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We consider two-component “spinor” slow light in an ensemble of atoms coherently driven by two pairs
of counterpropagating control laser fields in a double tripod-type linkage scheme. We derive an equation of
motion for the spinor slow light (SSL) representing an effective Dirac equation for a massive particle with the
mass determined by the two-photon detuning. By changing the detuning the atomic medium acts as a photonic
crystal with a controllable band gap. If the frequency of the incident probe light lies within the band gap, the
light experiences reflection from the sample and can tunnel through it. For frequencies outside the band gap,
the transmission and reflection probabilities oscillate with the increasing length of the sample. In both cases
the reflection takes place into the complementary mode of the probe field. We investigate the influence of the
finite excited state lifetime on the transmission and reflection coefficients of the probe light. We discuss possible

experimental implementations of the SSL using alkali-metal atoms such as rubidium or sodium.
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I. INTRODUCTION

Over the last decade there has been a great deal of interest
in slow [1], stored [2-7], and stationary [8,9] light. Coherent
control of slow light leads to a number of applications, such as
the generation of nonclassical states in atomic ensembles and
reversible quantum memories for slow light [10-18], as well
as nonlinear optics at low intensities [19-21]. Furthermore,
the propagation of light through moving media [22-30] can
be used for rotational sensing devices. Slow light is formed in
an atomic medium with a A-type linkage pattern [Fig. 1(a)]
under conditions of electromagnetically induced transparency
(EIT) [13,21,31-33]. The A scheme involves two atomic
ground states and an excited state, as shown in Fig. 1(a). EIT
emerges due to the destructive interference between atomic
transitions from different ground states to a common excited
state induced by a weak probe beam and a stronger control
beam [13,21,31,32]. EIT allows to transmit a resonant probe
beam through an otherwise opaque atomic medium coherently
driven by a control laser field and forms the basis of many
interesting applications such as creating stationary excitations
of light [34—38] in more complex double A schemes as shown
in Fig. 1(b), Bose-Einstein condensation of photons [37,39],
or artificial magnetic fields [38,40] for photons.

It is to be pointed out that both ordinary and double A
schemes support a single component slow and stationary light
driving a single atomic coherence |g) — |s). By adding an
additional control laser which couples an excited state to an
additional ground state, one arrives at a tripod linkage pattern
[41] characterized by two atomic coherences. However, in that
case the slow-light excitations remain in a single component
because the original and additional control laser beams induce
transitions to a special superposition of the atomic ground
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states and thus effectively drive a single atomic coherence
[42-45].

In a recent paper [46] it has been demonstrated that two-
component slow light can be produced by means of a tripod
scheme which uses two standing-wave control fields made of
two pairs of counterpropagating laser beams, as illustrated
in Fig. 2. Due to the formal similarity to two-component
spinors we term the two-component slow-light “spinor” slow
light (SSL). We note, however, that their transformation
properties under Lorentz transformations are not those of
Dirac spinors. Employing two pairs of counterpropagating
beams involves two atomic coherences leading to the SSL.
By applying the secular approximation [34,35], the SSL has
been shown to obey an effective one-dimensional (1D) Dirac
equation [46]. This approximation is, however, only justified
in hot atomic gases [8,47] because it neglects all higher
wave-vector components of the atomic coherence produced
by the counterpropagating beams driving the same transition.

Here we study the propagation of two probe beams
in an atomic ensemble coherently driven by two pairs of
counterpropagating control laser fields in a double tripod-type
linkage scheme shown in Fig. 3. In contrast to Ref. [46]
involving a single tripod scheme, no secular approximation
is needed. Thus the double tripod scheme can be used to
produce SSL not only for hot atomic gases, but also for
cold ones and in solids. After eliminating all atomic degrees
of freedom and choosing proper amplitudes and phases of
the control lasers, the electric field strengths of the SSL
are described by an effective Dirac equation for a particle
of finite mass determined by the two photon detuning. The
Dirac equation for massive particles exhibits a finite energy
gap given by the particles’ rest mass energy. Thus the atomic
medium acts as a photonic crystal with a controllable band
gap. If the incoming probe light frequency lies within the band
gap, the light tunnels through the sample, with the tunneling
length being determined by the effective Compton length of
the SSL. On the other hand, for frequencies of the incoming

