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Coherent pump-probe spectroscopy in sodium vapor: From electromagnetically induced
transparency to parametric amplification
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We have theoretically and experimentally investigated coherent pump-probe spectra for the 3S1/2-3P1/2 D1
transition of sodium atomic vapor. Probe transmission spectra in the presence of a coupling beam exhibit
dramatic changes depending on experimental conditions. In the weak-excitation, low-atomic-density limit, the
spectra are mainly characterized by electromagnetically induced transparency (EIT) and saturated absorption,
but for the strong-excitation, high-density case, parametric amplification (PA) is dominant, featuring high probe
gain and Stokes-wave generation. We have developed a theory that can explain these two seemingly totally
different phenomena (EIT and PA) within the same theoretical framework by manipulating a few experimentally
controllable parameters, and have successfully reproduced the observed spectra. Other than the main spectral
features, many other interesting physical processes have been predicted and observed.
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I. INTRODUCTION

It is well known nowadays that in typical pump-probe
spectroscopy using a gaseous atomic vapor with a three-level
� system, the probe (frequency ωp) transmission spectra in
the presence of a strong-coupling (pump) beam (frequency
ωc) exhibit a wide variety of unique features. On one hand,
when coupling power is weak and the atomic density is low,
the transmission spectrum is characterized by several, rather
broad, saturated absorption dips and peaks and very sharp
electromagnetically induced transparency (EIT) peaks [1–5].
The EIT peaks are observed when the two-photon resonance
condition (ωp − ωc = ±ω21, where ω21 is the ground-state
hyperfine splitting frequency) is satisfied. This parameter
region may be called the EIT region. On the other hand, we
have recently reported [6] that, for strong-coupling powers
and high atomic densities, which we will call the parametric
amplification (PA) region, the initial probe wave is amplified
with considerable gain [7] when the two-photon resonance
condition is satisfied. Simultaneously, generation of Stokes
or anti-Stokes waves (idler waves) due to stimulated Raman
scattering (SRS) [8,9], or four-wave mixing [10,11], can be
observed with a similar amount of power in the direction that
satisfies momentum conservation [12,13]. The parametric gain
is high enough to allow parametric oscillation if the system is
placed in an external cavity [14]. Ultraslow propagation of
the amplified probe and Stokes pulses, often called matched
pulses, has also been reported [15–18].

Although these two extreme cases, EIT and PA, provide
seemingly totally different spectra, both phenomena should be
explained under one unified theory. From this viewpoint, we
tried to find a theory that can explain any spectral feature in
any region, the EIT region, PA region and any intermediate
region, simply by manipulating only a few experimentally
controllable parameters: coupling power Ic, coupling detuning
frequency δc, and atomic density N . We take the 3S1/2-3P1/2

D1 transition of a sodium atom for the model system, because
the energy structure is rather simple [two hyperfine levels (F =
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1,2) in both the ground 3S1/2 and excited 3P1/2 states], thus we
can treat it as a four-level system having two independent �

systems [4], interacting with three-mode optical fields (probe,
coupling, and Stokes) as shown in Fig. 1. This problem can
be solved by a combination of the Liouville equations and
the rate equations, which finally lead to coupled propagation
equations for the probe and Stokes waves, or signal and
idler, in terms of PA [19–22]. Theoretical simulations are
compared with experimental observations. The agreement
between theory and experiment is quite satisfactory, validating
our theoretical approach. Moreover, comparison of theory with
experiment can elucidate many intriguing problems, such as
degenerate four-wave mixing, single-photon resonant SRS,
and the splitting and the shift of two- photon resonance peaks.
All these interesting topics will be discussed in detail.

In this paper we will first develop, in the next section, a
theoretical analysis. Our experimental setup will be briefly
mentioned next and then a detailed comparison between
theoretical observations and numerical simulations will be pre-
sented, along with a discussion about many interesting topics.

