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Light storage in an optically thick atomic ensemble under conditions of electromagnetically
induced transparency and four-wave mixing
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We study the modification of a traditional electromagnetically induced transparency (EIT) stored-light
technique that includes both EIT and four-wave mixing (FWM) in an ensemble of hot Rb atoms. The standard
treatment of light storage involves the coherent and reversible mapping of one photonic mode onto a collective
spin coherence. It has been shown that unwanted, competing processes such as four-wave mixing are enhanced
by EIT and can significantly modify the signal optical pulse propagation. We present theoretical and experimental
evidence to indicate that, while a Stokes field is indeed detected upon retrieval of the signal field, any information
originally encoded in a seeded Stokes field is not independently preserved during the storage process. We present
a simple model that describes the propagation dynamics of the fields and the impact of FWM on the spin
wave.
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I. INTRODUCTION

The successful development of practical quantum informa-
tion applications relies to a large extent on the availability of
high-efficiency and high-fidelity memory for quantum states
of photons. Recently, several promising realizations of such a
quantum memory were demonstrated, which are based on the
reversible mapping of photon quantum states onto long-lived
collective coherences in ensembles of atoms [1–5]. In the
majority of these protocols, an atomic ensemble of sufficiently
high optical depth is necessary in order to achieve high memory
efficiency. However, in this case, some unwanted competing
processes may interfere with quantum memory performance,
reducing its efficiency and fidelity [6–12].

In this paper, we investigate the propagation and storage of
weak optical signal pulses in an optically thick vapor based
on electromagnetically induced transparency (EIT) [1,13].
Traditionally, an EIT-based light storage scheme considers
the simultaneous interaction of a strong control field and a
weak signal field in a �-type configuration, in which two
ground-state hyperfine levels are linked with a common excited
state, as shown in Fig. 1(a). In this case, the control field
strongly couples the propagation of the signal optical field with
a collective long-lived ground-state atomic spin coherence
(spin wave) [1,14], resulting in a reduced group velocity for
signal pulses (“slow light”). Adiabatic turn-off of the control
field maps the quantum state of the signal field onto the spin
wave, which can be stored and later retrieved by restoring the
control field intensity.

Such an EIT quantum memory has been realized for both
weak classical and nonclassical signal pulses (for recent
reviews, see Refs. [3–5]). Some recent publications [15–17]
investigated the optimal performance of such an EIT memory
and have confirmed that high optical depth is necessary
to improved storage efficiency. For example, 90% memory
efficiency requires an optical depth α0L > 100 [18]. On
the other hand, an optically dense coherent atomic medium
is also known to enhance competing undesired effects,
such as resonant four-wave mixing (FWM) in a double-�

configuration. In this FWM process, the far-detuned interac-
tion of the control field, which resonantly drives the |s〉-|e〉
transition [see Fig. 1(a)], with atomic ground-state coherence
enhances the generation of an off-resonant Stokes optical field
[α′ in Fig. 1(a)]. In turn, the presence of a Stokes field strongly
affects signal pulse propagation, and the propagation of both
signal and Stokes fields become a result of the interference
between regular EIT and FWM processes [11,12,19].

Under such conditions, the simplified treatment of an EIT-
based quantum memory in a single-� system is incomplete and
fails to describe light storage at high optical depths [17]. In
this work, we explore the mechanisms governing propagation
of signal and Stokes pulses under EIT-FWM conditions and
develop an intuitive analytical treatment of this problem. In
particular, we investigate the prospect of their light storage;
that is, a process in which both signal and Stokes pulses are
reversibly mapped onto a long-lived spin coherence and thus
can be faithfully recreated after some storage period. Recent
experiments [20] have shown that a spontaneously generated
Stokes field can be detected upon retrieval of a signal field from
a spin coherence. Based on these results, one might anticipate
that the spin wave might function, at least to some extent, as a
memory for both pulses. In our experiments, both input signal
and Stokes fields have nonzero amplitudes before entering the
atomic medium. We observed that, under certain experimental
conditions, both signal and Stokes pulses appear to be delayed
due to the interaction with atoms; that is, both signal and
Stokes outputs are nonzero even after the input signal and
Stokes fields are turned off. Moreover, when the control field is
turned off for some time and then later turned on, output pulses
are retrieved in both channels, as shown in Fig. 1(b). However,
careful experimental and theoretical investigation shows that
this is not a two-mode storage; that is, the signal and Stokes
fields cannot be stored independently. Instead, under EIT-
FWM conditions, the collective ground-state spin coherence
is determined by a particular combination of signal and Stokes
fields. Moreover, both retrieved fields are, in fact, only very
weakly sensitive to the input Stokes field. To explain these
effects, we present an intuitive analytical picture of the effects
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FIG. 1. (Color online) (a) The double-� system used in theo-
retical calculations. In our case, |g〉 and |s〉 correspond to the 87Rb
ground-state hyperfine sublevels |F,mF 〉 = |1,1〉,|2,1〉, respectively;
|e〉 corresponds to the excited state |F ′,mF ′ 〉 = |2,2〉. �, �′ represent
the Rabi frequencies of the same control field acting on two different
transitions, while α and α′ represent the Rabi frequencies of the signal
and Stokes fields, respectively. (b) Sample data for light storage for
signal (top) and Stokes (bottom) pulses at a temperature T = 70 ◦C
(optical depth α0L = 52). Dashed lines show propagation of these
pulses under the slow-light regime (constant control field). The black
curve is a far-detuned reference pulse. We scaled the pulses to the
maximum amplitude of the reference pulse.

of FWM on the signal and Stokes pulses and on the atomic spin
coherence.

