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A semianalytic theory for the pulse dynamics in similariton amplifiers and lasers is presented, based on a
model pulse with adaptive shape. By changing a single parameter, this test function can be continuously tweaked
between a pure Gaussian and a pure parabolic profile and can even represent sech-like pulses, the shape of a
soliton. This approach allows us to describe the pulse evolution in the self-similar and other regimes of optical
propagation. Employing the method of moments, the evolution equations for the characteristic pulse parameters
are derived from the governing nonlinear Schrödinger or Ginzburg-Landau equation. Due to its greatly reduced
complexity, this description allows for extensive parameter optimization, and can aid intuitive understanding of
the dynamics. As an application of this approach, we model a soliton-similariton laser and validate the results
against numerical simulations. This constitutes a semianalytic model of the soliton-similariton laser. Due to the
versatility of the model pulse, it can also prove useful in other application areas.
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I. INTRODUCTION

Self-similarity is a recurring theme in strongly nonlinear
systems. Its observation can be particularly informative as
it implies an underlying symmetry, which can be exploited
mathematically through symmetry reduction techniques [1].
In nonlinear optics, self-similarity emerges in the formation
of Cantor-set fractals in materials that support spatial solitons
[2], the self collapse of beams at high powers, [3] and in
the propagation of ultrafast pulses of light in optical fiber
amplifiers in the presence of strong Kerr nonlinearity [4,5].
In recent years, it was reported that self-similar propagation
of short pulses in laser resonators is possible [6,7]. These
pulses have a nearly parabolic intensity profile and evolve
self-similarly within the nonlinear segments of the laser cavity.
Fiber lasers supporting self-similarly evolving pulses are now
recognized as a regime of pulse formation in the cavity of an
ultrafast laser. This method is differentiated from the well-
known solitary [8], stretched-pulse (dispersion-managed) [9],
and all-normal-dispersion [10] solutions to the Haus Master
equation [11]. There are interesting similarities as well as
important differences between these regimes. From a practical
point of view, the demonstration of the similariton laser
has led to the development of fiber lasers with significantly
higher pulse energies [12]. These fiber lasers are being
studied by many groups [13–16], motivated by the various
applications ultrafast lasers have in diverse areas of physics,
from optical frequency metrology and material processing to
next-generation accelerators. More recently, a mode-locking
regime, the soliton-similariton laser, was reported, in which the
pulse evolution is in the form of periodic alteration between
soliton and similariton evolution [17]. One aspect of this
regime is that the evolution is strongly nonlinear at every point
in the laser cavity. The possibilities and limitations of this
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regime are largely in need of exploration, for which theoretical
modeling is crucial. For all of these reasons, there is much
desire to better understand the physics of amplifier similaritons
and self-similar lasers.

Numerical simulations provide good agreement with
experiments [6,14,17]. However, they are computationally
expensive, rendering extended explorations of the parameter
space impractical. Moreover, a theoretical description can
aid intuitive understanding of the dynamics of self-similar
evolution in optical amplifiers and lasers. Exact self-similar
solutions have been derived for the optical pulse propagation
in fibers with and without gain [4,5,18]. However, the
pulse shape evolves during propagation and the self-similar
parabolic pulse profile is only asymptotically reached. Thus,
several approaches have been explored to derive a simplified
description which still captures the rich pulse dynamics
in such systems. Based on various analytical methods, the
pulse formation, pulse stability, and energy scalability of
similariton and other high-energy fiber lasers has been studied
[19–21]. Also semianalytic approaches, widely used in optics
to investigate pulse propagation, have been employed. They
aim to extract evolution equations for characteristic pulse
parameters, reducing the partial differential equation for pulse
propagation to a coupled set of ordinary differential equations.
Such approaches are typically based on the method of moments
(MOM) or a variational formalism, which have both been
used to investigate the evolution of the pulse energy and the
temporal and spectral pulse width in the strongly nonlinear
regime [22–24]. Such studies typically rely on fixed pulse
shapes such as Gaussian or sech pulses, yielding reasonable
estimates for the pulse energy and duration, but no pulse shape
information at all. An exception can be found in [25], where an
adaptive super-Gaussian test function was used to investigate
changes of the pulse profile during propagation.

