially decreased Brillouin gain. Figure 7 depicts the
results for P1(0) = 27Pcr with a Brillouin gain of g0 =
4.5/

√
2m ≈ 0.7 cm/GW, i.e., an effective nonstationary gain

∼1/
√

LB with an input laser intensity equally distributed over
2m modes. In Fig. 7(a), the self-focusing distance of the pump
wave becomes close to that reached by the phase-modulated
pump in Fig. 2(b). The peak intensity profiles in the (x,t) plane
[Figs. 7(b) and 7(c)] show that both pump and Stokes beams
are perturbed in time and space, similarly to Fig. 3(h). Thus,
instabilities seen for phase-modulated pumps are due to the low
Brillouin gain, rendering the Kerr effect dominant. The latter
first amplifies temporal perturbations and, through nonlinear
couplings, can also amplify spatial perturbations, especially at
high input intensities.

B. Multiple filamentation

Besides from phase fluctuations, multiple filamentation can
be triggered very efficiently from a random noise acting on
the spatial distribution of the pump beam. To examine this
aspect, we use input pulses with intensities between 5 and
10 GW/cm2, but with higher powers, i.e., P1(0) = 25–50Pcr

by increasing the beam waist up to w0 = 334 µm. Without
SBS, typical results are shown in Fig. 8. Without noise, the
self-focusing distance is given by Marburger’s formula when
a Gaussian beam undergoes single filamentation. When the
same pulse is perturbed by 5% random noise in amplitude,
multiple filaments emerge and the self-focusing distance is

FIG. 8. (Color online) Peak intensities vs z for Gaussian and
supergaussian input pulses with I1(0) = 10 GW/cm2 and P1(0) =
50Pcr discarding SBS. The dotted curve (right surface plot) corre-
sponds to a pure Gaussian collapse at zc = 8.6 cm, which agrees
with Marburger’s Eq. (14). The dashed curve (middle surface plot)
represents a Gaussian input pulse with 5% amplitude random noise.
The self-focusing distance is reduced to zc = 6.6 cm. The solid
line (left surface plot) shows the peak intensity reached by a
tenth-order supergaussian pulse, collapsing at zc = 3.6 cm. Insets
detail maximum intensity profiles of the pump near their respective
SF distances.

shortened. For an unperturbed 10th-order supergaussian beam,
the self-focusing distance is even more reduced. Seeded by
the ambient (weak) numerical noise, the spatial profile forms
multiple peaks on the edges of the beam, which then becomes
highly turbulent.

Let us now add SBS for the same Gaussian input beam and
recompute the spatiotemporal evolution for two characteristic
glass thicknesses, L = 5 cm and L = 10 cm. As before, a 5%
amplitude random noise is applied. First, SBS efficiency is
expected to increase with the propagation length. Indeed, we
can see in Fig. 9(a) that the longer the propagation distance,
the more depleted the pump pulse and the more amplified the
Stokes wave (see inset). Unlike in Fig. 8 discarding SBS, we
do not observe severe spatial breakup [Figs. 9(b) and 9(c)],
as the pump stays at moderate intensity in both cases. This is
due to the action of pump depletion and of a longer diffraction
length (larger beam waist), which both remotely shift the self-
focusing distance according to Marburger’s formula Eq. (14).
Insets of Figs. 9(b) and 9(c) show Stokes intensity profiles at
the entrance of the silica sample. These Stokes profiles reach
a few GW/cm2 in intensity, but they appear spatially more
turbulent. This points out the high sensitivity of the Stokes
waves to residual distortions of the pump induced by, e.g.,
remanent modulational instabilities.

Several phase modulations were then applied to the same
Gaussian pump [P1(0) = 50 Pcr] propagating through 10 cm
of glass. With input beam intensities as low as 10 GW/cm2,
the critical bandwidth �νcr becomes rather moderate, i.e.,
νcr = 336 GHz [see Fig. 4(b)]. In this configuration, Fig. 10
reveals an interesting behavior, when using the reference
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FIG. 9. (Color online) (a) Partial energies of the pump [blue (dark
gray) curve] and Stokes wave [green (light gray) curve] for a 5-cm-
long sample (dashed curve) and a 10-cm-long sample (solid curve).
The inset details the energy levels of the Stokes waves near the
entrance of the sample. Beam profiles of the pump in the (x,y) plane
with maximum intensity near their self-focusing distance for power
P1(0) = 50Pcr through (b) 5 cm and (c) 10 cm of silica. Insets show
the Stokes intensity profiles at z = 0.