©2011 American Physical Society


http://dx.doi.org/10.1103/PhysRevA.83.063811

J. RUSECKAS et al.

(@) e (b) le2)

™y

o)

FIG. 1. (Color online) (a) The A scheme of the atom-light
coupling involving a weak probe field £ and a stronger control field 2.
Application of the control laser beam enables a lossless propagation
of the probe beam due to electromagnetically induced transparency
(EIT). (b) The double A setup for the creation of single-component
stationary light by using two counterpropagating control fields €2,
and €2, driving different atomic transitions |s) — |e;) and |s) — |e;),
respectively.

probe light outside the band gap, the transmission probability
oscillates with increasing length of the sample, so the system
acts as a tunable filter for certain frequencies. In both cases
reflection takes place into the complementary mode of the
spinor probe field and thus is accompanied by a change in
frequency. Including the finite lifetime of the atomic excited
states leads to a loss term in the Dirac equation. We investigate
the influence of the decay on the transmission and reflection of
the SSL.

II. MODEL

A. Double-tripod linkage pattern

We consider the propagation of two probe beams of light in
acoherently driven atomic ensemble exhibiting a double tripod
level structure depicted in Fig. 3(a). The atoms are described
by three hyperfine ground levels |g), |s;), and |s;) which are
coupled to the electronic excited levels |e;) and |e;) by probe
(weaker) and control (stronger) fields. Two probe beams E,
Jj = 1,2, with central frequencies w; and w, are tuned to the
atomic transitions |g) — |e;) and |g) — |es). Four control
laser beams couple two excited states |e;) to another two
ground states |s,), the coupling strength being characterized
by Rabi frequecies Q2;,, where j,g = 1,2. The control fields
are strong enough to be treated as external parameters. We

o)

FIG. 2. (Color online) Tripod-type linkage patterns for the cre-
ation of two-component (spinor) slow light by using two pairs of
counterpropagating control laser beams 2;; and 2, (with j = 1,2)
driving atomic transitions from the unpopulated ground states |s; ) and
|s2) to the excited state |e). Two probe beams couple the populated
atomic ground state |g) to the excited state |e).
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FIG. 3. (Color online) (a) Double tripod level structure for the
creation of spinor slow light. Two pairs of counterpropagating probe
fields characterized by the amplitudes £, and &, couple resonantly the
populated atomic ground state |g) with two excited atomic states |e; )
and |e;). The propagation of the probe beams is controlled by two
pairs of counterpropagating control lasers beams (characterized by the
Rabi frequencies €2;; and €2 j,) driving the atomic transitions from the
excited state |e;) to the unpopulated ground states |s;) and |s,), with
Jj = 1,2. (b) Possible experimental realization of the double tripod
setup for atoms like rubidium [2] or sodium [3]. The scheme involves
transitions between the magnetic states of two hyperfine levels with
F =1 and F = 2 for the ground and excited state manifolds. Both
probe beams are circular o™ polarized and all four control beams are
circular o~ polarized.

assume four photon resonances between the probe beams and
each pair of the control lasers w; — wiy; = w; — wyy, Where
w ;g are the frequencies of the control fields. The quantities

Aj = We;q — @), (D
and
8q zws,,g'i_wlq — W] zwsqg+w2q — Wy, (2)

define the one- and two-photon detunings, where W, and wy, ¢
are the frequencies of the atomic transitions |g) — |e;) and
|g) — |sq). In the following the control and probe beams are
supposed to be close enough to two-photon resonance. The
simultaneous application of the probe and control beams then
causes EIT in which the optical transitions from the ground
states interfere destructively thus preventing population of the
excited states |e;) and |e;).

