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Tunable waveguide lattices with nonuniform parity-symmetric tunneling
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We investigate the single-particle time evolution and two-particle quantum correlations in a one-dimensional
N -site lattice with a site-dependent nearest-neighbor tunneling function tα(k) = t0[k(N − k)]α/2. Since the
bandwidth and the energy-level spacings for such a lattice both depend upon α, we show that the observable
properties of a wave packet, such as its spread and the relative phases of its constituents, vary dramatically as α is
varied from positive to negative values. We also find that the quantum correlations are exquisitely sensitive to the
form of the tunneling function. Our results suggest that arrays of waveguides with position-dependent evanescent
couplings will show rich dynamics with no counterpart in present-day, traditional systems.
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I. INTRODUCTION

Idealized lattice models have been popular in physics
due to their analytical and numerical tractability [1], the
absence of divergences associated with the ultraviolet cutoff
[2,3], the availability of exact solutions [4], and the ability
to capture counterintuitive physical phenomena including the
bound states in repulsive potentials [5]. Over the years, these
models have been successful in describing a diverse array of
physical systems with bosons, fermions, and quantum spins,
with short- or long-ranged interactions, such as electronic ma-
terials, optical lattices [6,7], and, most recently, evanescently
coupled optical waveguides [8]. The prototypical lattice mod-
els have a constant nearest-neighbor tunneling amplitude, and
the effects of ubiquitous disorder and imperfections are taken
into account via random impurity potentials and small, random
variations in the tunneling amplitude. They are sufficient
to capture important physical phenomena such as Anderson
localization [9].

In recent years, coupled optical waveguides have become a
paradigm for the realization of an ideal one-dimensional lattice
model with tunable tunneling and on-site potential, as well as
non-Hermitian parity- and time-reversal (PT ) -symmetric po-
tentials [10,11]. They have been used demonstrate several phe-
nomena from condensed-matter physics and quantum optics,
such as Bloch oscillations [12], Dirac zitterbewegung [13],
Talbot effect [14], and quantum random walks [15]. Anderson
localization due to random on-site potential, introduced by a
randomly varying refractive index, has been experimentally
observed in waveguides with a constant nearest-neighbor
tunneling [16]. Two-particle Anderson localization, quantum
statistics effects, and quantum and classical correlations have
been theoretically explored in such waveguides as well [17].
The spontaneous PT -symmetry breaking has been observed
in two coupled waveguides with PT -symmetric complex
index of refraction [18]. Most of these cases, with the notable
exception of Refs. [19,20], have primarily focused on on-site
disorder effects in a one-dimensional lattice with roughly
constant nearest-neighbor hopping that, in the continuum
limit, translate into disorder effects on particles with a
finite mass and a quadratic dispersion; a system with a
slowly varying hopping amplitude can be treated, in the
continuum limit, as a particle with a position-dependent,
local, effective mass. However, properties of itinerant quan-

tum particles in a lattice with position-dependent tunneling
amplitude have not been extensively explored, and, as we
will see below, are significantly different from those explored
heretofore.

In this paper, we show that a one-dimensional lattice
with position-dependent, parity-symmetric, tunneling function
tα(k) = t0[k(N − k)]α/2 = tα(N − k) has a rich dynamics with
no counterpart in the traditional lattice. The results that we
report here on single-particle propagation and localization and
two-particle correlations in such lattices can be investigated
in an array of coupled optical waveguides. Physically, one
would need to engineer the waveguides such that the coupling
between adjacent waveguides has the form mentioned above.
Globally, we find that the parameter α has a significant effect
on the evolution of the input wave packet, and that tuning
α allows one to tailor certain aspects of the wave packet
evolution.

Our salient results are as follows: (i) The spread of a
wave packet, after propagating a certain distance along the
waveguides, monotonically depends upon α; in particular,
when α <∼ −1, the wave packet spread is negligible for physical
propagation distances. (ii) When α = 1, the phase information
in the initial state of the particle is accessible only within
windows around certain propagation distances, and the size of
these windows can be controlled by the location of the input
waveguide; when α �= 1, this phase information is, in principle,
always accessible. (iii) For two quantum particles injected
into adjacent waveguides, the two-particle correlation function
is exquisitely sensitive to α and the location of the input
waveguide.