Here, we report on a semianalytic theory for the pulse
dynamics in similariton amplifiers and lasers, including the
soliton-similariton laser, based on a model pulse with adaptive
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CHRISTIAN JIRAUSCHEK AND F. ÖMER ILDAY PHYSICAL REVIEW A 83, 063809 (2011)

shape. The key in this formulation is our ansatz function that
can describe any pulse shape from a pure Gaussian to a pure
parabolic profile, including sech-like pulses (i.e., with sech2

intensity profile), the shape of a soliton. The pulse profile
is tweaked by a single parameter, which is complemented
by an additional degree of freedom for the pulse phase. This
allows us to represent various pulse profiles as well as complex
spectral shapes. Thus, our theoretical treatment appears to be
capable of describing not only the self-similar but the other
regimes as well, opening the way to a simple unified theoretical
approach.

Employing the method of moments [26,27], the partial dif-
ferential equation governing the pulse propagation is reduced
to a finite set of coupled ordinary differential equations, which
are much easier to analyze. In addition, the coefficients of the
equations are helpful in forming an intuitive understanding
of the dynamics by exposing the relative importance of the
various effects. Through investigation of these equations,
one gains access to valuable information about the pulse
dynamics (e.g., of how exactly the various effects on the
pulse are paired to balance each other to satisfy the periodic
boundary conditions imposed by the laser resonator). Such
information is extremely difficult, if not impossible, to obtain
by repeated numerical solutions of the full governing equation.
Our approach is validated against numerical results for single-
pass propagation and for the steady-state dynamics of a
soliton-similariton laser.

II. TEST PULSE AND EVOLUTION EQUATIONS

For propagation through a dispersive Kerr medium with
a parabolic gain and instantaneously saturable absorption,
the evolution of the pulse envelope u(z,t) is described by
a generalized nonlinear Schrödinger (or complex Ginzburg-
Landau) equation of the form [28]

i∂zu − D∂2
t u + γ |u|2u = i

(
g + gω∂2

t + r|u|2)u. (1)

Here, z and t are the propagation coordinate and the retarded
time, respectively. D is the second-order dispersion coefficient,
and γ is the cubic nonlinearity parameter. The dissipative
processes are characterized by the central gain value g and
spectral gain parameter gω as well as the saturable absorption
coefficient r . Generally, D, γ , g, gω, and r are z dependent,
since an optical system such as a fiber laser consists of a
sequence of different segments. Additionally, the parameter
values can vary even within a segment, for example, g, if gain
saturation is considered.

A. Test Pulse

For linear systems, γ = r = 0, the complex Gaussian

u(z,τ ) = A
√

p1(τ ) exp(iβτ 2 + iφ) (2)

with p1(τ ) = exp(−τ 2) is an exact solution to Eq. (1), where
τ = t/T denotes the normalized time, and T (z), A(z), φ(z),
and β(z) are the pulse duration, amplitude, phase, and linear
chirp parameter, respectively. Thus, for moderate nonlinear-
ity, the Gaussian ansatz is still a good description of the

steady-state pulse shape in a laser cavity [29–31]. In contrast,
in the strongly nonlinear limit, the pulse is approximately
described by a self-similar pulse with a parabolic intensity
profile. However, an exactly parabolic pulse is an idealization
and in practice the pulse shape is parabolic around the center,
where most of the energy resides, but with a super-Gaussian
falloff in the wings [6,18]. Naturally, in the intermediate
regime, the pulse shape combines features of a Gaussian pulse
and a self-similar pulse. To reflect these properties, we have
previously introduced a function of the type

pn(τ ) = exp

(
−

n∑
k=1

τ 2k/k

)
= 1 − τ 2 + O(τ 2n+2) (3)

to describe the pulse profile, which represents a Gaussian for
n = 1 and a parabolic profile for n → ∞ [32]. Here, the pulse
duration T represents the Gaussian pulse width for n = 1
and half the total pulse width of a similariton for n → ∞.
This ansatz has been shown to be useful for the description
of similariton lasers and trapped Bose-Einstein condensates
[32,33].

A disadvantage of Eq. (3) is that the pulse shape cannot
be adapted continuously, but only in discrete steps. Using
the Gauss hypergeometric function 2F1 for which efficient
numerical evaluation routines exist [34], Eq. (3) can be
expressed in closed form as

pn(τ ) = (1 − τ 2) exp

{ |τ |2n

n
[2F1(1,n; 1 + n; τ 2) − 1]

}
(4)