The double tripod scheme can be realized with atoms like
rubidium or sodium containing two hyperfine ground levels
with F = 1 and F = 2, as illustrated in Fig. 3(b). These atoms
have been employed in the initial light-storage experiments
based on a simpler A setup [2,3]. In the present situation
the states |g) and |s;) correspond to the magnetic sublevels
with Mp = —1 and Mp =1 of the F = 1 hyperfine ground
level, whereas the state |s,) represents the hyperfine ground
state with F = 2 and My = 1. The two states |e;) and |e;)
correspond to the electronic excited states with F = 1 and
F =2 characterized by My = 0. To make a double tripod
setup both probe beams are to be circular o polarized and
all four control beams are to be circular o~ polarized. Note
that such a scheme can be implemented by adding three extra
control laser beams as compared to the experiment by Liu
et al. [3].
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B. Equation for the probe fields and atoms

The electric field strength E;(r,7) of the jth probe beam
is characterized by a slowly in time varying amplitude &;
normalized to the number of photons

h .
Ei(r,t) = \ T:Si(r»f)e_“‘”' +c.c., ji=12. 3

In the following we apply a semiclassical approach in which
the dynamics of the probe fields is described by classical
Maxwell equations for the amplitudes £ and &,, whereas the
atomic ensemble is described by Schrodinger equations for
the probability amplitudes (normalized to the atomic density)
@ (r,1), O,(r,1), D5 (r,7) to find an atom at a position r
in the internal states |g), |e;), and |s,), respectively, with
Jj,q = 1,2. Furthermore the probability amplitudes satisfy
the normalization condition Zj |CI>j|2 =n, j €{g.e1.2,51.2}
where n is the atomic density of the medium.

It is convenient to write down the coupled light-matter
equations of motion in a matrix form. To this end we define
the two component spinors £ = (£,6)7, ®; = (®,,,D,,)7,
and ¢, = (P, ,dDEZ)T. The following equation holds for the
slowly varying amplitudes of the probe fields

i . i A ok
8,E — Eckflvzg — Eckg = igCDgCDg, “4)

where the right-hand side (r.h.s.) of this equation is due to
the atomic polarizability. Here k = diag(k;) and g = diag(g;)
are diagonal 2 x 2 matrices with elements k; = w;/c and
gj = nj(wj /2e0h)/?, where g ; characterizes the strength of
the atom coupling with the jth probe field, i ; being the dipole
moment for the atomic transition |g) — |e;). Neglecting
effects due to atomic motion and using the rotating wave
approximation, the atomic probability amplitudes obey the
set of equations

ihd, @, = —hgs'd,, )
ihd,®, = hAd, —hQd, —hgd,E, (6)
ihd, @, = hdd, —hQlo,, (7

where € is a 2 x 2 matrix of Rabi frequencies £2;;, and the
dagger refers to a Hermitian conjugated matrix. On the other
hand, A and ¢ are the following diagonal 2 x 2 matrices

A Al—i)/l 0 : 31 0
A—( 0 Az—iyz)’ ‘3_(0 82>’ ®)

where A; and §; defined by Egs. (1) and (2) are the
detunings from the one- and two-photon resonances. It is to be
emphasized that the detunings A ; and §; have been calculated
at the central frequencies of the probe beams w; and w;.
Here also y; is the decay rate of the jth excited electronic
level. The appearance of such decay rates should generally be
accompanied by introducing noise operators in the equations
of motion [33]. Yet in the present situation one can disregard
the latter noise since we are working in the linear regime with
respect to the probe field leading to a negligible population of
the excited state.
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Assuming that the inverse matrix Q! exists and using
Eq. (7) one can relate ®, to ®, and obtain

@, = (N7 [-id, + 81,. 9)

On the other hand, Eq. (6) relates the atomic coherence ®; to
the probe field £ as

D, =—§0,Q7'E+ QA - i), (10)

The last equation will serve as a starting point for the adiabatic
approach. It should be noted that one can also treat the case
when €2 is a singular matrix by computing the Moore-Penrose
pseudo-inverse [48]. This case, however, is of no interest here
since it results in an effective double-A system.

