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Generation of optical vortices in layered helical waveguides
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We study the possibility of changing the topological charge of incident beams by layered helical structures
consisting of planar layers. We show that such structures can effectively change the topological charge of the
incoming beam by unity. The problem of the fundamental mode and optical vortex passage through such a layered
helical waveguide of a finite length is solved. The spectral characteristics of these processes are obtained. It is
shown that such a waveguide can operate as a broadband compact generator of optical vortices from both regular
and singular beams.
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I. INTRODUCTION

The problem of generation of optical vortices (OVs) [1,2]—
singularities of phase fronts—has become a classical topic of
singular optics. The interest in this problem has been raised due
to numerous practical applications of OVs, which encompass
such different fields of applied physics as particle trapping [3]
and singular beam microscopy [4], micromechanics [5], and
astrophysics [6]. Especially promising seems to be the use of
OVs as states with a well-defined orbital angular momentum
for both classical and quantum information encryption [7] and
storage [8]. A number of methods of OV generation have been
suggested to date, including generation of vortex beams by lens
converters [9], spiral phase plates [10], synthesized holograms
[11], and others [12]. Among such methods one can single
out a special class, which is connected with the generation
of OVs by optical fibers [13]. In this class one of the most
elegant methods is concerned with OV generation by helical-
core optical fibers. The first experimental demonstration of this
phenomenon (without its recognition) dates back to the paper
by Poole et al., where they showed mode conversion of the
fundamental fiber mode into the field, which is now recognized
as the OV [14]. Later on it was shown that such a property
of transforming HE11 modes into a specific superposition of
LP01 and LP11 modes is inherent in other types of helical
fiber gratings [15]. The methods of manufacturing helical-core
fibers by drawing from a special perform are promising [16].
A theoretical treatment of this question has been provided in
Refs. [17] and [18]. In those papers it has been emphasized
that Bragg helical gratings created in fibers render them unique
properties concerned with OV guidance.

Whereas it is quite understandable how to produce long-
period helical fiber gratings (LPHFGs), it is not clear whether
it is possible to create a helical Bragg grating in the fiber.
Theoretical models of such gratings implied in Refs. [17] and
[18] seem to be quite speculative and abstract. In that regard
it is desirable to study more realistic models of engineered
helical fiber structures, which could be based on possibilities
provided by modern state-of-the-art nanoengineering. It seems
natural in this connection to rely on ideas put forward in the
field of thin-film sculpturing [19,20]. Recent papers report
very impressive results on the fabrication of artificial chiral
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media [21–23], which draw increasing amounts of attention
from both theoreticians and experimenters [24,25].

In this paper we study the property of a chiral structure
that consists of planar layers to generate OVs from regular
beams. The refractive-index distribution in a layer is assumed
to possess axial symmetry and is maximal in the central point.
If the structure is built of such identical layers and the central
points lay on a regular helix, such a structure may possess
pronounced waveguiding properties. In this case one could
speak of it as a layered helical waveguide.

The first aim of our paper is to study the possibility of
conversion of the fundamental mode into an OV in such a
layered structure. We show that in this case the specific way
of producing a long-period grating does not affect the ability
of layered waveguides to alter the topological charge of the
incoming field. We also obtain the spectral characteristics of
generators of OVs based on layered helical waveguides, which
constitutes the second aim of the present paper. One should
emphasize that in our earlier paper [18] we solved only the
problem of a HE11 mode to vortex conversion in an infinitely
long fiber. Solving a realistic problem of fundamental mode
passage through a layered helical waveguide of a finite length,
we show that such a thin-film waveguide can operate as a
broadband OV generator.