The plan of the paper is as follows. In Sec. II, we present
the tight-binding model. We discuss the tunneling function
(α) and lattice-size (N ) dependence of an initially localized
wave packet over different time scales. In Sec. III, we discuss
α-dependent two-particle quantum correlations and show that
the regions where bosons are anticorrelated can be controlled
by α. We conclude the paper with a brief discussion in
Sec. IV. As we discuss below, these results are not substantially
affected by a “weak” disorder. They show that coupled optical
waveguides with specifically engineered tunneling functions
may provide novel, heretofore unexplored, realizations of
lattice models with tunable energy levels, densities of states
[21], and two-particle correlations.
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II. TIGHT-BINDING MODEL

We consider an array of N waveguides described by the
Hamiltonian with open boundary conditions,

Hα = −
N−1∑

i=1

tα(i)(a†
i+1ai + a

†
i ai+1) +

N∑

i=1

via
†
i ai, (1)

where a
†
k is the creation operator for a particle at site k, tα(k)

is the tunneling amplitude between sites k and k + 1, and
vk represents the potential, determined by the local index of
refraction, at site k. The tunneling amplitude t(k) is determined
by the evanescent coupling between waveguides k and k + 1,
and can be tuned by varying the width of the barrier between
the two waveguides [19]. A Hamiltonian eigenfunction |ψn〉 =∑

k ψn
k a

†
k|0〉 with energy En satisfies the difference equation

tα(k − 1)ψn
k−1 + tα(k)ψn

k+1 = −En
αψn

k , (2)

where we have considered a constant index of refraction nR ,
which results in a constant shift in the energy eigenvalues. The
eigenvalue spectrum for Eq. (2) is symmetric about zero [22].
Hence the bandwidth of the spectrum, defined as the difference
between the maximum and minimum eigenvalues, is �α =
Emax − Emin = 2Emax. Note that when α > 0, the tunneling
function tα(k) is maximum at the center of the waveguide array
whereas when α < 0, it is maximum at the ends. As a result,
when N � 1 the bandwidth �α(N ) of the Hamiltonian Hα

increases monotonically with α. It is natural to use the inverse
bandwidth as the characteristic time, Tα = 2h̄/�α , and Lα =
cTα/nR as the characteristic distance along the waveguide
where h̄ = h/(2π ) is the scaled Planck constant and c/nR is
the speed of light in a waveguide. Note that since Tα and Lα are
monotonically decreasing functions of α, a waveguide array
with a fixed physical length will correspond to the “short-time”
scenario when α < 0 and the “long-time” scenario when
α > 0.

Figure 1 shows the time-evolution of a wave packet that
is initially localized in waveguide m0 = 5 in an array of
N = 25 waveguides. The vertical axis denotes distance along
the waveguide for a fixed physical length of the waveguide
L/(h̄c/nRt0) = 50. The three vertical panels correspond to
α = 0 (left), α = 1 (center), and α = −1 (right). When
α = 0, the traditional model, the wave packet broadens as it
travels down the length of the waveguide array. When α = 1,
the energy levels are given by En = ±t0(N − 1), ± t0(N −
3), . . .; the level spacing is constant and the bandwidth is
�α=1(N ) = 2(N − 1)t0 [20,21]. Therefore we obtain perfect
reconstruction of the wave packet, shown by white circles, at
mirror-symmetric positions (N + 1 − m0) = 21 and m0 = 5.
It should be noted that the wave packet first reconstructs at the
mirror symmetric waveguide, i.e., 21st site, and then alternates
between sites 5 and 21. For α = −1 (right panel), the wave
packet spread over the same distance along the waveguide is
significantly smaller, consistent with the smaller bandwidth
of the Hamiltonian. We emphasize here that, in contrast to a
particle in a box with commensurate energy levels, the energy
levels of a particle on a finite N -site lattice are, in general,
incommensurate. Therefore, generically, a quantum revival of
the wave packet does not occur.
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FIG. 1. (Color online) Time evolution in N = 25 waveguide
arrays with fixed dimensionless length L/(h̄c/nRt0) = 50. The top
three panels show the probability-amplitude time-evolution plots of
a single photon injected in waveguide m0 = 5 with α = 0 (left-hand
panel), α = +1 (center panel), and α = −1 (right-hand panel). When
α = 0 the wave packet, initially localized at m0 = 5, spreads as it
travels along the waveguide (left-hand panel). For α = 1, because
the energy levels are equidistant, the wave packet is periodically
localized at mirror symmetric positions (N + 1 − m0) = 21 and
m0 = 5 (white circles). When α = −1, the wave packet spread is
noticeably smaller over the same length of the waveguide. The
bottom panel shows the dimensionless bandwidth �α(N )/t0 vs N on a
logarithmic scale. We see that when α � 0, �α(N ) ∝ Nα , whereas for
α � −1, �α(N ) ∝ N−α/2. Therefore a sample with a given physical
length represents “short-time” evolution when α < 0 and “long-time”
evolution when α > 0.