II. THEORY

Our aim is to develop a theory that can numerically repro-
duce experimental observations including two extreme cases,
EIT and PA, and can still give enough physical insight into the
problem so that it can predict many important issues. Here the
numerical fitting should be performed by manipulating only
three parameters, the coupling Rabi frequency �c, coupling
detuning frequency δc0, and linear absorption coefficient α0,
which are experimentally controllable and correspond to the
coupling power Ic, coupling detuning δc0, and atomic density
N , respectively.

In order to achieve the goal mentioned above, we start
by defining the total electric field composed of a probe field
(amplitude Ep, frequency ωp), coupling field (Ec,ωc), and
Stokes field (Es ,ωs), where ωs = ωc − ω0 = 2ωc − ωp and
ω0 ≡ ωp − ωc, as [8]

E(z,t) = Es(z)e−iωs t + Ec(z)e−iωct + Ep(z)e−iωpt . (1)
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FIG. 1. (Color online) Related energy-level scheme for EIT and
PA in sodium vapor.

As for the atomic system, we assume a four-level system
as shown in Fig. 1, where the levels 1, 2, 3, and 4 correspond
to the 3S1/2, F = 1, F = 2, 3P1/2, F ′ = 1, and F ′ = 2 levels
of the sodium atom, respectively. Now we can write down the
Liouville equations for the four optical coherences ρ13, ρ14,
ρ23, and ρ24, and the ground-state sublevel coherence ρ12. We
assume that the excited-state sublevel coherence ρ34 can be
neglected because it is very short lived compared to ρ12 and,
therefore, the system is reduced to two independent � systems.
The Liouville equations can be written as

ρ̇13 = (iω31 − γ )ρ13

− i
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where ωm� is the splitting frequency and n�m = n� − nm is the
population difference between the level � and the level m, and
�jm� = 2pm�Ej /h̄ is the Rabi frequency (j = p,c,s; m = 3,4;
and � = 1,2) with pm� being the dipole matrix element. γ and
γs are the optical and sublevel dephasing rates, respectively.

These equations can be solved by Fourier decomposition
of the optical coherences ρ�m as

ρ�m(t) = ρ�mse
iωs t + ρ�mce

iωct + ρ�mpeiωpt , (3)

and the sublevel coherence ρ12 as

ρ12(t) = ρ12ue
iω0t + ρ12de

−iω0t . (4)

On the other hand the population differences appearing in
Eq. (2) can be obtained independently by using the following
rate equations for the four populations:

ṅ1 = −P13(n1 − n3) − P14(n1 − n4)

+	

2
(n3 + n4) − 	t (n1 − n0),

ṅ2 = −P23(n2 − n3) − P24(n2 − n4)
(5)

+	

2
(n3 + n4) − 	t (n2 − n0),

ṅ3 = P13(n1 − n3) + P23(n2 − n3) − 	n3 − 	tn3,

ṅ4 = P14(n1 − n4) + P24(n2 − n4) − 	n4 − 	tn4,

where P�m represents the optical pumping rate from the
ground-state � to the excited-state m level, and P13 =
γ |�c31|2/[2{(δc−ω21)2+γ 2}],P14 = γ |�c41|2/[2{(δc −ω21−
ω43)2+ γ 2}],P23 =γ |�c32|2/[2(δ2

c + γ 2)], and P24 =
γ |�c42|2/[2{(δc − ω43)2 + γ 2}]. δc ≡ ωc − ω32 is the
coupling detuning with respect to the 3-2 transition frequency.
Among the four Rabi frequencies, �c31 is

√
5 times as small

as the others in the Na D1 line, thus we may rewrite these as
�c41 = �c42 = �c32 = �c and �c31 = �c/

√
5 where �c is

the typical Rabi frequency [23,24]. 	t is the transit-time decay
rate and n0 = 1/2 is the population in thermal equilibrium.
The last terms of Eq. (5) guarantee that, without optical
pumping, the populations n1, n2, n3, and n4 are relaxed
to their equilibrium values n0, n0, 0, and 0, respectively,
with the rate 	t . In the rate equations above, we assume
that the population distribution is solely determined by the
coupling beam, neglecting contributions from the probe and
Stokes waves. This is equivalent to neglecting higher-order
terms for the probe and Stokes waves. We also assume that
the coupling field is not depleted and is constant during
propagation.