(see also Appendix A). In Eq. (4), n is not restricted to integers,
providing much more flexibility for describing different pulse
shapes. For example, sech2-like intensity profiles, correspond-
ing to a fundamental optical soliton, are very well represented
by n ≈ 0.5. Moreover, rather than a priori fixing n to a certain
value, we allow n = n(z) to evolve during pulse propagation,
describing the position-dependent intensity profile together
with the parameters A(z) and T (z). Along with n(z), the
third-order chirp parameter α(z) is introduced as a further
degree of freedom for the pulse phase in addition to β(z)
and φ(z), to avoid mathematical problems with the evolution
equations for the pulse parameters [35]. The resulting ansatz
for the envelope is given by

u(z,τ ) = A
√

pn(τ ) exp(iβτ 2 + iατ 4 + iφ). (5)

Naturally, Eq. (4) is not the only function that is able to
interpolate continuously between a parabolic and a Gaussian
shape. In particular, the so-called q Gaussian function [36]
has been used in various contexts (e.g., for the description of
trapped Bose-Einstein condensates) [37]. While the q Gaussian
has a somewhat simpler analytical form, it is nonzero only on
a finite interval (except for the limiting case of a Gaussian),
which is unphysical for the applications considered in this
paper. Additionally, our ansatz has the distinct advantage that it
can also represent a sech2 profile to a very good approximation,
which is essential for a versatile description of nonlinear
optical propagation.
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B. Evolution Equations

The generalized nonlinear Schrödinger Eq. (1) can be
approximately solved by extracting evolution equations for

the parameters of the model pulse in Eq. (5). Here we use
the method of moments [26]; the derivation can be found in
Appendix B. The resulting equations of motion are

n′ =
{

2rA2

(
µ4

ε4
− 2

µ2

ε2
+ µ0

ε0

)
+ 32αDT −2

(
ε4

ε2
− ε6

ε4

)
− gωT −2

[
1

2

η0

ε0
− η2

ε2
+ 4

ε0

ε2
+1

2

η4

ε4
− 12

ε2

ε4

+ 8β2

(
ε2

ε0
− 2

ε4

ε2
+ ε6

ε4

)
+ 32α2

(
ε6

ε0
− 2

ε8

ε2
+ε10

ε4

)
+32βα

(
ε4

ε0
− 2

ε6

ε2
+ ε8

ε4

)]}
/(

∂nε0

ε0
− 2

∂nε2

ε2
+ ∂nε4

ε4

)
, (6)

T ′

T
= −4DT −2

(
β + 2α

ε4

ε2

)
+ rA2

(
µ2

ε2
− µ0

ε0

)
+ gωT −2

[
1

4

η0

ε0
− 1

4

η2

ε2
+ ε0

ε2
+ 4β2

(
ε2

ε0
− ε4

ε2

)

+ 16α2

(
ε6

ε0
− ε8

ε2

)
+ 16βα

(
ε4

ε0
− ε6

ε2

)]
+ 1

2
n′

(
∂nε0

ε0
− ∂nε2

ε2

)
, (7)

A′

A
= 2DT −2

(
β + 2α

ε4

ε2

)
+ g + 1

2
rA2

(
3
µ0

ε0
− µ2

ε2

)
+ gωT −2

[
−3

8

η0

ε0
+ 1

8

η2

ε2
− 1

2

ε0

ε2
+ 2β2

(
ε4

ε2
− 3

ε2

ε0

)

+ 8α2

(
ε8

ε2
− 3

ε6

ε0

)
+ 8βα

(
ε6

ε2
− 3

ε4

ε0

)]
+ 1

4
n′

(
∂nε2

ε2
− 3

∂nε0

ε0

)
, (8)

α′ = 4
T ′

T
α +

{
2gαε6 + 2rA2αµ6 + 1

2
gωT −2

[
β

(
9ε2 − ε0ε4

ε2
+ η2ε4

ε2
− η4

)
+ α

(
102ε4 + 2

η4ε4

ε2
− 3η6 − 18ε4

)

− 16β2αε8 − 64βα2ε10 − 64α3ε12

]
− αε6

(
2
A′

A
+ 7

T ′

T

)
− αn′∂nε6 − DT −2

[
−3

4
ε0 + 3

8
η2 − 1

8

ε4

ε2
η0

+ 8βα

(
ε6 + 2

ε2
4

ε2

)
+ 24α2

(
ε8 + ε6ε4

ε2

)]
− γ

8
A2

(
3µ2 − µ0ε4

ε2

)}/(
ε6 − ε2

4

ε2

)
, (9)

β ′ = 2
T ′

T
β − DT −2

(
1

4

η0

ε2
− 4β2 − 48α2 ε6

ε2
− 32αβ

ε4

ε2

)
− γ

4
A2 µ0

ε2
+ gωT −2

(
β

ε0

ε2
− β

η2

ε2
+ 18α − 2α

η4

ε2

)

− 2
ε4

ε2

(
α′ − 4

T ′

T
α

)
, (10)

where the prime denotes a partial derivative with respect to z.
The weighing coefficients are given by

εk(n) =
∫ ∞

−∞
τ kpn(τ ) dτ,

µk(n) =
∫ ∞

−∞
τ kp2

n(τ ) dτ, (11)

ηk(n) =
∫ ∞

−∞
τ kpn(τ )−1[∂τpn(τ )]2 dτ.