II. THE MODEL AND BASIC EQUATIONS

In a layered structure the distribution of the refractive index
is given in the most general form as n(x ′(z),y ′(z)), where
(x ′,y ′) are the Cartesian coordinates introduced in a layer and
z is the vertical coordinate of the layer. Let us assume that
in the layer n is described by an axially symmetric function
ñ: n(x ′,y ′) = ñ(r ′), where r

′2 = x ′2 + y ′2. The location of
origin r ′ = 0 is engineered, and in case the origins form the
helical curve, one can speak of a layered helical structure. If
ñ is maximal at r ′ = 0 the obtained structure may possess
waveguiding properties. Figure 1 illustrates the step-index
layered helical waveguide. As can be easily shown, in the
global Cartesian frame (x,y,z) the refractive index reads
as

n(x,y,z) = n(r ′) ≡ ñ(
√

r2 + R2 − 2rR cos(ϕ − qz)), (1)

where R is the offset, q = 2π/H , H is the pitch of helix,
and cylindrical-polar coordinates (r,ϕ,z) connected with the
global Cartesian frame are implied. After an evident change of
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FIG. 1. (Color online) Schematic view of a layered helical
waveguide and orientation of global (XYZ) and local (X′Y ′Z′)
Cartesian coordinate frames.

variables r̃ = r, z̃ = z, ϕ̃ = ϕ − qz, one can bring the scalar
wave equation that describes propagation of light in such a
layered waveguide to the form

{
∂2

∂r̃2
+ 1

r̃

∂

∂r̃
+ 1

r̃2

∂2

∂ϕ̃2
+

(
∂

∂z̃
− q

∂

∂ϕ̃

)2

+ k2ñ2(
√

r̃2 + R2 − 2r̃R cos ϕ̃)

}
�Et (r̃ ,ϕ̃,z̃) = 0, (2)

where �Et is the transverse electric field, and k is the wave
number in vacuum. In what follows we will assume that R �
r0, where r0 is the scale of transverse variations of the refractive
index. For a step-index structure r0 can be associated with
the core’s radius. This assumption enables one to simplify
the expression for r ′, r ′ ≈ r̃ − R cos ϕ̃, which leads to the
following refractive-index distribution:

n2(r,ϕ̃) ≈ n2
co[1 − 2�f (r)] + 2�f ′

rR cos ϕ̃. (3)

Here nco is the refractive index at r ′ = 0, f is some
profile function, and � is the refractive-index contrast in
the transverse plane (cf. notations used in Ref. [26]). In
the following we will omit the tilde over r since r = r̃ .
Since Eq. (2) is translation invariant in z, one can use
the standard representation �Et = �et (r,ϕ̃) exp(iβz̃), where β

is some propagation constant. This leads to the following
equation, which is completely analogous to Eq. (6) obtained
in Ref. [17]:{

∂2

∂r2
+ 1

r

∂

∂r
+ 1

r2

∂2

∂ϕ̃2
+

(
iβ − q

∂

∂ϕ̃

)2

+ k2ñ2(r) + 2k2n2
co�f ′

rR cos ϕ̃

}
�et (r,ϕ̃) = 0. (4)

At R = 0, q = 0, this equation describes propagation of
light in an effective straight waveguide (see Ref. [26]), whose
modes can be written in the basis of linear polarizations [27]

|e〉 = (
ex

ey
) as

|σ,l〉 =
(

1

iσ

)
exp(ilϕ̃)Fl(r), (5)

FIG. 2. Zero-approximation spectra of eigenmodes of the ma-
trix Ĥ1(A = 0) as functions of the grating parameter q; q0 =
5355.75 m−1. The type of mode is indicated over the spectral curve.
Note that all the eigenmodes have the same polarization.

where σ = ±1, l = 0, ± 1, ± 2, . . ., and Fl satisfies the stan-
dard equation in the radial function [26]. Propagation constants
of such zero-approximation modes are denoted as β̃l . To study
intermodal coupling between |l| ≡ � = 1 OVs and fundamen-
tal modes, one can average Eq. (4) over the basis of the six
vectors in Eq. (5) that belong to the � = 0 and � = 1 sets [27]:
{|1,0〉,|1,1〉,|1, − 1〉} ⊕ {|−1,0〉,|−1, − 1〉,|−1,1〉}. The av-
eraging is carried out according to the standard rule [17,27].
Then the structure of coupled � = 0,1 modes is defined through
the solutions of the eigenvector equation Ĥ �x = 0, where �x
is a vector defined in a six-dimensional space of � = 0,1
zero-approximation modes and Ĥ = Ĥ1 ⊕ Ĥ2, where

Ĥ1 = Ĥ2 =

⎛
⎜⎝

β̃2
0 − β2 A A

A β̃2
1 − (β − q)2 0

A 0 β̃2
1 − (β + q)2

⎞
⎟⎠ .