II. EXPERIMENTAL ARRANGEMENTS

A schematic of the experimental setup is shown in Fig. 2.
The output from an external cavity diode laser (ECDL) locked
to the Rubidium D1 transition (λ = 795 nm) passed through
a polarizing beam splitter (PBS), which split off a fraction of
the beam for use as a reference frequency, while the rest of the
beam was coupled into a single-mode optical fiber (SMF) to
improve its transverse intensity distribution. All experimental
data shown below were obtained using weak classical laser
pulses. To ensure the best spatial overlap and mutual phase
coherence, all three optical fields were derived from a single
laser beam by phase modulation. After the fiber, the beam
passed through an acousto-optical modulator (AOM), and
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FIG. 2. (Color online) Schematic of the experimental arrange-
ments. See text for abbreviations.

the −1 diffraction beam (downshifted by 80 MHz) then
passed through an electro-optical phase modulator (EOM)
operating at the frequency of the ground-state hyperfine
splitting of 87Rb [�hf/(2π ) = 6.835 GHz]. This phase mod-
ulation produced two first modulation sidebands at ±�hf of
nearly equal amplitudes and opposite phases. The zeroth-order
(carrier frequency) field was tuned to the 52S1/2F = 2 →
52P1/2F

′ = 2 transition and acted as the control field � [21].
The +1 modulation sideband, tuned near the 52S1/2F = 1 →
52P1/2F

′ = 2 transition, played the role of the signal field,
while the −1 sideband acted as the Stokes field. The resulting
beam was collimated to a diameter of 1.9 mm or 2.7 mm, as
specified below, and circularly polarized with a quarter-wave
plate (λ/4). Typical peak control and signal field powers were
approximately 14 mW and 40 µW, respectively. For some
experiments, we attenuated the amplitude of the Stokes field
as described in Refs. [12,17].

A cylindrical Pyrex cell, of length L = 75 mm and diameter
22 mm, containing isotropically enriched 87Rb and 30 Torr Ne
buffer gas so that the pressure-broadened optical transition
linewidth was 2γ /(2π ) = 290 MHz [22], was mounted inside
trilayer µ-metal magnetic shielding in order to reduce the
effects of stray magnetic fields. The temperature of the cell and,
correspondingly, the concentration of Rb in the vapor phase,
was controlled using a bifilar resistive heater wound around
the inner-most shield layer. Experimental temperatures ranged
from 50 to 80 ◦C, which corresponded to changes in Rb density
from 1.1 × 1011 cm−3 to 1.2 × 1012 cm−3 and to a range of
optical depths α0L between 10 and 110. After the cell, the
light beam was linearly polarized with a λ/4 plate, recombined
with the unshifted reference beam, and sent via a multimode
optical fiber to a fast photodetector (PD). The beat note signals
between each of the +1 and −1 modulation sidebands and the
reference field were measured using a microwave spectrum
analyzer. Because of the 80 MHz frequency shift introduced by
the AOM, the different beat note frequencies of each sideband
with the reference field allowed for independent measurement
of their amplitudes.

Simultaneously programmed modulation strengths of the
AOM and EOM allowed for independent control over the
temporal envelopes of the control field and the signal or Stokes
fields. In this set of measurements, we used constant levels
of the control field for both writing and retrieval stages and
truncated Gaussian waveforms for the signal and Stokes fields.
Each slow- and stored-light measurement was preceded by a
400 µs pulse of the control field at maximum intensity to
ensure optical pumping of the atoms in the interaction region
into state |g〉.

Similar to Refs. [12,17], we extracted the spin-wave deco-
herence time τs by measuring the reduction of the retrieved
pulse energies in both the signal and Stokes channels as a
function of storage time and fitting to an exponential decay
e−t/τs . Figure 3 presents a sample measurement of the decay
rate at T = 70 ◦C (α0L = 52), for which we measured τs =
300 µs. To aid in comparison, we normalized the signal and
Stokes retrieval energies by their respective zero-storage-time
values, which in this case was ≈40% for signal and ≈5% for
Stokes. Both the exponential trend and the correspondence
between the data obtained with the signal and Stokes channels
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FIG. 3. (Color online) Dependence of retrieved signal [blue (dark
gray)] and Stokes [red (light gray)] pulse energies as a function
of storage time at T = 70 ◦C (α0L = 52). Here, τs = 300 µs. We
normalized the memory efficiencies so that the zero-storage-time
memory efficiency is unity. Experimentally, we were not operating
under optimal storage conditions [17], and the zero-storage-time
memory efficiency was ≈40% for the signal pulse and ≈5% for
the Stokes pulse.

are representative of all experimental temperatures, although
we found that the spin-wave decoherence rate does have an
optical depth dependence.

III. THEORETICAL DESCRIPTION

A. Coupled propagation of signal and Stokes fields in a
double-� system

In this section, we review the relevant theoretical de-
scription of the EIT-FWM process in a double-� interaction
configuration. A single � link consisting of a strong control
field (Rabi frequency �) and a weak signal field (Rabi
frequency α) is usually considered in the context of light
storage under EIT conditions. In such a single-� system
under EIT conditions (ν − νc � ωsg, where ν and νc are signal
and control field frequencies, respectively), the control field
enables strong coupling between the signal field and the
long-lived atomic spin coherence that is usually described
using the formalism of dark-state polaritons [14]. Adiabatic
variation of the control field power reversibly transfers the
signal optical field into the spin coherence, allowing for the
realization of a quantum memory.

Achieving sufficiently high memory efficiency, however,
requires operation with an atomic ensemble at high optical
depth [15–17], where the effect on signal field propagation by
the off-resonant interaction of the control field on the |g〉-|e〉
optical transition (Rabi frequency �′) becomes significant and
cannot be ignored. In particular, it results in the coherent
creation of a Stokes field (frequency ν ′ = ωes − �hf − δ,
Rabi frequency α′) due to four-wave mixing (FWM). To
properly account for this generation [6,9,10,12,20,23–32], it is
necessary to take into account this off-resonant � link, which
is shown in Fig. 1(a).

The rotating-frame Hamiltonian describing the atomic
response to the light fields in such a configuration is

H/h̄ = −(δ − δs)|s〉〈s| − (δ − 2δs)|e〉〈e|
−

[
α|e〉〈g| + �|e〉〈s| + �′α′∗

�hf
|s〉〈g| + H.c.

]
. (1)

Here, the Rabi frequencies of the signal and Stokes fields
are α = Eµ/h̄ and α′ = E′µ′/h̄, where E and E′ are the
slowly varying envelopes of the signal and Stokes electric
fields, respectively. µ and µ′ are the real dipole matrix
elements of the respective transitions. We define the optical
polarization P (z,t) = ρeg(z,t)

√
N and the spin coherence

S(z,t) = ρsg(z,t)
√

N , where ρij (z,t) is the appropriate slowly
varying position-dependent collective density matrix element
and N is the number of atoms in the interaction volume. To
derive Eq. (1), we used Floquet theory [33] to adiabatically
eliminate the off-resonant interaction via �′ and α′. To
linear order in 1/�hf and in α′, one obtains an effective
Rabi frequency �′α′∗/�hf . States |e〉 and |g〉 acquire small
light shifts δs = |�′|2/�hf and −δs , respectively. For our
Clebsch-Gordan coefficients [17], �′ = −√

3�. In order to
match the equations of motion for quantum fields, we define
g
√

N = √
γα0c/2 as the coupling constant between the signal

field and the atomic ensemble. We implicitly assume that the
frequencies of the signal and Stokes fields are approximately
the same, and we rescale the light field envelopes by defining
dimensionless light field envelopes E = µ

h̄g
E and E ′ = µ

h̄g
E′.