To increase numerical efficiency, they are calculated only
once for a sufficiently closely spaced n grid and tabulated.
The evolution equations Eqs. (6)–(10) are also valid for z-
dependent coefficients in Eq. (1), which is especially important
for effects like gain saturation. We note that the validity of the
derived equations is not restricted to ansatz Eq. (4), in fact, they
can be used for any such test pulse pn with a continuously
adjustable pulse shape parameter n [and pn(τ ) = pn(−τ )],
like the q Gaussian function [36,37]. Only the weighing

coefficients εk(n), µk(n), and ηk(n) [Eq. (11)] then have to
be recalculated for that specific function.

III. RESULTS

To validate the ansatz Eq. (5), the equations of motion
Eqs. (6)–(10) are solved in different nonlinear propagation
regimes. First, the soliton regime is considered, characterized
by negative dispersion and moderate nonlinearity. Then, the
self-similar propagation through gain fibers with positive
dispersion is studied. Finally, the ansatz is employed to find
the steady-state solution of a soliton-similariton fiber laser,
where alternate propagation in both regimes occurs. The
equations of motion Eqs. (6)–(10) are solved with a standard
differential equation solver, allowing for an efficient treatment
of the problem. For comparison, the results for the simplified
Gaussian ansatz Eq. (2) are also shown. The corresponding
equations of motion [31] can be obtained from Eqs. (7),
(8), and (10) by setting n = 1, α = 0, and n′ = α′ = 0. The
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FIG. 1. (Color online) Instantaneous power vs time for the
approximate and exact fundamental soliton solution; for comparison,
the Gaussian approximation is also displayed.

semianalytic results are validated against exact analytical so-
lutions of Eq. (1) or full numerical simulations performed with
a standard symmetric split-step propagation algorithm [28].

A. Fundamental Soliton

For g = gω = r = 0, steady-state solutions of Eq. (1) exist.
For γ > 0, D < 0 (or γ < 0, D > 0), a special solution is
given in form of the fundamental soliton, with the power
|u|2 = A2sech2(t/Ts), where Ts = A−1(−2D/γ )1/2 [28]. To
test the validity of our ansatz Eq. (5), we extract the steady-
state solution of the evolution equations Eqs. (6)–(10) with
g = gω = r = 0, and compare it to the exact soliton solution.
By setting ∂z = 0, we obtain β = α = 0, µ2η0 + 2ε0µ0 −
η2µ0 = 0, which is fulfilled for n ≈ 0.518, and µ0γA2T 2 =
−η0D. The pulse energy E = A2T ε0 can thus be written
as E = ε0(η0/µ0)1/2A(−D/γ )1/2 ≈ 2.79 A(−D/γ )1/2. The
energy of the exact solution of Eq. (1) (i.e., the fundamental
soliton) is Es = 23/2A(−D/γ )1/2, thus we have E ≈ 0.99Es.
The Gaussian ansatz, Eq. (2), is less accurate, yielding E ≈
1.05Es. In Fig. 1, the approximate (solid line) and exact
(dashed line) solution are compared for a fixed pulse amplitude
A. The results are virtually indistinguishable, demonstrating
that the ansatz Eq. (5) works very well in the soliton regime.
For comparison, the Gaussian steady-state solution is also
displayed (dotted line). It provides a less accurate but still
reasonable fit, even though it naturally fails to reproduce the
characteristic sech2 soliton shape.