bandwidth �ν = 84 GHz < �νcr. Here, the peak intensities
of the pump and Stokes waves quickly reach several hundreds
of GW/cm2 [Fig. 10(a), solid curves], which departs from
the dynamics shown in Fig. 9 and signals the emergence of
instabilities in the pump wave. Moreover, as expected, the
phase modulation significantly weakens the Stokes power
[see inset in Fig. 10(b)], so that pump depletion almost
vanishes. The nonlinear focus zc � 3.3 cm lies in between
the estimate Eq. (26) [LSF � 1.6 cm] and Marburger distance
[LM � 8.6 cm]. Surprisingly, in contrast to all previous cases,
the sharp instabilities in the pump pulse responsible for this
shift of the nonlinear focus are purely temporal; i.e., no
transverse spatial instability takes place [see Fig. 10(b)]. It
thus appears that there exists a transient regime for modulation
bandwidths smaller than �νcr, where temporal instabilities
dominate the propagation dynamics. This finding immediately
raises two questions: Why do spatial instabilities not occur, and
then what is the mechanism responsible for the enhanced self
-focusing?

The absence of spatial instabilities is attributed to the
laser input parameters. Indeed, the present pulse has an
initial intensity I1(0) = 10 GW/cm2 and waist w0 = 334 µm,
yielding γ1 � 0.64 cm−1 and typical transverse wave number
k⊥ = 2π/w0 � 118 cm−1. In contrast, the pulse presented in,

FIG. 10. (Color online) (a) Peak intensities of the pump [blue
(dark gray) solid curve] and Stokes wave [green (light gray) solid
curve] for a Gaussian phase-modulated pump pulse with �ν =
84 GHz (�νcr = 336 GHz) for P1(0) = 50Pcr along a 10-cm-long
sample. Dashed curves with same color coding show the same
quantities when �ν = 42 GHz. Pump profile in the (x,t) plane
with maximum intensity near the self-focusing distance (b) with
�ν = 84 GHz (zc � 3.3 cm) and (c) with �ν = 42 GHz (zc � 1.6
cm). Insets show pump [blue (dark gray) curve] and Stokes [green
(light gray) curve] powers at the same distance.

e.g., Fig. 7 [P1(0) = 27Pcr] involves a higher input intensity
I1(0) = 27 GW/cm2 with w0 = 150 µm, which leads to larger
γ1 = 1.72 cm−1 and k⊥ = 418 cm−1. In terms of MI theory
[Fig. 6(b), weak Brillouin gain], the growth rate at k⊥ for the
low intensity case is found smaller by a factor �0.2, which can
justify the absence of transverse spatial instabilities. The same
conclusion holds when we consider finite sample thickness
[Fig. 6(c) plotted for weak reflectivity]: On the one hand, the
beam developing no transverse instability [Fig. 10(b)] has a
small normalized transverse wave number (k2

⊥L/2k0 � 0.13)
yielding no instability intensity threshold. On the other hand,
the beam with lower power suffering spatial instabilities
[Fig. 7] has a higher wave number (k2

⊥L/2k0 � 1.67), for
which an instability threshold exists.

The mechanism behind the enhanced pump self-focusing
is that some time slices belonging to the rear part of the pump
pulse and conveying power far above the SF threshold remain
coupled to intense, residual Stokes time slices. We believe
that this coupling keeps cross-phase modulation active and
shortens the self-focusing distance expected for the pump
alone.

To conclude, we made a final test by reducing the spectral
bandwidth to �ν = 42 GHz, as an effective larger Brillouin
gain should restore spatial instabilities. Figure 10(c) confirms
these expectations, since turbulent patterns amplifying not only
temporal but also spatial instabilities are visible. Moreover, the
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pump nonlinear focus takes place near the multifilamentation
distance Eq. (26), zc � 1.7 cm, as expected. The Stokes
power and reflectivity factor are both higher, which makes
the occurrence of spatial instabilities compatible with the
theoretical curves of Fig. 6(b). Reflected Stokes fluences,
although below the damage threshold, remain of comparable
magnitude, F2(0) � 4 J/cm2.