In the dipole approximation, assuming that, at all times,
most of the atoms are in |g〉, and to linear order in the weak
light fields E and E ′, the atomic evolution and light propagation
equations read [11,12,20,23,25]

(∂t + c∂z)E = ig
√

NP, (2)

(∂t + c∂z)E ′∗ = −ig
√

N
�

�hf
S, (3)

∂tS = −�0S + i�P + i
�

�hf
g
√

NE ′∗, (4)

∂tP = −�P + i�S + ig
√

NE, (5)

where we have defined �0 = γ0 − i(δ − δs) and � = γ −
i(δ − 2δs). The polarization decay rate γ and the spin decay
rate γ0 have been introduced.

Equations (2)–(5) fully describe the propagation of the light
fields and the dynamics of the spin wave and of the optical
polarization during all stages of light storage. In the slow-light
regime, when the control field is constant in time [�(t) =
�], Eqs. (2)–(5) can be solved analytically using Fourier
transformation in time [11,12,20,23,25]. In the stored-light
regime, when the control field intensity is time-dependent,
these equations can be solved numerically.

Figure 4 displays the results of storage experiments with
16-µs-long truncated Gaussian pulses at T = 70 ◦C (optical
depth α0L = 52) along with the corresponding theoretical
predictions, which are obtained by numerically solving
Eqs. (2)–(5) with the appropriate parameters. We measured
the control field power to be 4.7 mW, and the beam diameter
was 2.67 mm, which corresponded to �/(2π ) = 6.2 MHz,
and induced a light shift of δs = 17 kHz. The spin-wave
decay rate was measured to be approximately 300 µs, thus
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FIG. 4. (Color online) Storage and retrieval of 16-µs-long full width at half maximum (FWHM) truncated Gaussian pulses at T = 70 ◦C
(α0L = 52), for a two-photon detuning of (a) δ = −20 kHz, (b) δ = 0 kHz, and (c) δ = +20 kHz. In all plots, the top graphs are experimental
data and the bottom graphs are the theoretical predictions from Eqs. (2)–(5). The black curve is a far-detuned reference pulse, the blue (dark
gray) traces are the signal pulses, and the red (light gray) traces are the Stokes pulses. Dashed (solid) lines correspond to slow- (stored-) light
experiments. In the theory plots, the dotted green curve corresponds to a model consisting only of EIT to provide contrast with the EIT-FWM
model. We scaled the pulses to the maximum amplitude of the reference pulse.

γ0/(2π ) ≈ 270 Hz. The results from the slow-light experiment
(dashed lines) and the stored-light experiment (solid lines) are
overlaid to facilitate shape comparison.

For a small negative two-photon detuning δ = −20 kHz
[Fig. 4(a)], the signal field [in blue (dark gray)] experiences
some distortion during propagation [as evidenced by the bumps
in the leakage portion of the pulse (when t < 0), which
exits the cell before the control field is extinguished], but
the shape of the slow pulse is preserved during the storage
process. Likewise, the fraction of the Stokes field that exits
the medium at t > 0 in the slow-light experiment [dashed
red (light gray)] matches the retrieved Stokes field in the
stored-light experiment [solid red (light gray)]. There is an
excellent agreement between the experimental observations
and the numerical model predictions. The dotted green trace in
the theory plot corresponds to standard EIT-based light storage
of the signal field, where the FWM process has been artificially
turned off. To compute this trace, the Stokes contribution in
Eq. (4) is set to zero, and Eqs. (2), (4), and (5) are solved
numerically. We include this trace in order to showcase the
effects of four-wave mixing on signal pulse shape and delay.

Figure 4(b) demonstrates the excellent correspondence
between experiment and theory for a two-photon detuning
of δ = 0 kHz. For this value of δ, the signal pulse is less
distorted during propagation, but the pulse shape is still
distinct from the bare-EIT model. Likewise, Fig. 4(c) depicts
the results for δ = +20 kHz ≈ δs , where the two-photon
detuning effectively cancels the light shift during the writing
and retrieval stages. Under this condition, the signal pulse
will experience the least amount of distortion due to FWM,
since the EIT transmission peak is, at least for a sufficiently
narrow pulse bandwidth, symmetric about δ = δs . As a result,
the dispersion experienced by the pulse is mostly linear. In
all cases, the theoretical model matches the experimental data
very well.

The correspondence between slow-light pulse shapes
(dashed lines) and the shapes of the retrieved pulses (solid
lines) illustrates an important result— when the writing and
retrieval control field amplitudes are constant in time, the

process of switching the control field off and on has little
effect on the signal and Stokes fields, apart from a delay
and the spin-wave decay during storage time. In this case,
we can further understand the effects of FWM by using the
closed-form solutions to the Fourier transformed versions of
Eqs. (2)–(5) [11,12,20,23]. In the appendix, we detail the
derivation of the following two approximate equations, which
intuitively describe the effects of FWM and EIT on pulse
propagation for the case δ = δs . Although these equations
make a set of strong assumptions, including the assumption
of an infinitely wide EIT transmission window �E → ∞,
they preserve the essential physics in the limit of weak FWM.
Defining �R = −�2/�hf , the equations are

E(L,t) ≈ E(0,t − L/vg) + �2
R

∫ L/vg

0
dt ′E(0,t − t ′)t ′

+i�R

∫ L/vg

0
dt ′E ′∗(0,t − t ′), (6)

E ′∗(L,t) ≈ E ′∗(0,t) + �2
R

∫ L/vg

0
dt ′E ′∗(0,t − t ′)(L/vg − t ′)

− i�R

∫ L/vg

0
dt ′E(0,t − t ′). (7)

These equations clearly show how the effects of FWM
grow with optical depth α0L. The first term on the right-hand
side (RHS) of Eq. (6) describes the delay that the signal field
experiences during propagation in an EIT medium, where
vg = 2�2/(α0γ ) is the EIT group velocity [13]. Due to the
effects of FWM, the signal field acquires a small in-phase
gain of order �2

R(L/vg)2 ∼ (α0L)2γ 2/�2
hf from times up to

L/vg earlier. The times farthest away are weighted more
heavily. Additionally, the signal field acquires an i-out-of-
phase contribution of order |�R|L/vg ∼ α0Lγ/�hf from the
Stokes field up to L/vg earlier with all times contributing
equally. The Stokes field propagates undistorted and largely
undelayed, but gets a small [order (α0L)2γ 2/�2

hf] in-phase
gain from times up to L/vg earlier, with closest times weighted
more heavily, and also an i-out-of-phase contribution of order
α0Lγ/�hf from the signal field, with all times weighted
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equally. Notice that, in both equations, in the regime where the
first term on the RHS is large, small in-phase (α0L)2γ 2/�2

hf
terms and small i-out-of-phase α0Lγ/�hf terms contribute at
the same (α0L)2γ 2/�2

hf order to the absolute value of the field
(which is what our experiment measures).