B. Amplifier Similariton

In order to test our ansatz in the self-similar regime,
single-pass propagation in a gain fiber with positive dispersion
is studied. The investigated setup is as described in [4],
with the fiber parameter values γ = 5.8 × 10−3 W−1 m−1,
D = 12.5 × 10−1 ps2 m−1, and g = 0.95 m−1; furthermore,
r = gω = 0. The initial pulse is assumed to be Gaussian
(n = 1) with a fixed energy of 12 pJ. First, the pulse evolution
is studied with ansatz Eq. (5) and by full numerical simulation
for an initial pulse duration of 0.2 ps. Here, the pulse is
characterized in terms of its temporal and spectral width
TFWHM and fFWHM, respectively, which are the full width at
half-maximum (FWHM) values of the instantaneous power
and the power spectrum. Furthermore, n(z) is evaluated,
describing the pulse shape of our ansatz Eq. (5). For the
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FIG. 2. (Color online) Evolution of the pulse duration, spectral
width, and pulse shape as a function of the propagation coordinate
z, computed with the method of moments and by solving Eq. (1)
numerically.

numerical pulse, the kurtosis [14,25]
∫

(t − t0)4p dt/σ 4 is
calculated, where p = P/

∫
P dt is the normalized pulse

power, t0 = ∫
tp dt = 0 is the mean value, and σ 2 = ∫

(t −
t0)2p dt is the variance; n is then extracted by determining the
pn in Eq. (4) with the same kurtosis. In Fig. 2, the evolution of
the pulse parameters is compared for the method of moments
and full numerical simulation. In Fig. 2(c), s = n/(n + 1),
rather than n itself, is plotted to restrict the range of values
to [0,1] (i.e., s = 1/2 corresponds to a Gaussian and s = 1
to a parabolic pulse). In the example shown, s approaches 1,
indicating that the pulse approaches self-similar evolution. The
overall agreement between semianalytic and numerical results
is excellent, indicating that our approach works well also in
the regime of self-similar propagation. Specifically, our ansatz
Eq. (5) fully captures the transition of the pulse shape [see
Fig. 2(c)].

In Fig. 3, the instantaneous power and power spectrum
are shown after a propagation distance of 3 m for Gaussian
initial pulse widths (FWHM) of 0.1 ps [Figs. 3(a) and 3(b)],
0.2 ps [Figs. 3(c) and 3(d)], and 1 ps [Figs. 3(e) and 3(f)],
respectively. Ansatz Eq. (5) (solid lines) provides an excellent
qualitative and quantitative approximation, reproducing very
well the exact numerical pulse shapes and power spectra
(dashed lines). The Gaussian approach (dotted lines) shows
some deviations in the pulse duration and especially the
amplitude, but overall still provides a reasonable fit in time
domain [see Figs. 3(a), 3(c), and 3(e)]. However, it naturally
fails to reproduce the pulse shapes. The Gaussian ansatz does
not approximate the pulse shape well, especially for strongly
self-similar propagation as shown in Fig. 3(c), where both
our ansatz and the exact result exhibit a distinct parabolic
intensity profile. Regarding the obtained power spectra [see
Figs. 3(b), 3(d), and 3(f)] the Gaussian ansatz completely fails
to reproduce the spectral features. The capability to faithfully
reproduce spectral characteristics is particularly important
from a practical point of view: Experimentally, optical spectra
provide the most direct, immediately available, and quite
informative insight into the evolution of an ultrafast pulse
among all the diagnostics available.
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FIG. 3. (Color online) Instantaneous power and power spectrum,
as obtained with the method of moments (solid lines), by full nu-
merical simulations (dashed lines), and with the simplified Gaussian
ansatz (dotted lines). The initial pulse durations are 0.1, 0.2,and 1 ps,
respectively.

C. Soliton-Similariton Fiber Laser

In the following, we apply our approach to self-similar
propagation in a laser cavity, where the laser field is subject
to periodic boundary conditions in steady-state operation.
We choose a soliton-similariton laser setup as investigated
in Ref. [17], which is especially interesting in our context
since the pulse undergoes self-similar propagation as well as
reshaping to Gaussian and sech2 profiles in the same cavity.
In our case, the setup consists of a gain fiber, a piece of single
mode fiber (SMF), a saturable absorber (SA), a bandpass
filter, and, again, an SMF. The pulse evolves self-similarly
in the gain fiber and is temporally and spectrally filtered in
the SA and bandpass filter, respectively. The group velocity
dispersion (GVD) in the SMF is negative, approximately
canceling the positive GVD in the gain fiber. Several distinct
nonlinear pulse shapes coexist in the cavity. A parabolic profile
is obtained toward the end of the the gain fiber, characteristic
for self-similar evolution, then the pulse undergoes Gaussian
spectral filtering and approaches a sech2 shape in the SMF,
typical for a fundamental soliton.