III. EQUATIONS FOR SPINOR SLOW LIGHT

A. Adiabatic elimination of the excited states

The zero-order adiabatic approximation is obtained by
neglecting the populations of the excited states in Eq. (10),
giving

b, = —50,Q7'E. (11)

The higher-order corrections will be considered later in Sec. V
when treating the effects of finite excited state lifetimes.
Initially all atoms are assumed to be in the ground level |g). As
the Rabi frequencies of the probe fields are much smaller than
those of the control fields, one can neglect the depletion of the
ground level |g), and one finds |<I>g|2 ~ n. Using Egs. (9) and
(11) and taking ®, = \/n one can eliminate the atomic spin
coherence @, and express the excited-state amplitudes via the
amplitudes of the probe fields

@, = $(QNH7 o, — 81 2L, (12)

Equations (4) and (12) provide a closed set of equations for
the electric field amplitudes &; and &, of the SSL.

In the following the pairs of the control beams €2; and
2,; are taken to counterpropagate along the z axis: Q; =
Qje*1i7, Qo = Qyje'*i% where k;; are the wave numbers
of the control beams characterized by the amplitudes €; j, with
i,j = 1,2. We take the amplitudes of the control beams Q; J
to be time independent, neglect their position dependence,
and assume the atomic density to be homogeneous throughout
the sample. The probe fields also counterpropagate along
the z axis

Ei(r,t) =& (r,n)e™?,  &(r,r) = Er,ne ™, (13)

with k; = w;/c being the central wave vector of the jth
probe beam. For paraxial beams & (r,t) and gz(r,t) represent
the slowly varying amplitudes which depend weakly on the
propagation direction z. We assume that k; ~ kj; ~ ki, and
ko = ky1 = kp,. Furthermore for simplicity of the calculations
we take the atom-light couplings to be equal for both
probe fields g, = g» = g. Such an assumption holds for
the setup presented in Fig. 3(b) provided one chooses the
Di-line transitions. Under these conditions the slowly varying
two-component amplitude £ = (€ ,&,)7 obeys the following
paraxial equation using Eqs. (4) and (12)

o(c "+ 179+ 0. =i0.(2k)T'VIE —io, 07 ' DE, (14)

063811-3



J. RUSECKAS et al.

with
D =Q5Q71, (15)
where € is a 2 x 2 matrix with matrix elements Q,-j, o;isa

Pauli matrix, and 0,7~ represents the inverse group velocity
matrix of slow light with

2
51 = B ahy-1g-1, (16)
C

From now on the Rabi frequencies of the control beams €;; =
|2;;|e"Si are considered to have the same amplitudes: |€2;;] =
Q/ /2 and tunable phases S;; . The latter S;; can be made to
be S11 = S» = 0and S1, = S»1 = S by properly choosing the
phases of the atomic and radiation fields. Thus one has

~ Q ”
Q= —2(1 + €' oy). 17)

7
Equations (16) and (17) yield
1
—1

O'Zﬁ = MTS(GZ —iCOSSUy), (18)
where
cQ?
Vo = ——, (19)
gn

is the group velocity of slow light. Furthermore without a
loss of generality one can take the detunings to have the
opposite signs 6, = —§; = §. This can be accomplished by
properly choosing the central frequencies of the probe beams
w and w; [i.e., by adding to them a symmetric part of the two
photon detuning (8, + 81)/2]. In such a situation the matrix D
simplifies to

D= .8 (i cos So, + o). (20)

sin §

It should be noted that by changing relative phase S one can
considerably alter the time evolution of the SSL. For zero two-
photon detuning (i.e., § = 0) the case of S = 7 /2 corresponds
to two independent tripod schemes, whereas in the limit § — 0
one recovers the double-A scheme as €2 becomes singular.

B. Paraxial Dirac equation

Neglecting diffraction effects and using Egs. (18)—(20), the
equation of motion (14) takes the form

1+1 1 .1 cosS 3g+8é~,

-4+ —— o, —i———0, | — —

¢ vysin?S vo sin2 S 7| ot 9z
1) ~

= — . 21
vosinSU b

In the regime of slow light one has vy/c <« 1. In such a case,
taking S = /2, the above equation reduces to the following
Dirac equation for a massive particle:

(i3, + ivgo,d, — 85,)E = 0. (22)

Assuming a monochromatic probe field £ ~ e™*24" it is

convenient to rewrite Eq. (21) in terms of a complex vector
K =(iK,,iK,,K;) and the vector of Pauli matrices ¢ =
(Ux ’ ay ’ GZ )