However, the first terms on the RHS are not always
dominant. In particular, for t > 0, the first term on the RHS
of Eq. (7) vanishes, in which case |E ′∗(L,t)| is dominated
by the third term with a small correction from the second
term. This means, as we will confirm experimentally, that the
retrieved Stokes field is largely determined by the input signal,
and not by the input Stokes field. Similarly, if EIT group
delay is comparable to the signal pulse duration, then, for
t < 0, the RHS of Eq. (6) is small and |E(L,t)| is significantly
affected by the third term. This means, as we will confirm
experimentally, that the signal pulse leakage can be strongly
affected by the Stokes input, in contrast to the retrieved signal
pulse, which is only weakly affected by the Stokes input.
Equations (6) and (7) also show that the perturbative treatment
of the effects of FWM, employed to derive them, breaks
down when |�RL/vg| >∼ 1; that is, when the optical depth
is α0L >∼ 2�hf/γ ≈ 100.
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FIG. 5. (Color online) (a) Results of a numerical investigation
of slow light with a 6.6-µs-long pulse (reference in black), with
�/(2π ) = 10 MHz and α0L = 80, so that the bandwidth of the
pulse �ω = 0.1�E. Blue (dark gray) traces are the signal field; red
(light gray) traces are the Stokes field. Solid lines are the result of
numerically solving Eqs. (2)–(5). Dotted lines are the result of the
infinite-�E approximation in Eqs. (6)–(7). Dashed lines correspond
to results obtained using numerical integration of expressions in
Eqs. (A4), (A5), (A11)–(A15) in the appendix. (b) Spin wave created
at time τ = 5 µs delay in Fig. 5(a). The solid black line is the result
of numerically solving Eqs. (2)–(5). Dotted lines are the results from
Eq. (15). Dashed lines are the results from Eqs. (A17) and (A23).

To test the validity of Eqs. (6) and (7), in Fig. 5(a)
we compare the solutions obtained by numerically solving
Eqs. (2)–(5) (solid lines) to the predictions of Eqs. (6) and (7)
(dotted lines). In the dashed traces, we include the results of
a useful intermediate approximation, which does not assume
infinite �E and is described by Eqs. (A4), (A5), (A11)–(A15)
in the appendix. For these plots, �/(2π ) = 10 MHz and
α0L = 80; the pulse bandwidth was �ω = 0.1�E. From the
excellent correspondence between theoretical models, it is
evident that the approximations made in deriving Eqs. (6) and
(7) are valid.

B. Effect of four-wave mixing on the spin wave

While the solutions of Eqs. (2)–(5) accurately describe the
evolution of light pulses and atomic variables under slow-light
and storage conditions, we have not yet used them to elucidate
the role that the Stokes field plays in the creation of the spin
coherence. Specifically, it is not yet clear whether the quantum
memory description based on the dark state polariton principle
[14] is valid under EIT-FWM conditions. In what follows, we
develop a more transparent description of light storage in a
double-� system and show that, in this case, the spin wave is
determined by a particular combination of signal and Stokes
fields.

We obtain this result by adiabatically eliminating the optical
polarization P (z,t). We set the time derivative to zero in Eq. (5)
and find

P (z,t) ≈ i
�

�
S(z,t) + i

g
√

N

�
E(z,t). (8)

Inserting Eq. (8) into Eq. (4), we obtain the following equation
for time evolution of the spin wave S(z,t):

∂tS(z,t) = −
(

�0 + �2

�

)
S(z,t) − g

√
N

�

�
F(z,t). (9)

It is easy to see that the spin wave depends only on a
combination F(z,t) of the signal and Stokes optical fields,
defined as

F(z,t) = E(z,t) − i
�

�hf
E ′∗(z,t). (10)

Equation (9) is analogous to the spin-wave expression obtained
through a similar treatment of a standard three-level light
storage model [14],

∂tS(z,t) = −
(

�0 + �2

�

)
S(z,t) − g

√
N

�

�
E(z,t), (11)

but with one modification—the single light field (signal) is
now replaced by a combined signal-Stokes field F . Thus, one
might expect that it should be possible to store information
about this joint mode in the spin coherence. However, only a
small (α0L)2γ 2/�2

hf fraction of the Stokes field [the second
term on the RHS of Eq. (7)] exits the medium at t > 0 after
the input Stokes has been turned off, while the signal pulse is
delayed in its entirety [the first term on the RHS of Eq. (6)].
As a result, in contrast to the information encoded in the signal
field, most of the information encoded in the Stokes field is
lost to leakage, which leaves the interaction region before the
control field is shut off.
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The similarity between Eqs. (9) and (11) motivates a
more detailed comparison of our EIT-FWM system with the
traditional EIT configuration. The propagation equation for F
is easily obtained from the appropriate combination of Eqs. (2)
and (3):

(∂t + c∂z)F = −g2N

�
F − �

g
√

N

�
S − i

g2N

�hf
E ′∗. (12)

This equation is also similar to the signal propagation
expression in the classic stored-light model [14],

(∂t + c∂z)E = −g2N

�
E − �

g
√

N

�
S, (13)

except for the optical-depth-dependent Stokes term, which
describes the generation of signal from Stokes during prop-
agation through a sufficiently optically-thick medium.