The parameter values for the gain fiber (SMF)
are γ = 9.32 × 10−3 W−1 m−1 (1.1 × 10−3 W−1 m−1), D =
0.03845 ps2 m−1 (−0.0114 ps2 m−1), g0 = 3.45 m−1 (0), and
gω = 3.25 × 10−4 ps2 m−1 (0) [17]. The gain is assumed to
saturate with the pulse energy E [i.e., g = g0/(1 + E/Esat)],
where Esat = 2.21 nJ is the saturation energy. The bandpass fil-
ter is modeled by a segment of length L with gωL = 0.015 ps2,
corresponding to a spectral width of 12 nm (FWHM), and the
pulse power is additionally reduced by a factor of 5 to account
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FIG. 4. (Color online) Evolution of the pulse duration, spectral
width, and pulse shape in the laser cavity, as obtained with the method
of moments and by solving Eq. (1) numerically.

for the overall linear loss of the optical cavity elements. For
the SA, an unsaturated loss of q0 = 0.7 and a saturation power
of Psat = 2.13 kW is assumed; its implementation is discussed
in Appendix C .
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FIG. 5. (Color online) Instantaneous power and power spectrum,
as obtained with the method of moments (solid lines), by full
numerical simulations (dashed lines), and with the simplified Gaus-
sian ansatz (dotted lines). The results are shown at the positions i(a),
i(b), ii(c), ii(d), iii(e), iii(f), iv(g), and iv(h) in the laser cavity, as
indicated in Fig. 4(a).

063809-5
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In Fig. 4, the MOM and full numerical results for the
evolution of characteristic pulse parameters in the cavity are
compared, where the sequence of optical elements and the fiber
lengths are as indicated in Fig. 4(a). The pulse parameters are
defined as described in Section III B. The overall agreement
between semianalytic and numerical results is again excellent
(cf. Fig. 2). Particularly, as can be seen in Fig. 4(c), our ansatz
Eq. (5) correctly predicts the almost parabolic pulse profile
in the gain segment, with s = 1 for a parabolic pulse, the
Gaussian shape after the filter (s = 1/2), as well as the sech2

shape in the SMF, corresponding to s ≈ 1/3. In Fig. 5, the
instantaneous power and power spectrum are shown after the
gain fiber, before the SA, after the bandpass filter, and after
the second SMF. The overall agreement between semianalytic
(solid lines) and numerical results (dashed lines) is very good
both in the gain fiber and the SMF. In particular, ansatz Eq. (5)
approximates well the distinct temporal and spectral pulse
shapes in the different regimes. For comparison, the Gaussian
solution is also displayed (dotted line). It provides a reasonable
fit to the temporal and spectral width, but naturally cannot
reproduce the pulse shape at all. Only after the bandpass filter,
which forces the power spectrum to assume a Gaussian profile,
the Gaussian ansatz closely matches the numerical solution
[see Fig. 5(f) and 5(h)].

IV. CONCLUSION

In conclusion, we have developed a semianalytic theory for
nonlinear optical ultrafast pulse propagation in the self-similar
and other regimes, which we employ to study the pulse
dynamics in similariton amplifiers and lasers. The key is the
introduction of a model pulse with adaptive shape, which can
continuously be tweaked with a single parameter to represent
pulse shapes ranging from parabolic to Gaussian to sech2-like
intensity profiles. Thus, very different regimes of nonlinear
optical propagation can be covered. Based on the method of
moments, evolution equations are derived for the characteristic
pulse parameters, specifying the pulse amplitude, duration,
profile, and linear and third-order chirp. Comparison to
exact analytical or full numerical results were performed
for the soliton regime as well as similariton amplifiers and
soliton-similariton lasers, showing excellent agreement. This
constitutes a semianalytic model for the soliton-similariton
laser. A major advantage of the semianalytic method is that
the calculations are approximately 100 times faster than the
full numerical simulations. This will allow the exploration of
a vast parameter range of interest to the design of fiber and
solid state similariton lasers. Furthermore, this approach can
be helpful for developing an intuitive understanding of the
dynamics of self-similar evolution in optical fiber systems by
exposing the relative importance of the various effects. Due
to the versatility of our test function, we expect it to also
prove useful in other application areas in nonlinear optics,
or in completely different fields such as the description of
trapped Bose-Einstein condensates, as already exemplified in
Ref. [33].
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APPENDIX A: TEST PULSE

The test pulse Eq. (5) can be written as

pn(τ ) = (1 − τ 2) exp

{ |τ |2n

n
[2F1(1,n; 1 + n; τ 2) − 1]

}
= (1 − τ 2) exp{|τ |2n[�(τ 2,1,n) − n−1]},

where 2F1 is the Gauss hypergeometric function and � is the
Lerch phi function, defined as �(z,α,n ) = ∑

k�0 zk/(n + k)α

for |z| < 1 and analytic continuation otherwise. For τ 2 = 1,
where 2F1 and � both diverge, pn has to be expressed in
terms of the digamma function �(z) and Euler’s constant γ ,
pn(±1) = exp[−�(n + 1) − γ ].