3. = iK€, (23)
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FIG. 4. (Color online) Dirac dispersion of slow light for nonzero
two-photon detuning § # 0 (solid red line) together with the asymp-
totic behavior at large Ak (dashed blue line).

with
) Awcos S
KX = . ) Ky =TT 5 o
Vg sin S vo sin? S
Aw Aw
Ki=—+—5. (24)
c Vg sin” §

where Aw describes the deviation of the frequencies of the

probe fields from their central frequencies w; and w,.
Equations (22) and (23) have plane wave solutions &=

yelAkaihel - where the column x obeys the eigenvalue

equation Akyx = Ko x.Eigenvalues of the matrix Ko are =K,

where
K=/K2-K2-K2, (25)

is the length of the complex vector K. Thus the dispersion is
given by Ak?> = K2. For slow light, i.e. vg/c < 1 one obtains

Aw* = £./8 + Ak sin? S, (26)

Equation (26) is analogous to the dispersion of a relativistic
particle with an effective mass m = hé/(vg sin S )2, determined
by the two-photon detuning § and the relative phase of the
control beams S. The effective speed of light is given by
the velocity vy| sin S|. At sufficiently small Ak we have the
quadratic dispersion characteristic to stationary light [35,37].
As illustrated in Fig. 4, the two dispersion branches with
positive and negative effective mass are separated by a gap §.
Thus the atomic medium acts as a photonic crystal with a con-
trollable band gap. For |[Aw| < § the eigenfunctions become
evanescent and are characterized by an imaginary wave vector
Ak = i Aq. Consequently there are no propagating waves in
this range resulting in the formation of a band gap.

IV. REFLECTION AND TRANSMISSION
OF THE PROBE BEAM

Let us analyze the transmission of a probe beam through
the atomic cloud, as well as the accompanying reflection. The
atomic gas is considered to be uniform along the propagation
direction z from the entry point of the probe beam at z = 0 to
its exit at z = L. The incoming probe field contains the first
component & (z,t) and is monochromatic &;(0,1) = Ege "2«
with the frequency detuned from the central frequency w; by
the amount Aw, where &, is the amplitude of the incoming
field. As illustrated in Fig. 5, the probe field is transmitted
through the atomic cloud with the amplitude 7" and is reflected
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FIG. 5. (Color online) Transmission and reflection of the in-
cident probe field & =51(0,t). The transmitted field is given
by & (L,t) = Té, (0,1), whereas the reflected part is determined
by fz(L,t) = Rc‘fl(O,t), where T, R denote the transmission and
reflection coefficients, respectively.

to Ehe second component w~ith the amplitude R [i.e., & (L,t) =
T&,(0,t) and £,(0,¢t) = RE((0,1)]. This leads to the following
boundary conditions for the two-component probe field

£0,n=6& (;) eihet (27)
L) =& (g) it (28)

The spatial development of monochromatic probe fields is
described by Eq. (23) with the formal solution Ez,1) =
¢®92£(0,1). Thus one can relate the two-component probe
field at the entrance and exit points by

s K . 3
E(L,t)= [COS(KL)—HEG sm(KL)} £0,1). (29

Combining Eqgs. (28)—(29) one finds the reflection and trans-
mission coefficients
(K« +iKy)sin(KL)
" Kcos(KL)—iK._sin(KL)’
K
T = K eosKD) — iK.sin(KL)’

(30)

(€29

where the general expressions for K, , . are given in Eq. (24).
In what follows we are interested in the regime of slow
propagation of the probe light within the atomic cloud (vy <«

¢). In this case K. simplifies to K. &~ Aw /vy sin® S and thus
1
= ———VAw? - §% (32)
vp| sin S|

From Eq. (28) it becomes clear that the reflection takes
place into the complementary mode of the probe field and
can be accompanied by a change in frequency, as the center
frequencies w; of the probe fields do not have to be equal.