The steady-state solutions of Eq. (5) for n1, n2, n3, and n4

as functions of δc are illustrated in Fig. 2 for �c/2π = 5 and
50 MHz. It is clear from Fig. 2 that the role of the coupling
beam is to redistribute populations between the two ground-
state sublevels 1 and 2 while the excited-state populations are
negligible. When the coupling frequency ωc is resonant to
ω32 or ω42 (left peaks) n1 dominates n2, while, when ωc =
ω31 or ω41 (right peaks), n2 dominates n1. The linewidths are
saturation broadened for the higher coupling Rabi frequency
(�c/2π = 50 MHz), where the excited-state sublevels are not
resolvable.

The recipe for obtaining the final probe and Stokes output
spectra is then as follows:

(i) obtain steady-state solutions for the rate equations,
Eq. (5).
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FIG. 2. (Color online) Populations n1 (blue), n2 (red), n3 (green),
and n4 (black) vs the coupling detuning frequency δc = ωc − ω32 as
solutions of the rate equations Eq. (5). Parameters are the same as
those in Table I. (a) �c/2π = 5 MHz. (b) �c/2π = 50 MHz.

(ii) substitute these values into Eq. (2) to obtain the Fourier
components ρ�mj (here only the first-order terms in Ep and Es

are taken),
(iii) Doppler integrate them by considering inhomogeneous

broadening,
(iv) obtain the polarizations with frequencies ωp and ωs ,

and
(v) substitute them into Maxwell’s propagation equations

for probe and Stokes waves.
We could of course obtain the results by numerically

solving all of the Liouville equations [the equations for the
populations in addition to those for the coherences given in
Eq. (2)]. This numerical method is exact to any higher order
of probe and Stokes waves. However, it will not give any
analytical expressions nor give any physical insight into the
problem. On the other hand, our perturbative approach has a
clear physical interpretation, leading to analytical expressions
such as (A3) to (A5) and (A8) in the Appendix. Once the
analytical expressions are found, each elementary process can
be traced out, for example, by using the double-Feynman
diagram approach [25]. This was made possible because we
assumed that the probe and the Stokes waves are small in
amplitude compared to the coupling wave so that nonlinear
terms in Ep and Es are neglected [as clearly shown in the next
equation, Eq. (6)]. To summarize, our approach is valid and
should mimic the experimental results only within the region
of weak probe and Stokes waves.

By taking the five steps given above, we reach the following
coupled propagation equations for probe and Stokes waves:

∂Ep

∂z
= −βpEp + ηpE∗

s ,

(6)
∂Es

∂z
= −βsEs + ηsE∗

p.

The derivation of the above equations and the definitions
of the four parameters βp, ηp, βs , and ηs are given in the
Appendix. Once the above equations are obtained, it is an easy
task to solve them with the boundary conditions Ep(z = 0) =
E0 and Es(z = 0) = 0, and the solutions at the sample length
L are

Ep(L) = E0 exp[−σL]

[
cosh(ξL) − βp − β∗

s

2ξ
sinh(ξL)

]
,

(7)

Es(L) = E0 exp[−σL]
η∗

s

ξ
sinh(ξL),

where σ = (βp + β∗
s )/2 and ξ = √

(βp − β∗
s )2 + 4ηpη∗

s . The
experimentally observed spectra are the output probe and
Stokes intensities, Ip = |Ep(L)|2 and Is = |Es(L)|2, as a
function of the probe detuning frequency, and this is what
we try to simulate theoretically.