(6)

For steplike dependence of the refractive index one has (see

also Ref. [17]) A = (�k2n2
coF0F1

N0N1

R
r0

)ρ=1, Ni =
√∫

xF 2
i dx, where

ρ = r/r0. The spectrum of modes in a zero approximation
reads as β1,2 = ±β̃0, β3,4 = ±β̃1 + q, β5,6 = ±β̃1 − q, and is
presented in Fig. 2.

As follows from the results of Refs. [17] and [18], in the
points where the zero-approximation spectrum curves inter-
sect, there takes place intensive coupling between forward-
or backward-propagating � = 0 and � = 1 modes. Such are
the points (a) (see Fig. 2), where the coupling of forward-
propagating zero-approximation modes takes place, and (b)
where backward-propagating modes get coupled. The grating
parameter q in these points satisfies the resonance condition
q = q0 ≡ β̃0 − β̃1. In the vicinity of q0 the structure of coupled
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modes is given by the following expressions:

|	1a〉 = {cos χ |1,0〉 exp[i(β̃0 + 0.5ε)z] + sin χ |1,1〉
× exp[i(β̃1 − 0.5ε)z]} exp

(
iz

2

√
ε2 + Q2

)
,

|	2a〉 = {− sin χ |1,0〉 exp[i(β̃0 + 0.5ε)z] + cos χ |1,1〉
× exp[i(β̃1 − 0.5ε)z]} exp

(
− iz

2

√
ε2 + Q2

)
,

|	3b〉 = {− sin χ |1,0〉 exp[−i(β̃0 + 0.5ε)z] + cos χ |1, − 1〉
× exp[−i(β̃1 − 0.5ε)z]} exp

(
iz

2

√
ε2 + Q2

)
,

|	4b〉 = {cos χ |1,0〉 exp[−i(β̃0 + 0.5ε)z] + sin χ |1, − 1〉
× exp[−i(β̃1 − 0.5ε)z]} exp

(
− iz

2

√
ε2 + Q2

)
,

(7)

where ε = q − q0, tan χ = Q/(
√

ε2 + Q2 − ε), Q ≈ A/β̃0,
and χ ∈ [π

4 , π
2 ]. Note that the modes |	3,4b〉 are formed

due to coupling of backward-propagating zero-approximation
modes. Equations (7) are sufficient to describe mode conver-
sion in layered helical waveguides.

III. GENERATION OF OPTICAL VORTICES
IN LAYERED WAVEGUIDES

Near the resonance point, due to a strong coupling between
forward-propagating � = 0,1 modes, helical core fibers may
change the topological charge of the incoming field. Using
the results of Ref. [18], one can demonstrate that if at the
input end of an infinitely long helical core fiber one excites the
fundamental mode |1,0〉, it evolves in the fiber as

|�(z)〉 =
{[

cos(0.5z
√

ε2 + Q2) + iε√
ε2 + Q2

× sin(0.5z
√

ε2 + Q2)

]
|1,0〉 + iQ√

ε2 + Q2

× sin(0.5z
√

ε2 + Q2)|1,1〉
}

exp[i(β̃1 + 0.5ε)z].

(8)

A complete transformation of the |1,0〉 mode into the |1,1〉
OV is possible only at a zero detuning, ε = 0. As is evident, at

z = Sm = (2m − 1)π

Q
, (9)

where m = 1,2, . . ., the cosine term vanishes and the resulting
field is represented by an OV of topological charge 1,
|�(Sm)〉 ∝ |1,1〉. The last relation conveys the conversion of
the fundamental mode into the OV. Typical values of conver-
sion length in infinite fibers are of 10−3 m order. For example,
for a fiber with parameters V = 5.96, r0 = 10λ, R/r0 = 0.1,
nco = 1.5, � = 0.002 at wavelength λ = 0.6328 × 10−6 m,
the length of conversion |1,0〉 → |1,1〉 is S̃1 = 0.0016 m. This
length can be diminished by increasing the optical contrast (the
value of �) or by increasing the ratio R/r0. It is natural to set
the fiber’s length d to Sm while studying the realistic problem

FIG. 3. (Color online) Orientation of the coordinate frame in the
problem of passage of an incident light beam (IB) through a section
of a layered helical waveguide of length d.

of OV generation by a finite-length fiber. The geometry of the
problem is shown in Fig. 3.

