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Spatiotemporal vortex solitons in hexagonal arrays of waveguides
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By means of a systematic numerical analysis, we demonstrate that hexagonal lattices of parallel linearly coupled
waveguides, with the intrinsic cubic self-focusing nonlinearity, give rise to three species of stable semidiscrete
complexes (which are continuous in the longitudinal direction) with embedded vorticity S: triangular modes
with S = 1, hexagonal ones with S = 2, both centered around an empty central core, and compact triangles with
S = 1, which do not not include the empty site. Collisions between stable triangular vortices are studied too.
These waveguiding lattices can be realized in optics and Bose-Einstein condensate.
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I. INTRODUCTION

Lattice solitons are a topic of great interest to ongoing
studies of nonlinear dynamics in photonic media and Bose-
Einstein condensates (BECs) [1]. These localized modes are
produced by the interplay of the intrinsic nonlinearity of the
medium with an effective periodic potential induced in it by
permanent or virtual lattice patterns. In fact, the lattice may
itself be a nonlinear structure if it is induced by a spatially
periodic modulation of the local nonlinearity [2]. In the limit
of a deep periodic potential, the fundamental models of lattice
media reduce to various versions of the discrete nonlinear
Schrödinger (DNLS) equation [3]. Realization of the one-
dimensional (1D) DNLS model in arrayed optical waveguides
was originally proposed in Ref. [4]. The same model was later
applied to BECs loaded into deep optical-lattice potentials [5]
(see Ref. [6] for a brief review). A physical realization of
the DNLS model is also possible in the form of lattices of
microcavities which serve as traps for polaritons [7].

Lattice solitons take the form of discrete solitons in terms
of the DNLS equations, which correspond to quasidiscrete
solitons in the respective experimental settings. Such solitons
were created in a set of semiconductor waveguides built on
top of a slab substrate [8], and also in arrays of optical
fibers [9]. In addition to using permanent photonic structures,
quasidiscrete solitons were also made in virtual waveguiding
arrays, using the versatile technique of inducing interference
lattices in photorefractive crystals [10]. The latter method was
used to create the first examples of two-dimensional (2D)
quasidiscrete fundamental solitons [11], which was followed
by the making of vortex solitons [12], i.e., localized lattice
excitations with embedded vorticity that were predicted in
Ref. [13]. Another significant contribution to this area was the
creation of 2D solitons in a bundle of fiberlike waveguides
written in bulk silica [14]. Such arrays and bundles are created
by means of tightly focused femtosecond laser pulses [15].

Following the analysis of the fundamental localized discrete
vortices with topological charge S = 1 [13], their higher-order
counterparts, with S > 1, and multipole discrete solitons, such

as quadrupoles, were predicted in Refs. [16,17]. Many other
objects were studied in this area, including supervortices
(circular chains of compact vortices with an imprinted overall
topological charge, which is independent of the vorticity of
the individual eddies [17]), necklace-shaped patterns [18],
discrete solitons in hexagonal and honeycomb lattices [19,20],
composite semidiscrete spatial solitons in arrays of waveguides
with quadratic and cubic nonlinearities [21], quasidiscrete
topological solitons in photonic-crystal fibers [22], etc. Non-
stationary soliton effects were studied too. These include
the mobility of discrete solitons [23,24], collisions between
traveling ones [24,25], and the onset of the spatiotemporal
collapse in self-focusing arrayed waveguides [26].