(a) 1.0
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A. Oscillations of transition and reflection amplitudes

For probe light frequencies outside the band gap (Aw)? >
82, the transmission and reflection amplitudes oscillate with
increasing system length. Such a behavior is characteristic to
light passing through resonant cavities. Thus the system acts
as a frequency filter without mirrors. For zero two-photon
detuning (6 = 0), the transmission and reflection amplitudes
(30) and (31) simplify to

_ i cos Ssin(KL)
"~ |sinS|cos(KL) —isin(KL)’

(33)

and
B | sin S|
~ |sinS|cos(KL) —isin(KL)’

with K = Aw/vp|sin S|. Figure 6 illustrates the oscillatory
behavior of the transmission and reflection probabilities |T'|?,
|R|?> on the sample length L for zero two-photon detuning
(6 = 0) and nonzero detuning Aw # 0 of the incident probe
field. The complete transfer of the probe field through the
sample occurs at AwL = mjvy| sin S|, with j being an integer.
The frequency difference between two such resonant maxima
gl sin S|/L is inversely proportional to the sample length
L. For instance, if we take the group velocity of slow light
vo = 17m/s and the length of the atomic cloud L = 300 um
as in the experiments [1,3] and choose S = 7 /4, the period
of the oscillations Aw is around 10° Hz. Note that the
minima of the transfer amplitude |7'| = | sin S| correspond to
AwL = (j + 1/2)vo| sin S|. Thus the reflection coefficient
R oscillates from O to the maximum value |cos S|. The
transmission and reflection coefficients 7 and R are seen to
be sensitive to the relative phase of the laser beams S. In
the limit S — O the transfer probability is approaching zero
(T — 0), which is accompanied by a complete reflection to the
second field (i.e., |R| — 1). This corresponds to the creation
of a photonic band gap [37,49] in the resulting double-A
scheme. For § = £m/2 the reflection is zero (R = 0) and
there is a complete transfer of the original field through the
sample (|T| = 1). In that case the double tripod reduces to two
independent tripod schemes. Introducing a small two-photon
detuning § # 0 mixes the two counterpropagating probe field
components, leading to a nonzero reflection (R # 0) even for
S =4mn/2.

(34)

B. Tunneling of slow light

In the case where the probe light frequency lies within the
band gap [(Aw)? < §%], the wave number K = i|K | becomes

)10 -

1]
1

0.5

IRP, (11

0.5

Rl

(c) 1.0 0 ; W

Vi

- 05

IR|

0.0, 0.0

AwL /v,

AwL /v,

10

0.0,

AwL /v,

FIG. 6. (Color online) Dependence of the reflection and transmission probabilities | R|? and | T'|? (shown in solid red and dashed blue lines,
respectively) on the dimensionless sample length AwL /v, for zero two-photon detuning (§ = 0) in the case where (a) S = /3, (b) S = 7 /4,

and (c) S == /6.
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FIG. 7. (Color online) Dependence of the reflection and trans-
mission probabilities |R|?> and |T'|> (shown in solid red and dashed
blue lines, respectively) on the dimensionless two-photon detuning
L/,Ac = 6L /(volsin S|) for Aw = 0.

imaginary. In such a situation, Eq. (31) describes the decay
of the transmission amplitude with distance. In particular, for
Aw = 0 the reflection and transmission amplitudes (30) and
(31) simplify to
1

T=——,

cosh(K, L)
with K, = 8/vgsin S. The dependence of the reflection and
transmission probability on the product of detuning and sample
length is presented in Fig. 7. The light tunnels through the

sample, the tunneling length being determined by the effective
Compton length

R = tanh(K, L), (35)

Ac = volsin S|/6. (36)

In fact, a relativistic particle is known to be characterized by
a Compton wavelength Ac = i/mc. In the present situation
the Compton length reads Ac = i /(muvp|sin S|), where m =
18/ (vg sin S)? is the effective mass of the SSL. Using Eq. (35)
one can see that the transmission of the incident wave is
efficient as long as the length of the gas cloud L is much smaller
than the Compton wavelength L < Ac. For larger values of
L the transmission probability falls off exponentially. This
behavior is related to the fact that it is impossible to localize
a particle with an uncertainty smaller than the Compton
wavelength [50,51]. Since the Compton length can be tuned by
changing § it is possible to experimentally study the tunneling
regime L < Ac.