III. EXPERIMENT

The experimental setup was basically the same as the one
we reported before [6,26] as illustrated in Fig. 3, and we
mention only the essential parts of the apparatus. We employed
two independently tunable ring dye lasers [RDL1 (Coherent
CR899-21) and RDL2 (Coherent CR699-21)] for the weak
probe beam (typical power ∼1 mW) and the strong-coupling
beam (5 to 500 mW), respectively. Both were tuned to the
3S1/2-3P1/2 D1 transition of the Na atom at 589.6 nm. While
the probe frequency was scanned over about 6 GHz, the
coupling frequency was fixed. A spatial filter was employed
for the probe beam to improve its transverse beam profile,
but not for the coupling beam because keeping the high
coupling power (∼500 mW) was our first priority. Two beams
with linear perpendicular polarizations (probe = vertical and

PD PD

PD

RDL #2

RDL #1SF

probe

coupling

Stokes

PBS

Na cell

PBS

PBS

PBS

Saturated absorption spectroscopy

FIG. 3. (Color online) Schematic of the experimental setup:
RDL, ring dye laser; PBS, polarizing beam splitter; λ/2, half-wave
plate; λ/4, quarter-wave plate; PD, photodetector; SF, spatial filter.
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coupling = horizontal) impinged noncollinearly (with wave
vectors �kp and �kc) on the sample of hot sodium atomic
vapor with no buffer gas in a glass cylindrical cell (7.5 cm
long). The best crossing angle between �kp and �kc to give the
maximum EIT or PA signal depends on the atomic density,
and, for low (high) atomic densities, the angle of 4 mrad
(1 mrad) was employed. The intensities of the transmitted
probe beam and the newly generated Stokes beam (both are
vertically polarized) with �ks = 2�kc − �kp were simultaneously
monitored by two photodetectors and then sent to a digitizing
oscilloscope. A saturated absorption spectroscopy setup was
employed to accurately monitor the probe laser frequency.
The atomic density was calculated from the linear absorption
spectrum for a weak probe beam and by comparing it with
the theoretical curve. (The temperature measurement was not
accurate and not dependable.) The coupling power, on the
other hand, was simply measured by a power meter. The
probe detuning frequency was calibrated by assuming that
the separation of the two EIT peaks is 2 × 1772 = 3544 MHz.
Probe (and Stokes) transmission spectra were obtained for
different parameter regions: (i) EIT region, (ii) intermediate
region, and (iii) PA region. A detailed comparison with our
numerical simulations for the three cases will be given below.

IV. RESULTS

We selected three typical cases for comparing experiment
and theory: (i) the EIT region with weak coupling power Ic

and low atomic density N , (ii) the intermediate region with
strong Ic and low N , and (iii) the PA region with strong Ic

and high N . The region with weak Ic and high N is not
of interest because it simply gives an opaque medium with
little spectroscopic features. All the experimental parameters
and all the parameters used in the simulation are tabulated in
Table I, where the peak optical density D, defined as D ≡
log10[Ip(0)/Ip(L)], without the coupling beam is proportional
to α0. The linear absorption linewidth γ /2π is set as 8 MHz
taking into account the two independent laser linewidths in
addition to its original linewidth 5 MHz. The Doppler widths
of the D1 transition of the Na atom are calculated to be
ωD/2π = 1650 MHz at 200 ◦C and 1730 MHz at 250 ◦C
and can be roughly approximated as constant. It should be
mentioned that, in the simulation, only three parameters,
the coupling Rabi frequency �c, coupling detuning δc0, and
absorption coefficient α0, are changed for the three regions and
all the remaining parameters are fixed, implying that the above
three are the only experimentally controllable parameters.
In the following the experimental results and the simulation
results will be shown.

A. EIT region

The probe absorption spectra in this region are shown in
Fig. 4 for the experiment (top) and the theoretical simulation
(bottom). In this region, the spectra are characterized by rather
broad saturated absorption (SA) peaks and very sharp EIT
peaks [4,5] indicated by arrows in Fig. 4. The SA signals have
nine peaks and dips with linewidths of 2γ /2π ∼ 16 MHz when
�c is small. Among the nine SA signals, three of them are
peaks (quenching of absorption) located at ωp = ωc,ωc ± ω43
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FIG. 4. Probe transmission spectra in the EIT region. Top:
experiment. Bottom: theory.

in the central region, and the other six are dips (extra
absorption) at ωp = ωc ± ω21,ωc ± ω21 ± ω43 in the left and
right wings. The physical origin of these signals is ground-state
population redistribution by the coupling beam (see Fig. 2),
and in this sense this is quite similar to ordinary saturated
absorption spectroscopy, or Lamb-dip spectroscopy [27–29],
in which case two counterpropagating beams from the same
laser are applied to the sample.