Following Ref. [28], consider the problem of excitation of
the helical layered fiber with the fundamental-like Gaussian
mode, which at the condition of waist size matching [26] can
be approximated by the |1,0〉 vector. Then in the left half-space
the field can be represented in the form

|�1(z � 0)〉 = |1,0〉eikz + R1|1,0〉e−ikz + R2|1,1〉e−ikz

+R3|1, − 1〉e−ikz. (10)

Here we have taken into account that, due to topological ac-
tivity of the helical fiber, the reflected field may also comprise
OVs of charge ±1. Note that since the perturbation term in
Eq. (4) does not couple the states with different polarizations,
no leftcircularly polarized components are present in the
reflected field.

The field within the fiber is given by

|�2(0 � z � d)〉 = T1|ψ1a〉 + T2|ψ2a〉 + T3|ψ3b〉 + T4|ψ4b〉
+ T5|1,1〉e−iβ̃1z + T6|1, − 1〉eiβ̃1z. (11)

On the right-hand side of the fiber the field will be
represented as

|�3(z � d)〉 = (P1|1,0〉 + P2|1,1〉 + P3|1, − 1〉)eik(z−d).

(12)

Here Ri , Ti , and Pi are the unknown coefficients. Matching
the fields and their derivatives with respect to z enables one to
obtain the set of linear algebraic equations in the unknown
coefficients. Figure 4 demonstrates the dependence of the
transmission coefficient |P2|2 for OV |1,1〉 on the wavelength
λ of the incoming field for d = S1. As is seen, in this case such
a layered structure operates as a broadband generator of OVs.
The generation of the OV is accompanied by a simultaneous
dip in the transmission coefficient |P1|2 of the fundamental
mode, shown in Fig. 5. As the order m of the conversion
length Sm increases, the transmission curve for |P2|2 features
a number of peaks located at different wavelengths (see Fig. 6).
Simultaneously, the width of the peaks decreases.

As is evident, the curves in Figs. 4–6 feature the presence
of two strongly differing scales of variation with wavelength.
This is connected with the presence of two scales in coef-
ficients, which determine the set of equations in reflection
and transmission coefficients. Indeed, matching the fields at
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FIG. 4. The dependence of the transmission coefficient |P2|2 for
OV |1,1〉 on the wavelength λ of the incoming field at the fiber’s length
d = S1 = 0.0033 m, central wavelength λ0 = 0.6328 × 10−6 m,
V = 5.96, r0 = 10λ0, R/r0 = 0.1, nco = 1.5, and � = 0.002.

the right-hand boundary of the fiber leads to the appearance
of factors exp(iβ̃ld) and exp(− id

2

√
ε2 + Q2) [see Eq. (7)] in

the structure of such coefficients. Using the approximation
β̃l ≈ 2πnco/λ, one can readily obtain the decomposition of
this factor near some central wavelength λ0 in the form
exp[iβ̃l(λ0)d(1 + �λ

λ0
)], where �λ = λ − λ0, which leads to

oscillations on the scale �1 = λ0

β̃l (λ0)d
. Since in our case

β̃ld � 1 (as a matter of fact, it has the order of 103–104 at
d = S1) essential variations of this factor takes place even
at �λ = 10−3λ0–10−4λ0, which explains the presence of a
superfine structure of transmission and reflection curves shown
in the insets in Figs. 4–6. This phenomenon is well known in
the optics of layered media [29] and is associated with an
action of the medium as a whole. For chiral fibers this is also
a well-established fact [28].

In the same manner one can explain the presence of
larger-scale variations presented in Fig. 6. Although the
superfine structure is also present (see the inset), there are
large-scale oscillations due to another periodic in �λ factor of
exp(− id

2

√
ε2 + Q2), which can be decomposed at ε = 0 as

exp[− id
2 Q(λ0) − id

2 Q′(λ0)�λ]. Since Q′(λ0) ≈ −Q(λ0)/λ0

the scale of variations associated with this term is �2 = λ0
Q(λ0)d .