When the two-photon detuning is chosen such that the
light shift is canceled (i.e., δ = δs), the propagation equation
becomes, to O(1/�hf),

[
∂t + c cos2 θ (t)∂z

]
F(z,t) ≈ i�RE ′∗(z,t), (14)

with the angle θ (t) given by tan2 θ (t) = g2N

�2(t) .
Analysis of above equations demonstrates two regimes

for light storage under EIT-FWM conditions. At low optical
depths, the contribution of the Stokes field on the RHS of
Eqs. (12) and (14) is negligible. In this case, the equations for
the joint field F and spin wave S become identical to those
for E and S in the regular EIT configuration. For example, if
we replace the RHS of Eq. (14) with zero, it would describe
the propagation of F without distortion at a reduced group
velocity vg = c cos2 θ ≈ 2�2

α0γ
. However, at low optical depths

and t > 0 (after the input Stokes pulse has been turned off),
the contribution of the Stokes field into F is also negligible: it
is small not only because of the small factor �/�hf in Eq. (10)
but also because E ′(z,t) itself is small [since the first term on
the RHS of Eq. (7), generalized to arbitrary z, vanishes for
t > 0]. Thus, signal field propagation can be analyzed using
a three-level single �, even though the Stokes field can be
significantly affected by control and signal fields, as is evident
from the dominance of the last term on the RHS of Eq. (7) for
t > 0.

However, at higher optical depths, the term on the RHS
of Eq. (14) becomes significant. Specifically, this term results
in gain or loss of the signal field due to the Stokes field.
The dashed blue (dark gray) lines in Fig. 6 depict the
results of numerical calculations of the homogeneous form
of Eq. (14). Solid blue (dark gray) lines show the results of
the numerical evaluation of the full form of Eq. (14) with
Eqs. (3) and (9). For these calculations, �/(2π ) = 8 MHz,
γ /(2π ) = 150 MHz, and the signal pulse was chosen so that
its bandwidth �ω = 0.05�E. It is evident from this graph that
the Stokes contribution is not negligible for optical depths
α0L >∼ 25, when the simple slow propagation of F breaks
down due to the Stokes term on the RHS of Eq. (14).

FIG. 6. (Color online) Results from numerical evaluation of
Eqs. (3), (9), and (14) [solid blue (dark gray) lines] and of the homo-
geneous version of Eq. (14) [dashed blue (dark gray) lines] for a range
of optical depths α0L, as indicated in the legends. The bandwidth of
each input pulse was �ω = 0.05�E = �2/(20

√
α0L/2γ ).

As shown in the appendix, the same approximations that
lead to Eqs. (6) and (7) give the following expression for the
spin wave S(z,t) in the limit when �E → ∞:

S(z,t) ≈ −g
√

N

�

[
E

(
0,t − z

vg

)
+ �2

R

∫ z
vg

0
dt ′E(0,t − t ′)t ′

+i�R

∫ z
vg

0
dt ′E ′∗(0,t − t ′)

]
. (15)

In Fig. 5(b), we compare the shape of the spin wave
that is obtained by numerically solving Eqs. (2)–(5) (solid
lines) to the predictions of Eq. (15) (dotted lines). As in
Fig. 5(a), we also include the predictions of an intermediate
approximation, which does not assume an infinite �E and
is described in Eqs. (A17) and (A23) in the appendix. The
reasonable agreement between the three curves in Fig. 5(b)
implies that Eq. (15) does indeed contain the essential physics.
In particular, under this approximation, the spin wave is
proportional to the signal field only, as in a traditional three-
level single-� EIT system [see Eq. (A23) in the appendix],

S(z,t) ≈ −g
√

N

�
E(z,t). (16)

Moreover, under this approximation, E(z,t) [and hence S(z,t)]
is mostly determined by the usual slowed-down version of the
input signal [first term in the square brackets in Eq. (15)] with
small corrections of order |�R|L/vg ∼ α0Lγ/�hf [third term
in square brackets in Eq. (15)] and (α0L)2γ 2/�2

hf [second term
in square brackets in Eq. (15)].
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FIG. 7. (Color online) Illustration of the modified storage
description. (a) During the writing stage, the input signal field E (top)
and Stokes field E ′ (middle) propagate at different group velocities
through the atomic medium, creating a spin wave (bottom). (b) During
the storage stage, the control field is turned off and no light fields
are present. Some portion of the signal field has propagated through
the cell and leaks out before the control field is extinguished. At
the same time, most of the information in the Stokes field is lost in the
leakage, since, in the regime (α0L)γ /� � 1, the propagation of the
Stokes field is affected by the atoms only weakly [see Eq. (7)].
The spin wave is preserved during storage. (c) During retrieval, the
control field is turned on, releasing the spin wave into both the signal
and Stokes fields, which exit the vapor cell.

Figure 7 illustrates an intuitive way to understand storage
under EIT-FWM conditions. At the beginning of the writing
stage, shown in Fig. 7(a), the control field (in black) prepares
the atoms and causes the input signal field E (in blue, top) to
propagate at a reduced group velocity. The Stokes pulse (in
red, middle) enters the cell and is not completely extinguished
inside the medium even after the reference pulse would
have left the medium. A collective spin coherence is created
in the atomic vapor cell (in green, bottom). As the pulses
propagate through the atomic medium, as shown in column (b),
they experience mutual interference effects and may become
distorted. The spin wave propagates along with the signal field.
The contributions to the spin wave are determined by the joint
mode F , and we can distinguish between the contributions to
the spin wave from the signal field (shown in light green) and
those of the Stokes field (shown in dark green) [see Eq. (15)].
In the regime of weak FWM, the propagation of the Stokes
field is only weakly affected by the atoms [see Eq. (7)], so that
much of the Stokes field leaves the end of the vapor cell as
leakage. Any information contained in this leaked field is lost
for the storage process, which commences when the control
field is shut down. After some time [column (c)], the control
field is turned on, and the spin wave is released into both the
signal and Stokes fields. It is important to note that, since the
joint mode F is not a normal mode, the proportion of Stokes
to signal is not fixed.

In the regime of weak FWM (α0L � 25), the joint mode
F(z,t) is determined mostly by the input signal field E . Thus,
the propagation dynamics experienced by the signal pulse will
be only slightly sensitive to the amplitude of the seeded Stokes
pulse [of order α0Lγ/�hf , see the last term in Eq. (6)], and
consequently the spin wave created will have the same weak
dependence on the seeded Stokes field [see the last term in
Eq. (15)]. Since the spin wave is only weakly dependent on
the input Stokes field, it is possible to create approximately the
same spin wave for different input combinations of signal and

FIG. 8. (Color online) Storage of a 15 µs (FWHM) truncated
Gaussian pulse at T = 70 ◦C (α0L = 52) under different Stokes
seeding conditions. Solid lines depict storage when the Stokes seed
amplitude is the same as the signal amplitude. The dashed lines
correspond to the case of a reduced input Stokes field. The black
traces show reference (input) pulses, and the dashed black trace in
the bottom plot illustrates the reduced Stokes seed amplitude. We
scaled the pulses to the maximum amplitude of the reference pulse
for the case of the full Stokes seed.