In contrast to the SA peaks, the EIT peaks are identified at
ωp = ωc ± ω21 as very sharp upward signals. The linewidths
(2γs/2π ∼ 1.4 MHz) are much smaller than the saturated
absorption linewidths, and therefore the SA and EIT peaks
are easily distinguishable. The numerical simulation was per-
formed with the parameters given in Table I and, although each
peak height does not exactly match, the agreement between
experimental observation and theory is quite satisfactory.

B. Intermediate region

Figure 5 shows the case of the intermediate region for
strong excitation and low atomic density. Here all the saturated
absorption signals observed in Fig. 4 disappear. This is because
of the saturation broadening of the level populations seen
in Fig. 2, since the linewidth of the saturated absorption
signal is given by 2

√
γ 2 + �2

cγ /	 and, for sufficiently large
�c, it is proportional to �c. On the other hand, the EIT
signals became very pronounced with increasing magnitudes
but with no apparent broadening. All these features can be
nicely reproduced in the theoretical simulation. The noise
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TABLE I. Parameters used in the experiment and the simulation.

EIT Intermediate PA

Expt. Ic (mW) 13 270 480
Ip (mW) 2.7 0.55 1.5
T (◦C) 185 175 215

N (cm−3) 3.8 × 1010 2.1 × 1010 2.0 × 1011

Sim. �c/2π (MHz) 14 75 100
δc0/2π (MHz) 1000 1020 100

α0 (cm−1) 15 9.5 330
D 0.72 0.46 16

γ /2π (MHz) 8
	/2π (MHz) 10
γs/2π (MHz) 0.7
	t/2π (MHz) 0.1
ωD/2π (MHz) 1600

L (cm) 7.5
ω21/2π (MHz) 1772
ω34/2π (MHz) 189

modulation, or “ripple,” appearing in the experimental signal
is spurious. It is due to cell-heater switching and it should
be averaged out. Up to this point the Stokes wave has been
negligible.
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FIG. 5. Probe transmission spectra in the intermediate region.
Top: experiment. Bottom: theory.

0

2

4

6

8

10

12

T
ra

ns
m

is
si

on

0

2

4

6

8

10

12

T
ra

ns
m

is
si

on

0

2

4

6

8

10

12

T
ra

ns
m

is
si

on

0

1

2

3

4

5

6

-4 -3 -2 -1 0 1 2 3 4

T
ra

ns
m

is
si

on

Probe Detuning Frequency (GHz) 

FIG. 6. Probe transmission spectra in the PA region. From top
to bottom: probe experiment, probe theory, Stokes experiment, and
Stokes theory.

C. PA region

The transmission spectra in the PA region show a dramatic
change compared to the two previous examples and are shown
in Fig. 6. Experimentally, the probe wave is amplified with
large gain reaching 12 when the probe frequency is in the
wing of the absorption line. The other resonance appearing
in the middle of the absorption had a smaller gain of about
3, implying that too much absorption suppresses gain. A
broad saturated absorption peak was observed at ωp = ωc.
In addition, in this region, the generation of the Stokes wave
(idler wave) is very pronounced. The output Stokes power is
similar to that of probe, and this time the two sharp peaks
have almost the same magnitude. All these basic features are
satisfactorily reproduced by the numerical simulation as shown
also in Fig. 6, except that the Stokes magnitudes are much
smaller in the simulation.
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FIG. 7. Coupling power dependence of probe gain. Solid line,
simulation. Open circles, experiment. Probe power Ip = 1.5 mW.
Temperature T = 215 ◦C. Density N = 2.0 × 1011 cm−3.

The growth of the probe gain at the two-photon resonance
peak (left peak in Fig. 6) from the EIT region to the PA region
as a function of the coupling power Ic is plotted in Fig. 7 both
for the experimental results (open circles) and the simulation
(solid line). For small Ic the gain is of course less than 1,
but eventually reaches up to 12 and becomes saturated. The
theoretical simulation reproduces the observations quite well.