In summary, all beam configurations leading to both
temporal and spatial modulational instabilities, involving or
not phase modulations, were observed to produce a self-
focusing point at the distance zc ≈ LSFE1(0)/E1(L) [see
Eq. (26)], within a relative margin that does not exceed
15%. A significant example is given in Figs. 2(b) and 2(e)
with P1(0) = 27Pcr, for which zc � 0.7 cm. This distance is
far from Marburger law [Eq. (14)] predicting LM = 2.5 cm.
Using the multifilamentation estimate [Eq. (15)], one finds
a much closer result LSF = 0.58 cm. When pump depletion
is taken into account [E1(0)/E1(L) � 1.18], Eq. (26) yields
even better agreement with zc = 0.69 cm. Another numerical
example exhibits the SF distance zc = 1.03 cm for P1(0) =
16Pcr, which is faithfully reproduced by Eq. (26), yielding
zc = 1.0 cm. A last example can be found in the IR domain. For
an input power P1(0) = 9Pcr, we find a self-focusing distance
zc = 0.66 cm, whereas Marburger formula gives LM = 1.6 cm
and LSF = 0.6 cm. When pump depletion is taken into account,
Eq. (26) yields zc = 0.68 cm.

C. Influence of the beam shape

Finally, we investigate the influence of the incident beam
shape, using broad spatial distributions defined by

U1(x,y,0,t) =
√

I1(0)e−t2/t2
p e−(x2n+y2n)/w2n

0 , (33)

where the 1/e2 duration tp = 2.12 ns keeps the same value as
above, w0 is the beam waist of the incident pulse, and n is the
order of the supergaussian profile. At different orders of the
supergaussian, the pump intensity and power are linked
by the relationship

I1(0) = 21/nP1(0)

4w2
0


2
[
1 + 1

2n

] , (34)

where 
[x] is the usual Gamma function. We simulate the
propagation of such pulses for n = 2 (Fig. 11), for n = 10

FIG. 11. (Color online) Beam profiles of the Stokes wave in the
(x,y) plane with maximum intensity for a second-order supergaussian
pulse (n = 2) and P1(0) = 50Pcr at the entrance of the 5-cm sample
(a) for an unmodulated pump and (b) for a phase-modulated pump
with �ν � �νcr = 924 GHz.

FIG. 12. (Color online) Beam profiles of the pump wave in the
(x,y) plane with maximum intensity for a tenth-order supergaussian
pulse (n = 10) and P1(0) = 50Pcr: pump wave discarding SBS (a) at
the entrance of the sample and (b) near the self-focusing distance;
with SBS for (c) a 5-cm-long sample and (d) a 10-cm-long sample.
Panels (e) and (f) show the Stokes profiles at the entrance of the
5-cm-long sample for an unmodulated pump and a phase-modulated
pump with �ν � �νcr = 636 GHz, respectively. Panel (g) shows the
peak intensities of the unmodulated pumps without SBS (solid blue
curve superimposed with the dashed orange curve) and with SBS
through 5 cm (dashed blue curve) and 10 cm (dotted blue curve). The
dashed orange (light gray) curve corresponds to the phase-modulated
pump.

(Fig. 12), both with P1(0) = 50Pcr [I1(0) = 10–40 GW/cm2

and w0 = 137–334 µm for n = 2–10], first discarding SBS
and then taking it into account for 5- and 10-cm-long samples.
These figures again confirm that the more depleted the pump,
the larger the self-focusing distance. Besides the four most
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SARAH MAUGER, LUC BERGÉ, AND STEFAN SKUPIN PHYSICAL REVIEW A 83, 063829 (2011)

intense filaments located at the apex of the amplified square
patterns, the optical turbulence level inside the focal spot
increases with the order of the supergaussians, while the
collapse distance diminishes once multiple filamentation sets
in.

Figure 11 shows the Stokes wave reflected from a second-
order supergaussian pulse with I1(0) = 40 GW/cm2, P1(0) =
50Pcr, and w0 = 137 µm with (a) and without (b) phase
modulation implying the spectral bandwidth �ν = 924 GHz
(m = 21, νm = 22 GHz). One observes that, even for non-
Gaussian beams, broad enough spectral bandwidths sustained
by a large number of modes remain efficient to suppress SBS
in the SF regime. The same conclusion applies to squared
beams simulated with n = 10, I1(0) = 10 GW/cm2, and
w0 = 222 µm [Figs. 12(e) and 12(f)], for which backscattering
is almost suppressed with a phase modulation at the critical
bandwidth of �νcr = 636 GHz (m = 21, νm = 15 GHz).