Most works on lattice solitons dealt with the spatial-domain
settings. In particular, optically induced lattices in
photorefractive crystals do not make it possible to observe
the evolution in the temporal domain because of a very large
response time in these materials. However, the spatiotemporal
dynamics can be realized in waveguiding arrays written in bulk
silica [15], where the spatially localized quasidiscrete patterns
in the transverse plane can be combined with the temporal self-
trapping in the longitudinal direction. Recently, the creation of
the corresponding quasidiscrete “light bullets” was reported
in this system [27] (for a review of spatiotemporal solitons in
nonlinear optics and BEC, see Ref. [28]). Previously, a number
of manifestations of the spatiotemporal self-trapping in similar
settings were studied theoretically, including the related
modulational instability [29], formation of “bullets” in fiber
arrays [30] and photonic wires [31], and self-compression [32]
and steering [33] of pulsed beams. Continuing the work in
this direction, semidiscrete spatiotemporal surface solitons
were introduced as surface modes in semi-infinite waveguide
arrays [34] and in a system with an interface between different
arrays [35]. Also analyzed were spatiotemporal solitons in
waveguide arrays with the quadratic nonlinearity [36].

Once stable fundamental spatiotemporal soliton complexes
in bundled arrays of waveguides are available, it is natural
to seek for vortex solitons in the same setting. A systematic
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analysis of spatiotemporal vortices and quadrupoles in the
model based on the square lattice of discrete waveguides was
reported in Ref. [37]. A vast stability area was found for the
solitary vortices with S = 1 and quadrupoles, which are built
as rhombuses, alias on-site-centered modes, with respect to the
underlying lattice (the rhombus is built as a set of four “bright”
cores, with a nearly “dark” one at the center). The stability
region is much smaller for the off-site-centered modes of the
“square” type, without an empty pivotal site in the middle
(the reduced stability domain of square-shaped vortices and
quadrupoles, in comparison with their rhombic counterparts, in
a generic feature of topological solitons in lattice media [38]).
All the spatiotemporal vortex solitons with S = 2 were found
to be unstable in the same model. Further, collisions between
stable vortices and quadrupoles (with identical or opposite
topological charges), propagating along the bundle in opposite
directions, were analyzed in Ref. [39]. Four different outcomes
of the collisions were identified: rebound of slowly moving
solitary vortices, fusion, splitting, and quasielastic interactions
between fast ones.

Hexagonal lattices may be created by means of the same
techniques which were used for building the square-shaped
structures. On the other hand, the change of the underly-
ing geometry may essentially alter fundamental properties
of topological lattice solitons [3,19]. In particular, it was
predicted theoretically and confirmed in an experiment that
spatial solitons in the form of double vortices (with S = 2)
in hexagonal lattices may be stable, while their unitary
counterparts (with S = 1) are unstable.

The objective of the present work is to study spatiotemporal
vortex solitons in hexagonal lattices of discrete waveguides.
The model is formulated in Sec. II, and at the end of it we also
briefly consider fundamental solitons, driven by a temporally
self-trapped pulse in a single waveguiding core. In Sec. III
we demonstrate, also in a brief form, that a straightforward
input in the form of a hexagon-shaped spatiotemporal vortex
with S = 1 always leads to a decay. Nevertheless, three
different species of stable spatiotemporal complexes with the
embedded vorticity are revealed by a systematic numerical
analysis. In Sec. IV we demonstrate that a spatiotemporal
input of a triangular shape generates self-trapped vortices
in the form of triangles with an empty core in the middle.
Further, in Sec. V it is shown that a hexagonally shaped
input with S = 2 produces stable spatiotemporal hexagons
with the same (double) topological charge. Finally, a modified
(shifted) input ansatz gives rise to stable densely packed
triangular vortices with S = 1, without an empty central core,
as shown in Sec. VI. In addition to the study of these species of
spatiotemporal vortex solitons, in Sec. VII collisions between
counterpropagating triangular ones are studied. The paper is
concluded by Sec. VIII.