Due to the inequality Q/β̃l � 1, this term appears to be less
sensitive to variations of �λ than the previously discussed
one and is responsible for large-scale oscillations of the
transmission coefficient.

Even a superficial comparison with the corresponding result
of Ref. [18] reveals that the spectral width of OV generation
in a layered helical waveguide is greater than the one for
a helical-core fiber. Basically, this is connected with the
difference in the ways of creating the helical perturbation of the
refractive-index distribution. Whereas in layered waveguides
the helical distribution is created by displacement of layers, in
helical-core fibers the perturbation term arises due to purely
geometric factors. This leads to their different dependence
on parameters of the helical grating. In helical-core fibers
the perturbation term that provides the coupling of OVs
and fundamental modes is proportional to the curvature κ

of the central line, κ ≈ 4π2R/H 2, for long-period gratings.
As is evident, the strength of the coupling depends on pitch
H and for long-period helical-core fibers it decreases. In
contrast, for layered waveguides the perturbation term does
not depend on the grating’s pitch and in this way ensures more
effective coupling of modes, which results in a greater width
of transmission curves.

IV. CONVERSION OF HIGHER-ORDER OPTICAL
VORTICES

In the same manner one can study the transformation of
OVs with higher values of the topological charge. Let us
consider the case of mode conversion between charge-1 and
charge-2 OVs. To this end one should build the matrix of the
total operator Ĥ on the left-hand side of Eq. (4) on the basis
of zero-approximation vectors {|1,1〉,|1, − 1〉,|1,2〉,|1, − 2〉}
that belong to eigenvalues β̃1 and β̃2. Note that once again these
vectors have the same polarization, which reflects separability
of the zero-approximation solutions in polarization. The
corresponding matrix reads as

H̃ =

⎛
⎜⎜⎜⎜⎝

β̃2
1 − (β − q)2 0 B 0

0 β̃2
1 − (β + q)2 0 B

B 0 β̃2
2 − (β − 2q)2 0

0 B 0 β̃2
2 − (β + 2q)2

⎞
⎟⎟⎟⎟⎠ , (13)

where the coupling constant is B = (�k2n2
coF1F2

N1N2

R
r0

)ρ=1.
Zero-approximation spectra (at B = 0) have the
form

β1,2 = ±β̃1 + q, β3,4 = ±β̃1 − q,
(14)

β5,6 = ±β̃2 + 2q, β7,8 = ±β̃2 − 2q.

The plots of the spectrum curves are shown in Fig. 7. These
curves intersect in the points (a)–(d), where the kinematic
resonance conditions are satisfied. In these points the spectral

curves may get coupled, which corresponds to resonance
coupling of related OVs. However, to ensure such coupling the
dynamical condition must also be fulfilled: The corresponding
matrix element of the perturbation operator built over those
states must be nonzero. Since in our approximation the
perturbation term is proportional to cos ϕ̃, it can couple only
the states whose orbital numbers differ by unity. That is why
no mode coupling takes place near points (c) and (d): The
orbital numbers of OVs, whose spectral curves intersect in
those points, differ by 3.
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FIG. 5. The dependence of the transmission coefficient |P1|2 of
the fundamental mode |1,0〉 on the wavelength λ at the fiber’s length
d = S1, central wavelength λ0 = 0.6328 × 10−6 m, V = 5.96, r0 =
10λ0, R/r0 = 0.1, nco = 1.5, and � = 0.002.

Near points (a) and (b), where the kinematical resonance
condition q = q1 ≡ β̃1 − β̃2 is fulfilled, the dimension of the
eigenvalue equation can be reduced. For example, near (a) one
has (

β̃2
1 − (β − q)2 B

B β̃2
2 − (β − 2q)2

)
�x = 0, (15)

where �x = col(a,b) stands for the hybrid mode a|1,1〉 +
b|1,2〉. The expressions for the coupled modes near points
(a) and (b) read as

|ψ1a〉 = {cos χ2|1,1〉 exp[i(β̃1 + 0.5ε′)z] + sin χ2|1,2〉
× exp[i(β̃2 − 0.5ε′)z]} exp

(
iz

2

√
ε′2 + P 2

)
,

FIG. 6. Transmission coefficient |P2|2 for OV |1,1〉 vs wavelength
λ at the fiber’s length d = S500, central wavelength λ0 = 0.6328 ×
10−6 m, V = 5.96, r0 = 10λ0, R/r0 = 0.1, nco = 1.5, and � =
0.002.