V. DISCUSSION

In this section we list all the important spectral features and
topics observed either in experiment or theory.

A. Degenerate four-wave mixing

There is one spectral feature that is always observed and
is quite often very pronounced experimentally but cannot be
reproduced by the simulation. It is the degenerate four-wave
mixing signal observed when ωp = ωc [4]. It is observed, for
example, in Fig. 5 as a very sharp peak (sometimes dispersion
type) at the center of the spectrum. This signal can be regarded
as diffraction of the coupling beam by the stationary grating
produced by the coupling and the probe beams when ωp = ωc.
The reason why it is not theoretically reproducible is because,
in our approach, we employ a Fourier expansion with the
sideband frequency ω0, as written in Eqs. (3) and (4). This
approximation collapses when the sideband frequency ω0

becomes zero, when probe, coupling, and Stokes waves all
become degenerate.

B. Half resonances

In contrast to the previous topic, there is one spectral feature
that always appears in simulations but has not been observed
experimentally. It is what we call a half resonance. As shown
in Fig. 8 for a simulation with very high �c, we have six
small resonances appearing at almost half the way to the main
resonances ωp = ωc ± ω21 in both the probe and Stokes spec-
tra. These resonances are found to be located at ωp = ωc ±
ω21/2 and ωc ± (ω21 ± ω43)/2. These half resonances can be
interpreted as follows. If we take a close look at the coefficients
such as cps in Eqs. (A2), (A3), (A4), and (A5), we notice that
there are three resonance denominators that contribute to the
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FIG. 8. Existence of half resonances and splitting of EIT res-
onances in the numerical simulation. Top: probe output. Bottom:
Stokes output. Parameters: �c/2π = 200 MHz, δc0/2π = 100 MHz,
and α0 = 12 cm−1.

signal magnitude. Among them, two of them are single-photon
resonances (typical example: ωp = ω31 and ωs = ω32) and
the other one is a two-photon resonance (typical example:
ωp − ωc = ω21). There is no way to satisfy these three
conditions simultaneously. Ordinary EIT signals satisfy one
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FIG. 9. Experimentally observed splitting of the EIT resonance
peak (left peak). From top to bottom, coupling power Ic = 270, 200,
150, 100, and 50 mW. Temperature, T = 175 ◦C.
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FIG. 10. Numerically calculated peak positions of the left peak
and the right peak of the main resonances as a function of the coupling
Rabi frequency �c. Parameters are the same as the ones in Fig. 8.

single-photon resonance and one two-photon resonance, for
example, ωp = ω31 and ωp − ωc = ω21. But one has the other
option that two single-photon resonances are satisfied sacri-
ficing one two-photon resonance. These resonances are much
smaller than the main resonances as shown in Fig. 8 but become
pronounced when �c is large. They have not been observed
experimentally, probably due to our low detection sensitivity.

C. Splitting and shift of EIT peaks

In Fig. 8 we clearly observe that the left peak at
−3444 MHz and the right peak at 100 MHz of the main EIT
resonances are split into two. (They are more pronounced in
the Stokes spectrum.) This type of splitting was also observed
experimentally, as shown in Fig. 9 for the left EIT peak, where
peak splitting at high coupling powers is obvious. At the same
time we find that the peaks started to shift toward the left.
The behavior of the left peak and the right peak positions as
a function of the coupling Rabi frequency �c is numerically
calculated and visualized in Fig. 10. The magnitude of the
splitting in Fig. 10 agrees roughly with that in Fig. 9. It is clear
from Fig. 10 that the left and right peak shifts and splittings are
very symmetrical. While the shifts of the inner peaks are small,
the outer peaks shift further toward the outside. This shift
may be attributed to the light shifts of level 1 (right peak) and
level 2 (left peak) due to the strong-coupling beam, but the
detailed mechanisms of this shift and splitting are yet to be
investigated.