II. THE MODEL AND FUNDAMENTAL SOLITONS

We consider the hexagonal array of nonlinear waveguides
with cells in the transverse lattice numbered as shown in
Fig. 1. The transmission of waves in the array is described
by the following system of coupled NLS equations, written

FIG. 1. (Color online) The setup and notation: We consider the
hexagonal array of cylindrical waveguides, as shown in the upper
left corner. The transverse distribution of the light intensity of the
propagating waves in the guiding cores is displayed symbolically
in the bottom left corner. Each core is assumed to be a single-
mode waveguide, represented by wave function um,n, with discrete
coordinates (m,n) defined as shown in the figure. The map of integers
m,n into the Cartesian coordinates in the transverse plane, (x,y), is
performed as per Eq. (5), a being the width of the hexagonal cell.

in the scaled form, similar to that used in many earlier works
[27,29–37]:

i∂zum,n + [um−1,n−1 + um−1,n + um,n−1 + um,n+1

+ um+1,n + um+1,n+1 − (6 + µ)um,n]

+ (1/2)∂2
t um,n + um,n|um,n|2 = 0. (1)

In terms of the optical setting, z and t are, respectively, the
propagation distance and reduced time, assuming that each
guiding core features the anomalous chromatic dispersion and
cubic self-focusing, while −µ is the propagation constant
of the localized solution to be sought for. In terms of the
corresponding BEC model, Eqs. (1) is a system of coupled
discrete Gross-Pitaevskii equations [40], with z and t playing
the roles of the scaled time and axial coordinate, respectively,
while µ is the chemical potential.

Simulations of Eq. (1) were carried out in the Fourier
domain with the help of the standard fourth-order Runge-Kutta
scheme, the nonlinear term being evaluated by means of the
combination of inverse and direct fast Fourier transforms at
each substep of the scheme. We used an 11 × 12 matrix in the
plane of (m,n), 512 points for variable t in the computation
window of width �t = 20, and the step size in the propagation
direction dz = 5 × 10−4. Use of the Fourier transform implies
periodic boundary conditions in t , which make sense if a
characteristic temporal size of the localized objects will be
essentially smaller than �t = 20. As concerns the boundary
conditions for the discrete coordinates m and n, the values of
um,n corresponding to the coordinates which fall outside of the
computation box are replaced by zeros.

Before proceeding to the search for complex spatiotemporal
vortical patterns, it makes sense to test the propagation
of fundamental solitons, which are carried, essentially, by
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FIG. 2. (Color online) (a) Oscillations of the fundamental soliton
generated by input (2), (3) with µ = 8. (b) The upper and lower
curves illustrate the oscillations by showing, respectively, the largest
and smallest values of the soliton’s amplitude, i.e., maxz[maxt (|u|)]
and minz[maxt (|u|)], as functions of the propagation constant, µ.

a temporal pulse in a single core. For this purpose, the
simulations were initiated with obvious initial conditions,

u0,0(z = 0) = ηsech(ηt), (2)

η =
√

2(6 + µ), (3)

setting um,n(z = 0) = 0 at |m| + |n| �= 0. The simulations
were run in the interval 1 � µ � 16 of values of the prop-
agation constant.

It has been concluded that input (2) decays, under the action
of the lattice diffraction, at µ < 6.6, and a stable fundamental
soliton, concentrated in the central core, is formed at µ � 6.6.
The temporal pulse which lies at the core of the so-created
fundamental soliton is not quite stationary but rather features
regular pulsations, as shown in Fig. 2.

One may surmise that the oscillations of the fundamental
soliton could be a result of its interaction with the radiation
background, which was generated by the input field in the
course of self-trapping into the fundamental soliton. To
check this possibility, the background around the soliton was
explicitly removed at a particular step of the simulations.
Nevertheless, the oscillations remain virtually unaffected by
the “cleaning,” i.e., they seem to be a genuine feature of the
dynamics of the soliton, possibly representing its intrinsic
mode.