From Fig. 12, we can compare SF distances with the
estimations provided by Eq. (26). For the case without
SBS (b), i.e., with no pump depletion, one finds a distance
LSF = 1.5 cm, being less than half the one given by the
simulation, zc = 3.4 cm. This is not surprising, because in
the absence of amplitude noise and SBS spatial breakup is
seeded by (weak) numerical noise only. For a 5-cm-long
sample including SBS (c), the depletion of the pump gives the
SF distance of 5.7 cm, closer to the value of the simulation,
zc = 4.9 cm. Finally, for a 10-cm-long sample (d), we find
a self-focusing distance zc = 7.1 cm, while Eq. (26) predicts
a SF distance of 9 cm. Equation (26) thus again provides a
reasonably good approximation for the self-focusing distance
in a multifilamentation regime involving SBS. In both cases
n = 2 or n = 10, the spatial profile of the Stokes wave at
the entrance of the sample, which is mainly driven by the
term g0

2 Q∗U1 of Eq. (8), is spatially perturbed and follows the
“global” shape of the incident beam.

V. CONCLUSION

In summary, the competition between self-focusing and
stimulated Brillouin scattering strongly depends on the charac-
teristics of the initial pump pulse, i.e., input power, modulation,
and beam shape. For low input powers, a phase modulation
with moderate bandwidth � 100 GHz appears to be sufficient
to suppress backscattering and related damages. In contrast,
for higher powers [P1(0) > 14Pcr at λ0 = 355 nm], phase
modulations with similar characteristics (i.e., modulation
depth and frequency) may still diminish the SBS pump
depletion to some extent, but locally backscattered components
can develop turbulent dynamics inside the material leading
to nonnegligible Stokes fluences at the input facet of the
sample. Phase modulations indeed tend to let the Kerr
nonlinearities prevail, which forces both pump and Stokes
waves to decay via modulational instabilities. In strong SF
regimes, amplitude modulations with suitable ps-scaled pulse
trains may be preferable to suppress backscattering. The mean
energy delivered by the modulated pump will, however, be
diminished by a factor close to 2.

Similar filamentation regimes can also be produced with
unmodulated input pulses undergoing noisy perturbations or
with supergaussian beams of sufficiently high order, promoting

the breakup of the pulse’s most intense edges. The self-
focusing distance is always delayed by the presence of the
SBS effect, because of the energy transfer from the pump to
the Stokes wave. Compared with single-wave configuration,
pulse breakup is reinforced in the presence of weakened
SBS.

Our major result is, however, that a large enough bandwidth
due to phase modulation involving a high number of modes
is capable of eliminating SBS. We derive an estimate for the
critical bandwidth and number of modes, which both turn out
to be proportional to the input pump intensity. Applying such
broadband phase modulation appears to be the most efficient
strategy for suppressing SBS in high-power laser technology,
since the averaged energy and power of the modulated pump
should remain unaffected in that case.
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APPENDIX A : MODEL VALIDITY VS LINEAR
DISPERSION

Different terms, i.e., group-velocity dispersion and plasma
coupling, have been neglected throughout the derivation of
Eqs. (7)–(9). Here, these assumptions are briefly justified for
λ0 = 355 nm. The same conclusions should still hold for λ0 =
1064 nm.

Let us first check that group-velocity dispersion (GVD)
remains negligible. For this purpose, we evaluate the pump
amplitude spectrum in a self-focusing regime for different
types of modulation: We compute the Fourier transform of the
maximum [in the (x,y) plane] pump field amplitude in the
initial and self-focused states, and then we deduce its spectral
width. Figure 13 shows these spectra for unmodulated, phase-
and amplitude-modulated pulses at z = 0 (top figures) and
near their nonlinear focus (bottom figures). From these, we
evaluate the spectral width �ν at 1/e and 0.05 of maximum

FIG. 13. (Color online) Amplitude spectra of the pump field at
z = 0 for (a) no modulation, (b) a phase modulation, and (c) an
amplitude modulation. In the self-focusing regime, at the distances
(d) z = 4.4 cm with no modulation, (e) z = 0.6 cm with phase
modulation, and (f) z = 3.4 cm with amplitude modulation (m =
21,νm = 2 GHz).
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TABLE II. Second-order dispersion term of the forward pump
field near collapse for different types of modulation.

Modulation GVD factor at 1/e GVD factor at 0.05

No modulation 3.6 × 10−7 9.4 × 10−6

Phase modulation 1.6 × 10−3 1.9 × 10−3

Amplitude modulation 1.4 × 10−2 7.9 × 10−2

amplitude and calculate the normalized GVD factor k′′�ω2L,
where k′′ = 1169 fs2/cm at 355 nm and �ω = 2π�ν along
the propagation length L = 5 cm. Results are summarized in
Table II. In each case, the normalized GVD factor is small
compared to unity, which suggests that chromatic dispersion
can indeed be considered as negligible.