VI. CONCLUSIONS

We have developed a theory for a four-level double-
� system to explain various experimental observations in
the coherent pump-probe spectroscopy for the sodium D1
transition. Numerical simulations based upon our theory can
reproduce the experimental results reasonably well in every
parameter region: from the EIT region for the weak-excitation
low-density limit to the PA region for the strong-excitation
high-density limit. Other than this, our theory provided an

opportunity to consider various spectroscopic features that
appear only in theoretical spectra (half resonances), or only in
experimental spectra (degenerate four-wave mixing), or both
of the spectra (splittings and shifts of EIT resonances), as
mentioned in the previous section. These spectral features will
in turn drive further investigation into these yet-to-be-explored
problems.

This type of approach may be applied to the optical data
storage problem [30] or the coherent Raman beat problem
[31], where transient solutions are obtained in the four-level
configuration, and a much more sophisticated and quantitative
comparison between theory and experiment will become
possible as here. Another direct application of this theory will
be the slow-light problem [15–18]. Both in the EIT region and
in the PA region, the input probe pulse and also the generated
Stokes pulse are reported to be slowed considerably in the
presence of the continuous coupling wave. Since, theoretically,
the temporal profile of the probe (Stokes) pulse is simply
a Fourier transform of the probe (Stokes) output spectrum,
a detailed comparison of theory and experiment in every
parameter region should be straightforward with some effort.

APPENDIX

Maxwell’s propagation equations for the probe and the
Stokes waves are written as

∂Ep

∂z
= ik

2ε0
Pp

= ikN

2ε0
(p13ρ31p + p23ρ32p + p14ρ41p + p24ρ42p),

(A1)
∂Es

∂z
= ik

2ε0
Ps

= ikN

2ε0
(p13ρ31s + p23ρ32s + p14ρ41s + p24ρ42s),

where Pp and Ps are the polarizations oscillating at frequen-
cies ωp and ωp, respectively, and N is the atomic density. By
solving Eq. (2) for ρ�mp and ρ�mp and substituting them into
Eq. (A1), we obtain the following propagation equations:

∂Ep

∂z
= −1

2
αpEp + cpp|Ec|2Ep + cpsE2

c E∗
s ,

(A2)
∂Es

∂z
= −1

2
αsEs + css |Ec|2Es + cspE2

c E∗
p.

Among the three terms of the right-hand sides, the first
terms represent linear absorption, the second terms correspond
to EIT, and the third terms are parametric coupling between
the probe and Stokes waves. The coefficients αp, αs , cpp, cps ,
csp, and css are expressed as

αp = α0γ

( |ε31|2
γp31

n13 + |ε32|2
γp32

n23 + |ε41|2
γp41

n14 + |ε42|2
γp42

n24

)
,

αs = α0γ

( |ε31|2
γs31

n13 + |ε32|2
γs32

n23 + |ε41|2
γs41

n14 + |ε42|2
γs42

n24

)
,

cpp = kNp4

2ε0h̄
3

(
cpp1

γu

+ cpp2

γd

)
,
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cps = kNp4

2ε0h̄
3

(
cps1

γu

+ cps2

γd

)
,

csp = kNp4

2ε0h̄
3

(
csp1

γ ∗
d

+ csp2

γ ∗
u

)
,

css = kNp4

2ε0h̄
3

(
css1

γ ∗
d

+ css2

γ ∗
u

)
. (A3)

Here α0 = kNp2

ε0h̄γ
is the linear absorption coefficient without

Doppler broadening and εm� = pm�/p denotes the relative
transition amplitude from � to m. γu and γd in Eq. (A3) are

defined as

γu = γs − i(ω0 − ω21)

+�2
c

4

( |ε31|2
γ ∗

s32

+ |ε41|2
γ ∗

s42

+ |ε32|2
γp31

+ |ε42|2
γp41

)
,

(A4)
γd = γs − i(ω0 + ω21)