III. THE HEXAGONAL INPUT: A TRANSITION
TO INSTABILITY

First we attempted to create hexagonal vortical modes with
S = 1, which seems a natural approach to the system based on
a hexagonal lattice. To this end we used the following input,
based on an ansatz factorized in the longitudinal (temporal)
and transverse (spatial) directions (cf. Ref. [41]):

um,n = (xm,n + iym,n)

a

× exp

[
−α

(√
x2

m,n + y2
m,n − a

)]
ηsech(ηt), (4)

with η taken as per Eq. (3), and

xm,n ≡ a

(
m − n

2

)
,ym,n ≡

√
3

2
an, (5)

α = ln[2(6 + µ)], (6)

a being the width of the hexagonal cell (see Fig. 1). The
model’s scale is fixed by setting a ≡ 1. Factor (xm,n + iym,n)
in Eq. (4) obviously corresponds to vorticity S = 1, and the
exponential factor with α, taken as per Eq. (6), is determined
as in the 2D spatial soliton with propagation constant −µ. The
choice of η as per Eq. (3) implies that, simultaneously, the wave
field in the factorized ansatz is localized in the longitudinal
direction, in each core, as in the temporal soliton corresponding
to the same propagation constant, cf. the structure of the
fundamental solitons considered above. The phase and energy
structure of ansatz (4) is illustrated in a schematic form by
Fig. 3.

Direct simulations of Eq. (1) with this input have been run
in a broad range of values of the propagation constant, 7 <

µ < 500. Nonetheless, stable spatiotemporal vortices with the
hexagonal structure and topological charge S = 1 have never
emerged. In fact, the evolution of the input organized as the
ansatz of this type never leads to formation of any stable
pattern. In the interval of 7 � µ � 13, the system makes an
attempt to generate a robust pattern of a triangular shape, as
shown in Fig. 4: at three sites belonging to the original hexagon
the field quickly decays, while at three others it survives, for
a while. However, the largest amplitude of the temporarily
emerging triangular set is �8 (it is attained at µ = 13), while
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FIG. 3. (Color online) The phase and energy (
∫ +∞

−∞ |um,n|2dt)
patterns corresponding to input ansatz (4) which generates an
(unstable) hexagonal vortex with µ = 350.
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FIG. 4. (Color online) The evolution of the six main components
of the hexagon with initial propagation constant µ = 9. In this case,
the simulations demonstrate the decay of the hexagon into a transient
triangle, which is followed by a longitudinal instability (splitting).

triangular vortices may be stable for amplitudes above a
threshold value of the amplitude which is �18 (see below).
Therefore the triangles developing from the unstable hexagons
are also subject to an instability, eventually splitting into
uncorrelated single-core excitations which separate in the
longitudinal direction (see Fig. 4).

Further, in the interval of 13 < µ � 70, the instability
splits the original hexagon into a set of separating single-core
excitations, the number of which varies randomly between 2
and 6 (not shown here in detail). In an adjacent interval, 100 �
µ < 200, the instability-development scenario is similar but
faster so that the formation of a transient triangular structure
cannot be identified.

At largest values of the propagation constant, 200 �
µ � 500, the instability-development scenario is different.
The six sites forming the hexagon keep their positions and
amplitudes for a while but loose the mutual phase coherence.
Then instabilities of amplitudes and positions set in, but they
manifest themselves on a much longer scale of the propagation
distance, with z ranging from 10 to a few hundreds, instead
of z ∼ 1 at small µ (cf. Fig. 4). The separation between
excitations in individual cores grows very slowly too, in
comparison with the quick split of the transient triangle
observed in Fig. 4 .

IV. THE GENERATION OF STABLE
TRIANGULAR VORTICES

The next step is an attempt to generate a triangular vortical
structure, which is suggested by the emergence of a transient
one in the course of the evolution of the unstable hexagon
(Fig. 4). For this purpose we used the same input as defined by
Eqs. (4)–(6) but with three main peaks suppressed, which was
done by replacing the fields at the corresponding sites by those
from adjacent sites in the outer layer: u−1,0 → u−2,0, u1,1 →
u2,2, u0,−1 → u0,−2, as shown in Fig. 5. The so-constructed
triangular ansatz keeps the vorticity of the original hexagon,
S = 1.