These special functions are routinely implemented in many
mathematical tools, and efficient routines are available [34].
However, we found it convenient to evaluate Eq. (5) by a series
approach, using

pn(τ ) = (1 − τ 2) exp

(
|τ |2n

∑
m�1

|τ |2m

m + n

)

for τ 2 < 1 and

pn(τ ) = (τ 2 − 1) exp

(
|τ |2n

∑
m�0

|τ |−2m

m − n

)
exp

{
π

cos(2πn)

sin(πn)

+π [2 cos(πn) − 1] tan

(
3

2
πn

)}

for τ 2 > 1 (and n /∈ N). For n ∈ N, pn is directly given by
Eq. (3).

APPENDIX B: DERIVATION OF THE EQUATIONS
OF MOTION

The equations of motion for the pulse parameters are
derived using the method of moments [26,27]. We introduce
the energy Q0 and the momentum P0,

Q0 =
∫ ∞

−∞
|u|2dt,

P0 = 1

2

∫ ∞

−∞
(u∗

t u − utu
∗) dt,

and higher-order generalized moments

Q1 =
∫ ∞

−∞
t |u|2 dt,

Q� =
∫ ∞

−∞
(t − t0)�|u|2 dt, � > 1

P� =
∫ ∞

−∞
(t − t0)�(utu

∗ − u∗
t u) dt, � > 0

where t0 denotes the center of gravity. Due to the symmetry
properties of the ansatz Eq. (5), we have Q� = 0 for odd � and
P� = 0 for even �, as well as t0 = 0.
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Multiplying Eq. (1) with u∗ and subtracting the complex
conjugate, we can write

i∂z|u|2 + D∂t (u∂tu
∗ − u∗∂tu) = u∗R − uR∗, (B1)

with the dissipative term R = i(g + gω∂2
t + r|u|2)u. Multi-

plying with t� and integrating over t yields the equations
of motion for the Q�. Furthermore, multiplying Eq. (1) with
u∗

t and subtracting u∗ times the temporal derivative of Eq. (1),
and subsequently taking the real part of the resulting equation
yields

i∂z(u
∗
t u − utu

∗) − 4D∂t |ut |2 + D∂3
t |u|2 − γ ∂t |u|4

= 2(utR
∗ + u∗

t R) − ∂t (uR∗ + u∗R). (B2)

Multiplying with t� and integrating over t yields the equations
of motion for the P�. We arrive at the evolution equations

∂zQ0 = i

∫ ∞

−∞
(uR∗ − u∗R) dt, (B3)

∂zQ2 = 2iDP1 + i

∫ ∞

−∞
t2(uR∗ − u∗R) dt, (B4)

i∂zQ4 + 4DP3 =
∫ ∞

−∞
t4(u∗R − uR∗) dt, (B5)

∂zP1 = i

∫ ∞

−∞
(−4D|ut |2 − γ |u|4) dt + 2i

∫ ∞

−∞
t(utR

∗

+u∗
t R) dt + i

∫ ∞

−∞
(uR∗ + u∗R) dt, (B6)

−i∂zP3 + 12D

∫ ∞

−∞
t2|ut |2 dt − 6DQ0 + 3γ

∫ ∞

−∞
t2|u|4 dt

= 2
∫ ∞

−∞
t3(utR

∗ + u∗
t R) dt + 3

∫ ∞

−∞
t2(uR∗ + u∗R) dt.

(B7)

Inserting Eq. (5), we obtain

ε0

(
2
A′

A
+ T ′

T

)
+ n′∂nε0

= 2gε0 + 2rA2µ0 + gωT −2

×
(

−1

2
η0 − 8β2ε2 − 32α2ε6 − 32βαε4

)
, (B8)

ε2

(
2
A′

A
+ 3

T ′

T

)
+ n′∂nε2

= −8DT −2 (βε2 + 2αε4) + 2gε2 + 2rA2µ2

+ 2gωT −2

(
−1

4
η2 + ε0 − 4β2ε4 − 16α2ε8 − 16βαε6

)
,

(B9)

ε4

(
2
A′

A
+ 5

T ′

T

)
+ n′∂nε4 + 16DT −2 (βε4 + 2αε6)

= 2gε4 + 2rA2µ4 + gωT −2

(
−1

2
η4 + 12ε2 − 8β2ε6

− 32α2ε10 − 32βαε8

)
, (B10)