Stokes fields. The retrieval from the spin wave into the light
fields will consequently have this same weak dependence on
the input Stokes field.

Equations (6) and (7) support this conclusion. Specifically,
the amplitude of the retrieved signal field [Eq. (6)] is
determined primarily by the input signal field (the first term
on the RHS) with a small (α0Lγ/�hf)2 correction from the
input Stokes field (the third term on the RHS). Similarly, since
the first term on the RHS of Eq. (7) vanishes for t > 0, the
retrieved Stokes field is also determined primarily by the input
signal (the third term on the RHS) with a small (α0Lγ/�hf)2

correction from the input Stokes (the second term on the RHS).
At the same time, signal and Stokes outputs are more strongly
affected by the Stokes input for t < 0 (leaked pulses) than
for t > 0 (retrieved pulses). This statement is obvious for
the Stokes field, since the first term on the RHS of Eq. (7)
does not vanish for t < 0. The reason this statement holds
for the output signal is that the first term on the RHS of
Eq. (6) is smaller for t < 0 than for t > 0 for a sufficiently
large group delay, while the third term on the RHS of Eq. (6)
is larger for t < 0 than for t > 0 since E ′(0,t − t ′) vanishes
for t − t ′ > 0.

In Fig. 8, we display the results of an experiment designed
to test these conclusions. The top graph [Fig. 8(a)] depicts the
storage of a 15-µs-long (FWHM) truncated Gaussian signal
field at T = 70 ◦C (α0L = 52). The solid trace corresponds
to approximately equal amplitudes of input signal and Stokes
optical pulses, while the dashed traces correspond to a reduced
initial Stokes amplitude E ′∗(0,t) = −0.55E(0,t).

Notice the difference in the leakage portion (t < 0) of both
the signal pulse and the Stokes pulse as we go from solid
curves to dashed curves, which exemplifies that both signal and
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(a) (b)

FIG. 9. (Color online) Stokes behavior for increasing optical depths. For all cases, the two-photon detuning δ = 0. The black trace is
a reference pulse; the blue (dark gray) [red (light gray)] trace is the signal (Stokes) pulse. (a), (a′) Storage and retrieval of a 6-µs-long
(FWHM) truncated Gaussian pulse at T = 50 ◦C, which corresponds to an optical depth of α0L = 10. Here, �/(2π ) = 8.3 MHz. (b), (b′)
T = 67 ◦C (α0L = 41), pulse duration is 6 µs, �/(2π ) = 7.1 MHz. (c), (c′) T = 76 ◦C (α0L = 82), pulse duration is 20 µs, �/(2π ) =
12.7 MHz. (d), (d′) T = 80 ◦C (α0L = 110), pulse duration is 20 µs, �/(2π ) = 7.8 MHz. We scaled the pulses to the maximum amplitude of
the reference pulse.

Stokes outputs for t < 0 do depend strongly on the amplitude
of the seeded Stokes pulse, as we have explained theoretically
above and as we have reported previously [12]. At the same
time, the retrieved (t > 0) Stokes and signal pulses are both
almost independent of the amplitude of the seeded Stokes field,
which is consistent with the theoretical explanation above. We
repeated similar measurements many times under a wide range
of experimental conditions and found the retrieved pulses to
be weakly affected by the seeded Stokes amplitude as long
as the input signal field is comparable to or stronger than the
input Stokes field.

IV. OPTICAL DEPTH DEPENDENCE OF
THE STOKES FIELD

In this section, we present the results of storage experiments
at increasing optical depths.

Figure 9 depicts the evolution of the Stokes and signal
fields under storage conditions as the optical depth increases.
The general features of these results are well explained by
the simple signal and Stokes expressions in Eqs. (6) and
(7), as described below. In Figs. 9(a) and 9(a′), we show
the results of slow-light and stored-light experiments using a
6-µs-long (FWHM) truncated Gaussian pulse at a temperature
of T = 50 ◦C, which corresponds to an optical depth of
α0L = 10. The signal pulse [blue (dark gray) trace in Fig. 9(a)]
experiences a reduction in group velocity during propagation,
as seen by comparing the dashed trace (slow light) to the
black trace, which is a far-detuned reference pulse. The Stokes
pulse [red (light gray) trace in Fig. 9(a′)] closely mimics the
far-detuned reference pulse, indicating that four-wave mixing
is not a dominant process at this optical depth. In a separate
run, we investigate storage of these pulses by turning off
the control field for 100 µs. Upon retrieval, the signal field

[solid blue (dark gray) trace in Fig. 9(a)] is recovered with a
modest reduction in amplitude due to spin-wave decay during
the storage time, but its shape is preserved. Additionally, we
retrieve a small pulse on the Stokes channel [solid red (light
gray) trace in Fig. 9(a′)]. Equation (6) predicts that, at low
optical depths [(α0Lγ/�hf) � 1], the retrieved signal pulse
will be a delayed version of the input pulse (if one accounts
for the storage time), but with a slight modification due to the
Stokes field [the last term in Eq. (6)]. Likewise, the Stokes
field will be mostly unaffected by the atoms [the first term on
the RHS of Eq. (7)], so most of it will leak out (see t < 0).
However, a small Stokes pulse ∝ (α0L/�hf) generated from
the input Signal [the last term in Eq. (7)] will be retrieved.

Figures 9(b) and 9(b′) show the results of similar exper-
iments at T = 67 ◦C, corresponding to an optical depth of
α0L = 41. Here, the signal shape is again preserved by the
storage process. The four-wave mixing effects are exhibited
by the Stokes gain in the leakage portion of the pulse [see
Fig. 9(b′)], which leaves the interaction region before the
storage stage occurs. This gain is described by the last two
terms in Eq. (7). At this increased optical depth, the last term
in Eq. (7) also predicts an increased Stokes output for t > 0.
The effects of FWM are also apparent in the distortion that the
signal field experiences during propagation.