The evolution of this input was simulated in a broad range
of values of the propagation constant, 4 � µ � 450. At small
values, µ � 6, the three main peaks forming the triangle merge
into a single-core fundamental soliton, which may be localized

FIG. 5. (Color online) The reduction of the hexagonal input to
the triangular-vortex one: three of the six main peaks are replaced by
fields taken from the surrounding layer, as shown by arrows. (The
replacement makes the amplitudes at the corresponding sites much
smaller but does not alter their phases.)

at the central site or at any one site belonging to the original
triangle. Thus stable vortices do not emerge in this case. For
7 � µ � 181, the triangle is destroyed by an instability which
splits it into separating uncorrelated single-core excitations
(the instability develops faster with the increase of µ).

Finally, the same input generates stable triangular vortices
at µ � 182, an example of which is shown in Fig. 6. The
stability was verified by direct simulations for long propa-
gation distances, e.g., z = 986 for µ = 182. The temporal
pulses in the cores which represent vertices of the triangle
remain well phase-locked, keeping the phase circulation of
2π , which corresponds to vorticity S = 1. The excitations at
secondary sites (between the vertices) are phase-locked to the
primary ones, but featuring some oscillations. The oscillations
enhance with µ, but the overall vortical phase pattern always
persists. On the other hand, the amplitudes of excitations at the
secondary sites feature fast irregular oscillations, which also
become stronger at larger µ (variations of these amplitudes by
a factor of ∼2 are observed already at the stability threshold,
µ = 182). These amplitude oscillations are coupled to small
variations of amplitudes at the primary sites, as shown in Fig. 7.
It has been checked that the oscillations were not induced by
reflection of small-amplitude radiation waves from edges of
the integration domain (absorbers installed at the edges do not
suppress the oscillations).

Figure 8 displays the total energy, E = ∑
m,n

∫ +∞
−∞

|um,n(t)|2dt , and amplitude of the triangular vortices, both
stable and unstable ones, as functions of the effective prop-
agation constant µ + δµ, where the contribution δµ from
oscillations of the fields is computed as follows. For each
vertex of the triangle (m,n), peak time tm,n is defined such
that |um,n(tm,n)| = maxt |um,n(t)| and the corresponding phase,
φm,n(tm,n), is identified. Next we compute

δµ =
〈

d

dz
φm,n

〉
, (7)

where the average is taken over the three vertices of the triangle
(or six ones for stable hexagonal vortices with S = 2, see the
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FIG. 6. (Color online) (a) The transverse energy (
∫ +∞

−∞ |um,n|2dt)
and phase profile of the stable triangular vortex generated by the input
with µ = 200. (b) The longitudinal (temporal) profile of excitations
in the cores representing the vertices of the triangle.

next section), and for the stable triangular modes, over z. For
unstable triangles, the latter average was taken over a short
interval �z, within which the pattern was not disturbed by the
instability. With regard to the amplitude shown in Fig. 8, it
was defined as |um,n(tm,n)|, averaged over z and over the three
vertices, to smooth effects of small persistent oscillations of
the local amplitudes. A small gap between the unstable and
stable portions of the amplitude plot in Fig. (7) is due to the
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FIG. 7. (Color online) The evolution of the longitudinal (tempo-
ral) profiles of one primary and one secondary component of a stable
triangular spatiotemporal vortex, generated by the triangular input
with µ = 450.

FIG. 8. (Color online) The amplitude and energy of the stable
triangular vortex vs the effective propagation constant µ + δµ [see
Eq. (7)]. Blue (dashed) and red (solid) segments designate unstable
and stable solution families, respectively.

difference in wave-number shift (7), as computed for the stable
and unstable solutions.

V. HEXAGONAL VORTICES WITH THE DOUBLE
TOPOLOGICAL CHARGE

As said above, the hexagonal input based on Eqs. (4)–(6)
could not produce any stable pattern. However, the same initial
ansatz, but with inverse signs of three of its main peaks—
say u−1,0, u1,1, u0,−1—can give rise to stable hexagonal
spatiotemporal patterns carrying vorticity S = −2 (if the
topological charge of the original ansatz is defined as S = +1),
see an example of the stable mode in Fig. 9. Note that, in this
case, no changes were made to the hexagonal input at sites in
outer layers.
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FIG. 9. (Color online) The same as in Fig. 6 but for a stable
hexagonal vortex with topological charge S = 2, generated by the
modified input with µ = 223.