APPENDIX B : MODEL VALIDITY VS PLASMA
GENERATION

Owing to the self-focusing dynamics, the maximum in-
tensities of both the incident and Stokes waves can reach
levels exceeding several TW/cm2. For this reason, additional
nonlinearities saturating the intensity growth, such as, e.g.,
plasma nonlinearities, may come into play. For modeling
plasma generation, the current density term for free carriers,
µ0∂t

�J in Eq. (2), must be evaluated. Here, the current density
J = qeρve involves the density of free electrons ρ and their
velocity ve, so that ∂tJ ≈ q2

e ρE/me, where me and qe are
the electron mass and charge. On the other hand, the source
equation for the electron density ρ is given by the Drude
model [37,38]

∂ρ

∂t
= ρntσKIK + σ

Ui

ρI − ρ

τR

, (B1)

where I = |U1|2 + |U2|2 + (U1U
∗
2 e2ik0z + c.c.) is the optical

intensity, ρnt = 2.2 × 1022 cm−3 is the neutral density, τR �
150 fs is the electron recombination time in silica, and
K = mod(Ui/h̄ω0) + 1 = 3 denotes the minimum number of
photons necessary to extract one electron from neutral species
with ionization energy Ui = 9 eV through a multiphoton
process at 355 nm. σK = 2.48 × 10−38 ns−1 cm6/W3 is
the associated cross section. The term σI/Ui corresponds
to collisional ionization of free electrons with neighboring
atoms and it involves the cross section σ = µ0q

2
e /meτ0ω0k0 �

1.1 × 10−19 cm2, where τ0 � 20 fs is the electron-ion collision
time. For laser intensities limited to ∼10 TW/cm2, one has
σIτR/Ui � 1 and thus we can omit collisional ionization.
Assuming a squared pulse with time extent T0, we thus
obtain

ρ(t) = τRρntσ3I
3
0 e−t/τR

[
H

(
t + T0

2

)
(et/τR − e−T0/2τR )

−H

(
t − T0

2

)
(et/τR − eT0/2τR )

]
, (B2)

where H (x) is the Heaviside function. The density remains
quasiconstant over typical durations T0 ∼ 10 ps of the highest

FIG. 14. (Color online) Maximum intensity along the propaga-
tion axis (a,d) without modulation, (b,e) for a phase-modulated pulse
and (c,f) for an amplitude-modulated pulse with (a,b,c) P1(0) = 16Pcr

and (d,e,f) P1(0) = 27Pcr. The bright blue (green) curve shows the
forward (backward) wave when the plasma response is ignored. The
dark blue (green) curve shows the forward (backward) wave in the
presence of plasma defocusing. In panels (a) and (d), dark and bright
curves are superimposed.

pump peaks shown, e.g., in Fig. 3(b). Plasma losses issued
from the photoionization rate ∼W (I ) = σKIK are evaluated
from the Poynting theorem, i.e., J PI

lossE = W (I )ρntUi , which
leads to

µ0
∂J PI

loss

∂t
= −ik0β

(K)IK−1E, (B3)

where β(K) = σKKh̄ω0ρnt is the multiphoton absorption fac-
tor. Terms for the plasma coupling and related losses are then
sorted out from Eq. (2), once plugged into ρE and J PI

loss,
respectively. Keeping only terms in eik0z−iω0t for the forward
component and in e−ik0z−iω0t for the backward one, one finds
that Eqs. (7) and (8) must be completed by

− ik0ρntσ
(3)τR

2n2
0ρc

FiUi − β(3)

2
GiUi, (B4)

on their right-hand side, where Fi = I 3
i + 4I 3

j + 12I 2
i Ij +

18IiI
2
j , Gi = I 2

i + 3I 2
j + 6IiIj (i �= j = 1,2), and ρc ≡

ω2
0meε0/q

2
e = 8.8 × 1021 cm−3 is the critical plasma density.

The clamping intensity for which plasma starts to balance
the Kerr terms is I � 10.7 TW/cm2 for a single wave and
I � 3.2 TW/cm2 for the two coupled waves assumed to reach
simultaneously the same saturation intensity. For intensity
growth reaching only ∼5 TW/cm2, plasma should thus have
a limited action.

Figure 14 displays evidence of the previous expectation by
showing the maximum pump and Stokes intensities along the
propagation axis for the pulses discussed in Fig. 2. The brighter
curves refer to numerical integrations of the complete system
including plasma terms, whereas the darker ones refer to the
initial model equations. All dynamical behaviors remain quite
similar, despite slight differences in the values of the maximal
intensities when I1 and/or I2 reach their highest levels. This
confirms the small action induced by plasma generation on
the nonlinear propagation of the two optical components.
We checked that accessing higher intensity levels by refining
the numerical resolution did not change substantially the pulse
dynamics and preserved the location of the SF distances of the
pump pulse along the optical path.
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