FIG. 7. Zero-approximation spectra of eigenmodes of the matrix
Ĥ (B = 0) as functions of the grating parameter q; q1 = 6888.6 m−1.
The type of mode is indicated over the spectral curve.

|ψ2a〉 = {− sin χ2|1,1〉 exp[i(β̃1 + 0.5ε′)z] + cos χ2|1,2〉
× exp[i(β̃2 − 0.5ε′)z]} exp

(
− iz

2

√
ε′2 + P 2

)
, (16)

|ψ1b〉 = {− sin χ2|1, − 1〉 exp[−i(β̃1 + 0.5ε′)z]

+ cos χ2|1, − 2〉 exp[−i(β̃2 − 0.5ε′)z]}
× exp

(
iz

2

√
ε′2 + P 2

)
,

|ψ2b〉 = {cos χ2|1, − 1〉 exp[−i(β̃1 + 0.5ε′)z]

+ sin χ2|1, − 2〉 exp[−i(β̃2 − 0.5ε)z]}
× exp

(
− iz

2

√
ε′2 + P 2

)
(17)

where tan χ2 = P/(
√

ε′2 + P 2 − ε′), P = B/β̃1, ε′ =
q − β̃1 + β̃2, and χ2 ∈ [π

4 , π
2 ].

In the same manner one can study the resonance conversion
of OVs by a segment of such a fiber near the resonance points.
For example, if the vortex |1,1〉 is incident at the input end it
gives rise to the following fields outside the fiber and within in

|�(z � 0)〉 = |1,1〉eikz + R1|1,1〉e−ikz + R2|1,2〉e−ikz

+R3|1, − 1〉e−ikz + R4|1, − 2〉e−ikz,

|�2(0 � z � d)〉 = T1|ψ1a〉 + T2|ψ2a〉 + T3|ψ1b〉 + T4|ψ2b〉
+ T5|1,1〉e−iβ̃1z + T6|1,2〉e−iβ̃2z

+ T7|1, − 1〉eiβ̃1z + T8|1, − 2〉eiβ̃2z,

|�3(z � d)〉 = (P1|1,1〉 + P2|1,2〉 + P3|1, − 1〉
+P4|1, − 2〉)eik(z−d). (18)

Matching the fields and their derivatives on the boundaries
enables one to determine the transition coefficients of con-
stituent OVs. The conversion of OVs in an infinitely long fiber
takes place at the distances [18]

S̃m = (2m − 1)π

P
, (19)

where m is an integer. Analogously, we set d = S̃m

to study the transmission curves. Figure 8 shows the
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FIG. 8. Transmission coefficients for OVs: (a) |1,1〉 and (b) |1,2〉
vs wavelength λ for incident OV |1,1〉. The fiber’s length d = S̃1 =
0.0016 m, central wavelength λ0 = 0.6328 × 10−6 m, V = 5.96,
r0 = 10λ0, R/r0 = 0.1, nco = 1.5, and � = 0.002. (c) and (d)
Transmission coefficients for |1,1〉 and |1,2〉 OVs, respectively, at
d = S̃500.

transmission curves of certain OVs for various fiber
lengths.

The examples of transformations of incoming fields given
above, which are accompanied by the change in topological
charge, show that such a system possesses both the features
of broadband transformation and diminutiveness. Indeed, the
minimal conversion length S1 has the order of a millimeter.
This could be very important in the creation of miniature