063825-5



LEBLOND, MALOMED, AND MIHALACHE PHYSICAL REVIEW A 83, 063825 (2011)

FIG. 10. (Color online) The same as in Fig. 8 but for the
hexagon-shaped vortices with the double topological charge. Only
stable modes are presented in these plots.

Simulations with this input were also run in a broad range of
values of the propagation constant, 5 � µ � 450. At µ < 223
the seeded pattern is subject to various instabilities: spread
out due to the lattice diffraction and temporal dispersion, or
splitting into separating excitations, or, sometimes, merging
into one or two single-core fundamental solitons. In particular,
in the interval 8 � µ � 10 the pattern forms a transient
triangular structure, which eventually splits, and in a broad
interval of 20 � µ � 222 the initial hexagon fissions into
two triangles, which also turn out to be unstable, essentially,
because the amplitudes of the triangular patterns fall below the
stability threshold.

Stable double (S = 2) hexagonal vortices emerge at
µ � 223, whose shape is illustrated by Fig. 9. The stability of
these vortices was verified in very long simulations. With the
further increase of µ, an instability island was revealed around
µ = 300. In that case, the six temporal pulses remain locked
to their positions, but the phase structure is lost at z � 500.
Nevertheless, the hexagonal vortices recover their integrity at
still larger µ. It is possible that other narrow intervals of the
instability may be found inside the stability region.

Figure 10 presents the energy and amplitude of the double
vortices as functions of the effective wave number, similar to
Fig. 8 for the triangular vortices with S = 1. However, only
the stable family of the hexagonal vortices is shown here, as
we were not able to measure characteristics of unstable ones
at µ < 223. In fact, the simulations produce no evidence that
such unstable modes exist.

VI. COMPACT TRIANGULAR VORTICES

Still another type of stable spatiotemporal pattern can be
produced by the input taken as per Eqs. (4)-(6), but centered
at an edge of the original hexagon, i.e., with m and n replaced
by m − 2/3 and n − 1/3 , respectively. In this case the results
were collected for 5 � µ � 220 , and as shown in Fig. 11,
the stable structure takes the form of a vortex with S = 1,
shaped as a densely packed triangle, without an empty site
in the center (cf. Fig. 6). This structure is stable for µ � 11.
It is relevant to stress that this stabilization threshold is more
than an order of magnitude lower than its counterparts for the
triangular and hexagonal spatiotemporal vortices reported in
the previous sections (recall those thresholds were µtriangle =
182 and µhexagon = 223, respectively).

In fact, direct simulations initiated by the above-mentioned
shifted input ansatz generate the compact triangle which seems
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FIG. 11. (Color online) The same as in Fig. 6 but for a stable
compact triangular vortex with topological charge S = 1, generated
by the shifted input with µ = 15.

“noisy.” The noise can be removed by means of the “temporal
filtering,” setting the field equal to zero outside of the main
pulse in each core and running the additional propagation over
�z = 10. Furthermore, for 31 � µ � 60, direct simulations
starting from the shifted input ansatz lead to a phase instability.
For instance, at µ = 32 and 40, the phases of the three vertices
would take values of 0, π/2, and π , instead of those displayed
in Fig. 6. Actually, this instability is caused by the fact that
the input is far from the shape of the stable mode, giving

-8

-4

0

4

8

0 1 2 3 4 5 6

t

z

FIG. 12. (Color online) Trajectories of the motion of colliding
triangular vortices rotated by angle π/3 relative to each other, for
µ = 250 and velocities ±k0 = ±11.
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FIG. 13. (Color online) The collision of two triangular vortices at
µ = 250 and k0 = 12. Trajectories of individual pulses forming the
vortices are displayed.

rise to several temporal peaks in each core. If the initial data
are “cleaned up” by nullifying the field outside of the main
temporal pulse, the simulations converge to stable compact
triangular vortices. The amplitude of stable compact triangular
vortices evolves slowly and almost linearly versus the effective
propagation constant µ + δµ: the computed values of the latter
range from � 22–78, and then the amplitude goes from 40.3
to 41.2.