To explore the intrinsic α dependence of the time evolution,
in the rest of the paper we consider waveguides with the
same normalized length L/Lα = 100; physically, this will
correspond to waveguides with different α-dependent lengths.
Figure 2 shows the time evolution of a wave packet initially at
m0 = 5 for α = 1 (left panel), α = 2 (center panel), and α =
−1 (right panel) in an array of N = 25 coupled waveguides.
The vertical axis shows distance (time) in the units of Lα(Tα).
Apart from the perfect reconstruction at mirror-symmetric
points that occurs when α = 1, we see that, in contrast to
the behavior in Fig. 1 the spread of the wave packet is
qualitatively similar for all α over the normalized length scales
(or time scales). The bottom panel shows, for α = −1, the time
evolution of a single photon injected near the edge, m0 = 2;
the horizontal axis shows the normalized distance (time). In
this case, the photon remains at the edge due to localized edge
eigenstates that are generically present when α < 0 [21].

Last, we consider a wave packet that is initally localized in
mirror-symmetric waveguides, |ψφ〉 = (|m0〉 + eiφ|N + 1 −
m0〉)/

√
2. We obtain the time evolution of the φ-dependent

probability amplitude A(φ,t,k) = |〈k|ψφ(t)〉| and use the
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FIG. 2. (Color online) Top panels show the time evolution of a
photon injected at m0 = 5 in an array of N = 25 waveguides with
α = 1 (left), α = 2 (center), and α = −1 (right). The wave-packet
spread is similar over normalized length scales. The bottom panel
shows, for α = −1, the time evolution of a photon injected near the
edge, m0 = 2. The strong localization of the photon near the edge
is due to the presence of localized edge eigenstates that occur when
α < 0.

maximal difference A(t,k) = A(0,t,k) − A(π/2,t,k) as the
indicator of the phase information. Note that since the
initial state is localized in two spatially separated regions,
information about the phase φ will become visible in A(t,k)
only after a time when the partial waves from the two
mirror-symmetric sites interfere with each other. Figure 3
showsA(t,k) for an array of N = 25 waveguides with m0 = 1,
where the vertical axis represents normalized distance (time)
along the waveguide. When α = 0 (left panel) and α = −1
(right panel) the phase information, indicated by a nonzero
value of A, is visible at all times, as is expected for a
clean system. When α = 1 (center panel), however, the phase
information is available only in a restricted window in the (t,k)
space. The size of this window increases with m0. Thus when
α = 1, the information about the initial relative phase remains
inaccessible over a large fraction of the parameter space.

III. TWO-PARTICLE CORRELATIONS

We now explore the effects of the tunneling function tα(k)
on the two-particle (number) correlation function defined
by �α

mn(t) = 〈a†
m(t)a†

n(t)an(t)am(t)〉. This function encodes
the Hanbury-Brown-Twiss quantum correlations in coinci-
dence detections in waveguides m and n [23]. For an initial
state where the two particles are localized at sites (m0,n0), the
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FIG. 3. (Color online) Maximal amplitude difference A(t,k) for
an array of N = 25 waveguides with initial state |ψφ〉 = (|1〉 +
eiφ |N〉)/√2. In all cases, A = 0 at short distances l/Lα <∼ 15 where
the partial waves from initial waveguides do not interact with each
other. When α = 0 (left panel) and α = −1 (right panel) the phase
information persists, as is expected for a clean system. When α = 1
(center panel), however, the phase information is accessible only in
certain (diamond-shaped) windows.