(
2
A′

A
+ T ′

T

)
(βε2 + 2αε4) + β ′ε2 + βn′∂nε2

+ 2α′ε4 + 2αn′∂nε4

= −DT −2

(
1

4
η0 + 4β2ε2 + 16βαε4 + 16α2ε6

)

− γ

4
A2µ0 + 2gβε2 + 4gαε4 + 2rA2βµ2

+ 4rA2αµ4 + gωT −2

(
3βε0 − 3

2
βη2 + 42αε2

− 3αη4 − 48β2αε6 − 96βα2ε8 − 8β3ε4 − 64α3ε10

)
,

(B11)(
2
A′

A
+ 3

T ′

T

)
(βε4 + 2αε6) + β ′ε4 + βn′∂nε4 + 2α′ε6

+ 2αn′∂nε6 + 3

4
γA2µ2 + 3DT −2

(
−1

2
ε0 + 1

4
η2

+ 4β2ε4 + 16βαε6 + 16α2ε8

)
= 2gβε4 + 4gαε6 + 2rA2βµ4 + 4rA2αµ6

+ gωT −2

(
21βε2 − 3

2
βη4 + 102αε4 − 3αη6

− 48β2αε8 − 96βα2ε10 − 8β3ε6 − 64α3ε12

)
.

(B12)

Equation (7) is obtained after multiplying Eq. (B8) by ε2/ε0

and subtracting Eq. (B9); similarly, multiplying Eq. (B8) by
3ε2/ε0 and subtracting Eq. (B9) yields Eq. (8). Equation (6)
is obtained from Eq. (B10) by inserting Eqs. (7) and (8).
Furthermore, we derive Eq. (10) by eliminating n′∂nε2 and
n′∂nε4 from Eq. (B11), using Eqs. (B9) and (B10), respectively.
Finally, Eq. (9) is derived from Eq. (B12) by eliminating
βn′∂nε4 with Eq. (B10) and β ′ with Eq. (10).

APPENDIX C: MODELING OF THE SATURABLE
ABSORBER

In the Schrödinger Eq. (1), instantaneously saturable gain or
loss is described by the term ∂zu|sat = r|u|2u, with the solution

u(L) = u0√
1 − 2rL|u0|2

(C1)

for an initial field u0 and a propagation length L. Thus, the
pulse power P (t) = |u(t)|2 is transformed according to

P (L) = P0

1 − 2rLP0
, (C2)

while the phase of u is not altered. For saturable absorption
(r > 0), this approach only works in the weak field regime
(i.e., 2rLP0 � 1). More generally, a saturable absorber can
be modeled by the expression [17]

P1 = P0

(
1 − q0

1 + P0/Psat

)
= P0 − q0P (L), (C3)
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where q0 is the unsaturated loss, and Psat is the saturation
power.

In the following, we describe how to obtain the parameter
values of our test pulse Eq. (5) after passage through an SA
of the form of Eq. (C3). Most straightforwardly, this could be
achieved by Taylor expansion of the pulse around its center at
the input and output of the SA and comparison of the leading
terms [23]. Here, we aim for a more global fitting method,
consistent with the MOM. First, the equations of motion
Eqs. (6)–(8) are solved for r = −1/(2PsatL) and g = gω =
D = γ = 0, yielding the pulse parameters A(L), T (L) and
n(L) of P (L) in Eq. (C3). The corresponding parameters A1,
T1, and n1 for P1 are then derived by computing the zero,
second, and fourth moment of Eq. (C3),

νm =
∫ ∞

−∞
tmP1 dt =

∫ ∞

−∞
tmP0 dt − q0

∫ ∞

−∞
tmP (L) dt

(C4)

with m = 0, 2, and 4, yielding

νm = A2
0T

m+1
0 εm(n0) − q0A

2(L)T m+1(L)εm[n(L)]

= A2
1T

m+1
1 εm(n1), (C5)

with εm defined in Eq. (11). From this, we obtain an implicit
equation for n1,

ε0(n1)ε4(n1)

ε2
2(n1)

= ν0ν4

ν2
2

, (C6)

and furthermore

T1 =
√

ε0(n1)ν2

ε2(n1)ν0
, (C7)

A1 =
√

ν0

T1ε0(n1)
. (C8)

The phase iβ(t/T )2 + iα(t/T )4 + iφ of our test pulse Eq. (5)
is not altered, thus we get β1 = β0(T1/T0)2, α1 = α0(T1/T0)4.
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