Figures 9(c) and 9(c′) depict the storage experiments at
T = 76 ◦C (α0L = 82). We used a longer pulse (FWHM of
20 µs). At this optical depth, the Stokes pulse experiences
more gain during propagation. Storage and retrieval, however,
still preserve the shapes of both the signal and the Stokes pulse.
Again, it is clear that the Stokes field gain predicted by Eq. (7)
becomes more apparent at higher optical depths. We also see
that, at α0L = 110 [column (d)], the Stokes field amplitude
is smaller than at α0L = 82 [column (c)]. This effect is most
likely due to the absorption of the control field by unprepared
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atoms that enter the interaction region during the waiting time.
We also note that, at α0L ≈ 100, the perturbative expansion
used to derive Eqs. (6) and (7) breaks down.

V. CONCLUSION

We have studied the phenomenon of stored light under
conditions of electromagnetically induced transparency (EIT)
and four-wave mixing (FWM) in an ensemble of hot Rb
atoms. In particular, we have investigated the prospect of
simultaneously storing both a signal and a Stokes pulse in
a single atomic coherence and have shown that independent
storage of two modes is not possible. The reason is that
most of the Stokes pulse leaks out of the medium during the
writing stage, so that, during retrieval, both output fields are
determined primarily by the input signal field and depend on
the input Stokes field only very weakly.

We presented a theoretical model based on a simple double-
� system, which agreed very well with experimental obser-
vations. This model allowed us to derive a simple relationship
between input and output fields, which explained the above
mentioned impossibility of two-mode storage. Furthermore,
we showed that a particularly convenient description of storage

in an EIT-FWM system involves a joint signal-Stokes mode,
whose dynamics we also studied. Quantum properties of our
system will be investigated in the future using the analysis
similar to that in Refs. [30–32].
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APPENDIX: DERIVATION OF EQS. (6), (7), (15), AND (16)

In the main text, we omitted the derivations of Eqs. (6), (7),
(15), and (16). In this appendix, we present these derivations.

Since experiments and numerics show that turning the
control field off and back on has a negligible effect on
the fields except for a delay and spin-wave decay during
the storage time, we solve Eqs. (2)–(5) in the main text
assuming a constant control field. In the comoving frame
(∂t + c∂z → c∂z) and by Fourier transforming in time (t → ω

and ∂t → −iω), Eqs. (2)–(5) can be written as

∂z

(
E(z,ω)
E ′∗(z,ω)

)
= i

α0γ

2F

(
ω + i�0 − �2

�hf
�2

�hf
− �2

�2
hf

(ω + i�)

) (
E(z,ω)
E ′∗(z,ω)

)
= M

(
E(z,ω)
E ′∗(z,ω)

)
, (A1)

where F = �2 + (� − iω)(�0 − iω) (see Eq. (2) in Ref. [12]).
To gain some intuition for how FWM may result in

amplification, one can consider a simple case, in which
the diagonal terms in the matrix M in Eq. (A1) vanish
(equivalently, one could consider the case where the Stokes
field also propagates in its own EIT medium). Approximating
further F → �2, we find that

M ≈ i
α0γ

2�hf

(
0 −1
1 0

)
(A2)

and has eigenvectors (1, ± i) with eigenvalues ± α0γ

2�hf
, cor-

responding to an exponentially growing solution and an

exponentially decaying solution. In our experiment, however,
the diagonal terms for the signal and the Stokes fields are very
different. Moreover, the effect of FWM is rather small and can,
in fact, be treated perturbatively, as we will show below.

We checked numerically that the last entry in the matrix M

in Eq. (A1) does not significantly affect our results. For ex-
ample, it gives a contribution to E ′(L,ω) of order α0Lγ 2/�2

hf ,
which will be negligible relative to other contributions of order
(α0L)2γ 2/�2

hf since α0L � 1. We will therefore neglect the
last entry in the matrix M in Eq. (A1) for the rest of this
appendix.

Equation (A1) can then be solved to give [11,12,20,23,25]

(
E(z,ω)
E ′∗(z,ω)

)
= eiσz

(
cosh(ξz) + i σ

ξ
sinh(ξz) i 2�R

β
sinh(ξz)

−i 2�R
β

sinh(ξz) cosh(ξz) − i σ
ξ

sinh(ξz)

)(
E(0,ω)
E ′∗(0,ω)

)
, (A3)

where �R = −�2/�hf , β = √
(�0 − iω)2 + 4�2

R, σ = α0γ

4F
(i�0 + ω), and ξ = α0γ

4F
β.

Using the convolution theorem, we then obtain

E(z,t) =
∫

dt ′E
(
0,t − t ′

)
f1(z,t ′) +

∫
dt ′E(0,t − t ′)f2(z,t ′) +

∫
dt ′E ′∗(0,t − t ′)f3(z,t ′), (A4)

E ′∗(z,t) = E ′∗(0,t) +
∫

dt ′E ′∗(0,t − t ′)g2(z,t ′) +
∫

dt ′E(0,t − t ′)g3(z,t ′), (A5)

where

f1(z,t ′) = 1

2π

∫
dωe2iσ ze−iωt ′ , (A6)
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FIG. 10. (Color online) Graphs of (a) f1(L,t), (a′) −h1(L,t), (b) f2(L,t), (b′) −h2(L,t), (c) Im[f3(L,t)] = −Im[g3(L,t)], (c′) −Im[h3(L,t)],
and (d) g2(L,t). For the calculations, �/(2π ) = 10 MHz, α0L = 80. Red curves show the result of numerical integration of the respective
expression in Eqs. (A6)–(A10), (A18)–(A20). Solid black curves show the approximate forms of the integrals given in Eqs. (A11)–(A15),
(A23), without taking the limit �E → ∞. The dashed black curves incorporate the �E → ∞ approximations in Eqs. (A11)–(A15), (A23).

f1(z,t ′) + f2(z,t ′) = 1

2π

∫
dωeiσz

[
cosh(ξz) + i

σ

ξ
sinh(ξz)

]
e−iωt ′ , (A7)

f3(z,t ′) = 1

2π

∫
dωeiσzi

2�R

β
sinh(ξz)e−iωt ′ , (A8)

δ(t ′) + g2(z,t ′) = 1

2π

∫
dωeiσz

[
cosh(ξz) − i

σ

ξ
sinh(ξz)

]
e−iωt ′ , (A9)

g3(z,t ′) = −f3(z,t ′). (A10)

Here, f1 and f2 are defined in such a way that f1 captures pure EIT, while f2 describes how FWM changes the relationship
between the input signal and the output signal. f3 describes the effect of the input Stokes field on the output signal. Similarly,
the first term in Eq. (A5) describes pure undistorted propagation of the Stokes field in the absence of FWM. g2 describes how
FWM changes the relationship between the input Stokes field and the output Stokes field. Finally, g3 describes the effect of the
input signal on the output Stokes field.