VII. COLLISIONS BETWEEN MOVING
VORTEX SOLITONS

The availability of stable solutions for the vortex spatiotem-
poral solitons and the obvious Galilean invariance of Eq. (1)
suggest study of the collisions between moving vortices. In
particular, it is interesting to simulate collisions between the
stable triangular modes shown in Fig. 6, rotated by angle π/3
relative to each other, to test a possibility of their fusion into a
full hexagonal vortex of the type displayed in Fig. 9. This was
done by taking a pair of the triangles separated by a relatively
large temporal interval, �t = 16, for values of µ > 182, at
which the triangular vortices are stable by themselves, as
shown above. They were set in motion, multiplying them by
exp(±ik0t), which obviously lends the solitons velocities ±k0.
(In terms of the optical waveguides, these are shifts of the
inverse velocities.)

In fact, the fusion of colliding triangles into a hexagon was
never observed. Instead, slowly moving triangles demonstrate
a long-range repulsion and stop at finite distance (but do
not bounce back), as shown in Fig. 12. At intermediate
velocities, the colliding triangular vortices do bounce back, and
eventually they get destroyed by the longitudinal instability
(splitting into uncorrelated temporal pulses in different cores),
as shown in Fig. 13. At high velocities, the solitons, quite
naturally, pass through each other, loosing some kinetic
energy. There is a sharp threshold between the rebound
regime and the passage. Just above this threshold, the
passing vortices get destroyed by the longitudinal instability
shortly after the collision. Domains corresponding to different
outcomes of the collisions in the (µ,k0) plane are shown
in Fig. 14.

While the collisions seem elastic with the increase of the
velocity, it was not possible to conclude if the vortices remain

FIG. 14. (Color online) Regions of different outcomes of colli-
sions between two mutually symmetric triangular vortices, rotated by
angle π/3.

stable indefinitely long after such quasielastic collisions.
Indeed, since the numerical box has a finite length and
periodic boundary conditions in t are used, the moving vortices
undergo repeated collisions, loosing some velocity each time.
Eventually, they would be destabilized by a collision occurring
at a lower speed.

VIII. CONCLUSION

We have introduced a system of parallel waveguides with
the linear coupling between nearest neighbors, based on the
hexagonal lattice in the transverse plane. Each guiding core
features the cubic self-attractive nonlinearity. The system can
find straightforward realizations in nonlinear optics and in
BEC trapped in the corresponding optical lattice. Systematic
simulations, starting with a natural input ansatz for vortical
hexagons, reveal three distinct species of stable semidiscrete
spatiotemporal complexes, which are discrete in the transverse
plane and continuous in the longitudinal direction. These are
triangular modes with vorticity S = 1 and hexagonal ones
with S = 2, both built with an empty core at the center,
and compact triangles carrying S = 1, without the central
empty core. Collisions between stable triangular vortices
were also studied by means of simulations, demonstrating the
stoppage of the slowly moving vortex solitons, destabilizing
rebounds, and quasielastic passage, depending on the collision
velocity.

More complex structure of the arrayed waveguides can be
considered as a generalization of this work (in particular,
quasiperiodic lattices). It may also be interesting to study
vortex complexes in two-component models of the same
type.
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K. Promislow, Phys. Rev. A 66, 033610 (2002); F. S. Cataliotti,
S. Burger, C. Fort, P. Maddaloni, F. Minardi, A. Trombettoni,
A. Smerzi, and M. Inguscio, Science 293, 843 (2001);
M. Greiner, O. Mandel, T. Esslinger, T. W. Hänsch, and
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