+�2
c

4

( |ε31|2
γp32

+ |ε41|2
γp42

+ |ε32|2
γ ∗

s31

+ |ε42|2
γ ∗

s41

)
,

where γjm� = γ − i(ωj − ωm�) (j = p,c,s; m = 3,4; and � =
1,2). The eight coefficients cpp1, cpp2, css1, css2, cps1, cps2, csp1,
and csp2 are given by

cpp1 =
( |ε31|2|ε32|2

γp31
+ ε31ε14ε42ε23

γp41

) (
n13

γp31
+ n23

γ ∗
c32

)
+

( |ε41|2|ε42|2
γp41

+ ε32ε24ε41ε13

γp31

) (
n14

γp41
+ n24

γ ∗
c42

)
,

cpp2 =
( |ε31|2|ε32|2

γp32
+ ε13ε32ε24ε41

γp42

) (
n13

γ ∗
c31

+ n23

γp32

)
+

( |ε41|2|ε42|2
γp42

+ ε31ε14ε42ε23

γp32

) (
n14

γ ∗
c41

+ n24

γp42

)
,

css1 =
( |ε31|2|ε32|2

γs31
+ ε31ε14ε42ε23

γs41

) (
n13

γs31
+ n23

γ ∗
c32

)
+

( |ε41|2|ε42|2
γs41

+ ε32ε24ε41ε13

γs31

) (
n14

γs41
+ n24

γ ∗
c42

)
,

css2 =
( |ε31|2|ε32|2

γs32
+ ε13ε32ε24ε41

γs42

) (
n13

γ ∗
c31

+ n23

γs32

)
+

( |ε41|2|ε42|2
γs42

+ ε31ε14ε42ε23

γs32

) (
n14

γ ∗
c41

+ n24

γs42

)
,

(A5)

cps1 =
( |ε31|2|ε32|2

γp31
+ ε31ε14ε42ε23

γp41

) (
n13

γc31
+ n23

γ ∗
s32

)
+

( |ε41|2|ε42|2
γp41

+ ε32ε24ε41ε13

γp31

)(
n14

γc41
+ n24

γ ∗
s42

)
,

cps2 =
( |ε31|2|ε32|2

γp32
+ ε13ε32ε24ε41

γp42

) (
n13

γ ∗
s31

+ n23

γc32

)
+

( |ε41|2|ε42|2
γp42

+ ε31ε14ε42ε23

γp32

)(
n14

γ ∗
s41

+ n24

γc42

)
,

csp1 =
( |ε31|2|ε32|2

γs31
+ ε31ε14ε42ε23

γs41

) (
n13

γc31
+ n23

γ ∗
p32

)
+

( |ε41|2|ε42|2
γs41

+ ε32ε24ε41ε13

γs31

)(
n14

γc41
+ n24

γ ∗
p42

)
,

csp2 =
( |ε31|2|ε32|2

γs32
+ ε13ε32ε24ε41

γs42

) (
n13

γ ∗
p31

+ n23

γc32

)
+

( |ε41|2|ε42|2
γs42

+ ε31ε14ε42ε23

γs32

)(
n14

γ ∗
p41

+ n24

γc42

)
.

Finally, in Eq. (A2) all the coefficients are Doppler averaged as, for example,

βp = 〈βp(δD)〉 =
∫

dδDG(δD)βp(δD), (A6)

with δD being the Doppler shift and G(δD) being the Doppler distribution having the Doppler width ωD ,

G(δD) = 2
√

ln 2√
πωD

exp

[
−

(
2
√

ln 2δD

ωD

)2]
. (A7)

In performing Doppler averaging, the probe and coupling frequencies in all the coefficients have to be Doppler shifted as
ωp → ωp0 − δD and ωc → ωc0 − δD , where ωp0 and ωc0 are the original probe and coupling frequencies. Considering these
facts, the four parameters appearing in the propagation equations Eq. (6) are obtained as

βp =
〈

1

2
αp − 1

8
α0γ |�c|2

(
cpp1

γu

+ cpp2

γd

)〉
, βs =

〈
1

2
αs − 1

8
α0γ |�c|2

(
css1

γ ∗
d

+ css2

γ ∗
u

)〉
, ηp =

〈
1

8
α0γ�2

c

(
cps1

γu

+ cps2

γd

)〉
,

ηs =
〈

1

8
α0γ�2

c

(
csp1

γ ∗
d

+ csp2

γ ∗
u

)〉
. (A8)
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