To get some insight into the behavior of fi and gi , we consider the case δ = δs (generalization to arbitrary δ is straightforward).
We further take the limit γ0 = 0, which is a reasonable approximation in our experiment, except during the waiting time between
writing and retrieval (however, again one can easily generalize the derivation below to γ0 �= 0). Furthermore, we expand f2 and
g2 to second order in 1/�hf and expand f3 and g3 to first order in 1/�hf ; in other words, we treat FWM perturbatively, which
is a good approximation in our experiment, except in Figs. 9(c) and 9(d). Furthermore, we approximate [12] 2iσ → i ω

vg
− ω2

L�2
E
,

where vg = 2�2

α0γ
is the EIT group velocity and �E = �2

γ
√

α0L/2
is the width of the EIT transparency window. We then find

f1(z,t ′) ≈ �Ee−�2
E

L
4z

(t ′−z/vg )2

2
√

πz/L
≈ δ(t ′ − z/vg), (A11)

f2(z,t ′) ≈ �2
R

[
− e−�2

E
L
4z

(t ′−z/vg )2

2�E
√

πL/z
+ 1

2
|t ′| + 1

2
t ′erf

{
�E(z/vg − t ′)

2
√

z/L

}]
≈ �2

Rt ′�[0,z/vg](t ′), (A12)

f3(z,t ′) ≈ i�R

2

(
sgn[t ′] + erf

{
�E(z/vg − t ′)

2
√

z/L

})
≈ i�R�[0,z/vg](t ′), (A13)

g2(z,t ′) ≈ �2
R

[
− zδ(t ′)

�2
EL

+ e−�2
E

L
4z

(t ′−z/vg )2

�E
√

πL/z
+ z/vg − t ′

2

(
erf

{
�E(z/vg − t ′)

2
√

z/L

}
+ sgn[t ′]

) ]
≈ �2

R(z/vg − t ′)�[0,z/vg](t ′),

(A14)

g3(z,t ′) = −f3(z,t ′). (A15)
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Here erf is the error function, the sign function sgn[t ′] = 1 for t ′ � 0 and −1 otherwise, and the box function �[x,y](t) = 1
for x < t < y and 0 otherwise. The second approximation in Eqs. (A11)–(A15) is done in the limit �E → ∞ (the case of an
infinitely wide EIT window). Using the �E → ∞ expressions, we arrive at Eqs. (6) and (7).

In Figs. 10(a)–10(d), we plot the functions fj and gj for j = 1,2,3 and the two approximate forms described above. Red
curves depict the results of numerical integration of Eqs. (A6)–(A10), with experimental variables α0L = 80 and �/(2π ) =
10 MHz, so that �R/(2π ) = −14.6 kHz, �E/(2π ) = 105 kHz, and vg/(2πL) = 16.7 kHz. Because the light pulses E and E ′∗
have a finite bandwidth, we chose an integration bandwidth of (2π )160 MHz, and we have checked that a larger range does not
significantly affect the results. Solid black curves in Figs. 10(a)–10(d) plot the first approximations in Eqs. (A11)–(A15); dashed
black lines show the corresponding �E → ∞ expressions in Eqs. (A11)–(A15).

Let us now compute S(z,t). From Eqs. (4) and (5), we have

S(z,ω) = −g
√

N�

F

[
E(z,ω) − i

� − iω

�hf
E ′∗(z,ω)

]
, (A16)

where E(z,ω) and E ′∗(z,ω) are given in Eq. (A3).
We can then write

S(z,t) =
∫

dt ′E(0,t − t ′)h1(z,t ′) +
∫

dt ′E(0,t − t ′)h2(z,t ′) +
∫

dt ′E ′∗(0,t − t ′)h3(z,t ′), (A17)

where h1 describes pure EIT, while h2 and h3 are the results of FWM. Functions hj can be computed as

h1(z,t ′) = 1

2π

∫
dω

−g
√

N�

F
e2iσ ze−iωt ′ , (A18)

h1(z,t ′) + h2(z,t ′) = 1

2π

∫
dω

−g
√

N�

F
eiσz

[
cosh(ξz) +

(
i
σ

ξ
− 2�R(� − iω)

β�hf

)
sinh(ξz)

]
e−iωt ′ , (A19)

h3(z,t ′) = 1

2π

∫
dω

g
√

N�

F
eiσz

[
i
� − iω

�hf
cosh(ξz) +

(
σ (� − iω)

ξ�hf
− i

2�R

β

)
sinh(ξz)

]
E−iωt ′ . (A20)

Expanding h2 to O(1/�2
hf) and h3 to O(1/�hf), the above

expressions simplify to

h2(z,t ′)

≈ 1

2π

∫
dω

g
√

N�3[F + e2iσ z(2i�2σz − F )]

F�2
hf(ω + i�0)2

e−iωt ′ ,

(A21)

h3(z,t ′)

≈ 1

2π

∫
dω

g
√

N�(�2e2iσ z − F )

�hf(ω + i�0)F
e−iωt ′ . (A22)

Taking δ = δs , γ0 = 0, 2iσ ≈ i ω
vg

− ω2

L�2
E

, and F ≈ �2, we
have

hj (z,t ′) ≈ −g
√

N

�
fj (z,t ′) (A23)

for j = 1,2,3, where the expressions for fj (z,t ′) are given
in Eqs. (A11)–(A13). Plugging Eq. (A23) into Eq. (A17)
yields an expression that is proportional to the signal field
E(z,t) in Eq. (A4). Thus, under these approximations, we
obtain Eq. (16), which is, remarkably, the usual EIT relation.
Specifically, in the limit of an infinitely wide EIT window,
S(z,t) can be found by plugging Eq. (A23) [with the cor-
responding �E → ∞ expressions for fj from Eqs. (A11)–
(A13)] into Eq. (A17) to yield Eq. (15). The expressions
for |h1(L,t)|, |h2(L,t)|, and |Im[h3(L,t)]| are plotted in
Figs. 10(a′), 10(b′), and 10(c′), respectively. As before, red
traces depict the results of numerical integration of Eqs. (A18)–
(A20) with the same input parameters as in the fj and
gj analysis. The solid black curves plot Eq. (A23) using
the finite �E expressions for fj from Eqs. (A11)–(A13).
The dashed black lines show the corresponding �E → ∞
expressions.
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