devices for topological charge control in communication optics
based on information encoding on states with an orbital angular
momentum. It should be emphasized that all the existing
analogs lack this property. Moreover, there is the potential
of further decreasing the longitudinal size of such converters.
It is connected with the fact that the kinematical resonance
condition q = qi , which sets the lower limit to the grating’s
pitch, does not pose limitations to the minimal length S1 (or
S̃1), at which the mode conversion takes place. The latter is
rather related to the dynamical resonance conditions Eqs. (9)
and (19) that involve the value of the matrix elements and
not the difference in scalar propagation constants. In this way
it is possible to decrease the minimal conversion length by
increasing the mode coupling constants. For example, since
the latter depend on an offset to core’s radius ratio R/r0, there
is the possibility of controlling the coupling by engineering
this geometrical parameter. In numerical simulations we have
assumed this ratio to be 0.1. Of course, increasing this ratio
may lead to certain radiation losses; however, since in this
situation we are not much concerned with effective light
guidance, this seems to be a reasonable price for further
miniaturization of the device. The availability of such compact
OV generators could also be useful while creating arrays of
OVs [30].

Finally, let us discuss in brief some questions concerning
the practicality of fabricating such layered waveguides and the
applicability of the existing methods to their manufacture. As
is evident, manufacturing LPHFGs is a much less challenging
problem as compared, for example, to the problem of making
such structures with a subwavelength pitch. Historically, the
first such grating was produced by wiring a two-mode fiber
coupler [14]. At present, such structures are made either by
releasing the residual stress of a fiber without twisting it
by heating it with a CO2 laser beam [31] or by twisting it
with simultaneous heating of the working zone [16,32]. This
technique enables one to control the period of the grating,
however, it is less efficient in controlling the coupling strength,
which depends on the geometry of a lateral cross section of
the fiber. Besides, the evolution of the input beam may be
strongly complicated by the scattering of the core modes into
the cladding modes of the fiber [33].

The required accuracy of manufacturing such gratings can
be achieved only with the use of modern nanoengineering
techniques. In the past decades several methods have been
developed for the fabrication of three-dimensional (3D) pho-
tonic structures. Among them are techniques which provide
relatively large structures in a parallel configuration: colloidal
self-assembly, holographic laser lithography, and phase-mask
holography. The creation on a nanoscale of multiple arrayed
chiral structures by such techniques has been reported [19].
Although such methods do not allow maintaining the circular
form of the individual fiber’s cross section, its form is not very
relevant for mode conversion. It is more important to control
the pitch of a helix. Deviation from the ideal circular form
may lead to deterioration of the conversion characteristics and
the appearance of other types of “parasitic” conversions into
other modes, which is mainly connected with the structure of
modes of waveguides with a noncircular cross section. It is
not quite clear, though, whether it is possible to fabricate by
such methods a solitary helical waveguide. Other methods of
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producing arrayed helical structures in sculptured thin films
by vapor deposition on a rotating substrate seem to be of less
relevance because of an essential difference in scales: The pitch
of the helices in such films varies from 20 to 1100 nm [19],
whereas the pitch in LPHFGs has to be several hundreds of
micrometers.

In view of this, it is more appropriate to suggest using the
methods concerned with direct laser writing for fabrication of
LPHFGs [21–23,34]. The obtained resolution of 180 nm for
extended structures would enable one to maintain the desired
accuracy of reproducing the transverse form of the helical
layered waveguide. Indeed, for R/r0 = 0.1 and r0 = 10λ0 the
offset R is of the wavelength order so that at λ0 = 630 nm
this accuracy is sufficient for fabrication of the waveguides
of the described type. It should be stressed that the direct
laser writing technique in the case of its applicability for
fabrication of LPHFGs would make it possible to fabricate
arrays of layered helical-core waveguides. In combination
with a recently discovered possibility to integrate straight
waveguides into a 3D photonic crystal [35], this could be used
for developing unique methods of creating OVs arrays.

V. CONCLUSION

In this paper we have studied the possibility of changing
the topological charge of incident beams by layered helical
waveguiding structures that consist of planar layers. We have
shown with the examples of Gaussian beam–optical vortex
and optical vortex–optical vortex transformations that such
structures can effectively change the topological charge of
the incoming beam by unity, provided the resonance coupling
conditions are fulfilled. We have solved the problems of
the fundamental mode and optical vortex passage through a
layered helical waveguide of a finite length. We have obtained
the spectral characteristics of these processes and shown that
such a waveguide can operate as a broadband generator of OVs
from both regular and singular beams.
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