correlation function becomes

�α
mn(t) = |Gmm0 (t)Gnn0 (t) ± Gmn0 (t)Gnm0 (t)|2, (3)

where Gpq(t) = [exp(−iHαt/h̄)]pq is the time-evolution op-
erator and ± signs correspond to bosons and fermions,
respectively. When α = 0, the traditional model, properties
of this correlation function and its dependence on the initial
state have been extensively investigated [17]. Since �α

mn(t)
is determined by the time-evolution operator, it follows that
the bosonic and fermions correlations will be qualitatively
different when α �= 0. In particular, when α = 1, the constant
energy-level spacing implies that �α=1

mn (t) is periodic in time
or, equivalently, in the distance along the waveguide; since
the maximum spread of a wave packet initially confined
at position 1 � m0 � N/2 is approximately 2m0, it follows
that the spatial extent and shape of the correlation function
in the (m,n) plane can be controlled by appropriate initial
conditions.

Figure 4 shows �α
mn for an array with N = 40 waveguides

and (m0,n0) = (1,2). The left panels show the results for α = 1
for bosons (top) and fermions (bottom) at time t/Tα = 25. In
contrast to the α = 0 case [17], the correlation function is
strongly localized at all times, and has only two peaks with a
single nodal line separating them. The right panels correspond
to α = 2 and t/Tα = 55. At this time, the bosonic correlation
function (top) is localized near the second edge, with a nearby
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FIG. 4. (Color online) Left panels show the correlation function
�α

mn(t) for an array of N = 40 waveguides at t/Tα = 25 and
α = 1. The initial state of the system has two particles in the first two
waveguides. The correlation function remains localized, and develops
only two symmetric peaks with a single nodal line. Right panels
correspond to α = 2 and t/Tα = 55 with the same initial conditions.
We see that the bosonic correlation function (top) is localized near the
second edge, whereas its fermionic counterpart (bottom) is localized
in one direction and extended in the other direction.

hyperbolic nodal region. On the other hand, the fermionic cor-
relation function (bottom) is sharply localized in one direction
and extended in the other, with a broad nodal region around
the diagonal. (We recall, from the central panel in Fig. 2, that
when α = 2, a wave packet starting near the edge localizes sub-
stantially near the other edge when t/Tα ∼ 50.) These results
show that the quantum statistics lead to nontrivial correlations
for the α = 2 case that are dramatically different from the
α = 0 case [17] or the α = 1 case. For fermions, �α

mm(t) = 0
reflects the Pauli principle. In contrast, the �α = 0 areas in
the top panels of Fig. 4 show that the region where bosons are
anticorrelated is tunable through the tunneling function.

IV. DISCUSSION

In this paper, we have shown that modifying the tunneling
function in a tight-binding Hamiltonian, which can be realized
by an array of coupled waveguides, produces a wide range of
wave-packet evolutions that are not seen in traditional models.
The tunneling function tα(k) affects the wave-packet properties
through the bandwidth �α and energy-level spacings, both of
which are dependent on α.

For waveguides with a fixed length, we have shown that
there are qualitative differences in the wave-packet time
evolution depending on whether α is positive or negative. For
example, when α = 1, the equidistant energy levels lead to
periodic behaviors such as wave-packet reconstruction [20];
when α < 0, a wave packet near the edge remains localized
due to edge eigenstates. In addition, we have shown that when
α = 1 the phase information about an initial state remains
inaccessible over a large region of the parameter space,
whereas when α �= 1, it is accessible.

We have shown that the tunneling function modifies
quantum correlations in a nontrivial manner. For example,
when α = 1, the size and shape of bosonic and fermionic
correlations can be tuned by the choice of initial waveg-
uides; the periodicity of these correlations follows from the
equidistant energy spectrum. For the same initial conditions,
when α = 2, we find that the correlations, including the no-
coincidence region for bosons and fermions, are dramatically
different.

These results are applicable for a clean, disorder-free
system. For a finite lattice, a weak disorder vd/�α � 1,
will localize a wave packet to its initial waveguide [16]
after a sufficiently long time Tl � Tα , or distance along the
waveguide. The disorder and propagation-distance thresholds,
as well as the effect of a weak nonlinearity, however, depend
upon α [24]. Our results thus remain valid at times Tα <∼
t � Tl .
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