If we take the length of the atomic cloud to be L = 0.3 mm
and the group velocity of lightis vop = 17 m/s [1], the Compton
length becomes of the order of the length of the atomic cloud,
when the detuning is equal to §; = vy/L &~ 6 x 10* Hz. This is
well within the EIT transparency window which is of the order
of a 1 MHz in the experiment [1] and absorption losses due
to a finite two-photon detuning can be neglected. In contrast
to ordinary absorption, the decrease in the transmission of
light through the sample is now accompanied by an increase
in the reflection into the complementary mode satisfying the
unitarity condition |R|> + |T|> = 1.

V. INFLUENCE OF LOSSES

Let us now analyze the losses due to the finite lifetime of
the excited states. For this we take into account the next order
of iteration in Eq. (10) and include the decay rates y; and y;
in the matrix A. Assuming the decay rates to be the same
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for both excited states (y; = ¥, = y) and putting to zero the
one-photon detunings A; = A, = 0, the r.h.s. of the general
equation of motion (14) acquires an extra term

io, 257 DYE. (37)
gn

In the case of slow light (vo/c < 1) and neglecting diffraction
effects one has for § = /2

3E + v90.3,E +i80,E + verrE = 0, (38)

where . = y82/Q? is the effective decay rate of the probe
light fields.

Equation (38) represents a 1D Dirac equation with losses
that extend the previous equation (22). As a result, one needs
to replace Aw by Aw’ = Aw — iy in the corresponding
reflection and transmission coefficients. For zero probe field
detuning (Aw = 0) and vy K c, the transmission and reflec-
tion coefficients take the form

8 -
T = i . (39

Seir cosh (L) + e sinh (o)
8 sinh (f—oseff)

Jetr cosh (ULO(Seff) + Vefr sinh (ULanff)

where we defined
Seft = /8% + Yy 41)

For a large sample size L > vy /8. these equations simplify
to

R= . (40)

26, L
T~ —T—exp (——M) : 42)
et + Vet Vo
)
R~ —— 43)
Befr + Veft

The transmission coefficient 7 decays exponentially with the
system length L, while the reflection coefficient stays nonzero
even for infinitely long samples. For sufficiently small detuning
the EIT condition [21] is fulfilled y8/Q? « 1. Thus one
arrives at an almost perfect reflection R ~ 1 — 8y /Q? ~ 1.
In the opposite case ¥/ Q% > 1, the EIT condition is violated
and the probe fields experience strong losses leading to
vanishing reflectivity. This is related to the fact that for yeg % 0
the unitarity condition is violated |R|?> + |T|?> < 1 leading to
the reduced reflectivity.

VI. CONCLUSION

We studied two-component (spinor) slow light in an
ensemble of atoms coherently driven by two pairs of coun-
terpropagating control laser fields in a double tripod-type
linkage scheme. The SSL obeys an effective Dirac equation
for a massive particle. By changing the two-photon detuning
the atomic medium can act as a photonic crystal with a
controllable band gap. This gap is equivalent to the rest
mass energy splitting in the Dirac dispersion. We investigated
the dependence of tunneling and transmission rates of the
incoming probe fields on its frequency. For frequencies within
the band gap the probe light tunnels through the sample
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with the tunneling length given by the effective Compton
wavelength of the SSL. In the case of a sample length
exceeding the Compton wave length of the SSL (L > A¢),
the formation of the band gap leads to perfect reflection. In
the opposite limit of a short sample length (L <« A¢) the
transmission probability is close to unity, as the SSL cannot
be localized below the Compton wavelength. For frequencies
of the probe light outside the band gap, the reflection and
transmission coefficients exhibit an oscillatory dependence on
the two-photon detuning and the sample length. This can be
interpreted as a mirrorless frequency filter.

We discussed the effect of finite excited state lifetimes
on transmission and reflection. For sufficiently small loss
rates the reflection and transmission coefficients fulfill the

PHYSICAL REVIEW A 83, 063811 (2011)

unitarity condition, and the reflection takes place into the
complementary mode of the SSL. Increasing the loss rates
leads to nonadiabatic losses and the unitarity condition no
longer holds. Finally, we proposed a possible experimental
realization of two-component slow light using the double
tripod scheme with alkali-metal atoms like rubidium or
sodium.
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