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I. INTRODUCTION

Spatial optical correlations, both quantum and classical,
represent a fundamental resource for developing technologies
as quantum imaging [1,2], super-resolution [3], etc., which
could open unprecedented opportunities in the field of metrol-
ogy, positioning, and imaging. Various protocols have been
proposed [4–13] and experimentally realized [14–25].

Among them, so-called ghost imaging, based on the
correlation in spatial intensity fluctuations (speckles [26]) [27]
(GI) has attracted great interest. In this technique a light beam
crosses (or it is reflected) by an object to be imaged. However,
the beam that crossed the object is detected by a detector
without any spatial resolution (bucket detector). The image
of the object is retrieved when the bucket detector signal is
correlated with the signal of a spatially resolving detector
measuring a light beam whose noise is spatially correlated to
the previous beam (reference beam). The first demonstration
of this technique was achieved with nonclassical states of
light [28], known as twin beams, produced by parametric
down conversion (PDC). Then it was shown, both theoretically
and experimentally, that this result can also be achieved with
beam-split thermal light [29–33], although with a smaller
visibility.

In practice this technique can be useful in the presence of
phase distortions (for example, when the beam crosses a diffu-
sive mediumsuch as fog), where intensity correlations with a
second beam allow one to retrieve the spatial information [34].

Due to the conceptual and practical interest attracted to
GI, many works have been devoted to clearly theoretically
describe [21,35–37] and to improve this protocol [38–42]. The
main parameters of GI discussed in these works are typical for
any kind of imaging: the signal-to-noise ratio (SNR), which
shows how well the image of the object is distinguishable from
the background, and the resolution. The latter is related to the
number of speckles (spatial modes) contained in the image
and is basically the number of elementary details of the object
that can be reconstructed in the ghost image. Note that various
terms are used in the literature: SNR [35,43,45] is sometimes
called contrast-to-noise ratio (CNR) [46]; the number of spatial
modes [37,43] is sometimes called the number of details of the
image [40].

Despite the huge amount of literature devoted to GI,
several points are still not clear concerning this technique. For

instance, in all existing experimental works, GI is performed
by measuring either normalized intensity correlation functions
(CFs) [40,43] or intensity CFs with the background subtracted
(also called CFs of intensity fluctuations) [30–32]. At the same
time, up until recently, most theoretical papers considered only
the simplest CFs, without normalization or background sub-
traction. In a recent theoretical paper, Chan et al. [46] for the
first time considered both the previous procedures and showed
that they lead to almost the same SNR value, while GI through
the measurement of the usual CFs has a much smaller SNR.
However, they only considered GI with bright thermal light
and presented only the results of numerical simulations. In [35]
Erkmen et al. developed a theory of the SNR of GI in the analog
detection scheme using the not-normalized intensity correla-
tion, providing results when ac coupling of the photocurrents
is performed by introducing signal frequency filtering.

In this paper, to provide the reader with a general discussion
of second-order1 GI in view of practical applications, we gen-
eralize the theory of Ref. [46] by including into consideration,
beyond thermal light ghost imaging (ThGI), the case of twin
beams (TwGI) and assuming an arbitrary brightness of the light
source. Moreover, we consider another protocol for GI that ex-
ploits the variance of the difference signal from the object and
reference detectors [37]. It turns out that this method of GI pro-
vides the same SNR as the background subtraction and normal-
ization of the CF for middle and high brightness of the source.

We analyze the influence of important aspects such as
the brightness of the source, the losses, the number of
spatiotemporal modes collected by the detector, and the
resolution on the performance of GI in terms of SNR.

Finally, in this work we compare the theory with the
experiment for two particularly interesting cases: mesoscopic
twin beams (photon numbers per spatiotemporal mode about
0.2) and bright pseudothermal light, both detected by CCD
cameras. The former is the best GI option if high intensities
should be avoided (for instance, for the sake of not damaging
the imaged object), and the latter is the simplest way to achieve
high SNR if using bright light is not a problem.

1We do not consider here schemes based on higher-order correlation
functions [5,39].
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II. THEORY

In general, in order to obtain a ghost image, a spatially
incoherent beam interacts with the object and then is collected
by a bucket detector without any spatial resolution, while the
correlated beam, which does not interact with the object, is
registered by a spatially resolving detector, namely, an array
of pixels. This procedure is repeated K times. The image of
the object is retrieved by measuring the function S(xj ), where
xj represents the position of the pixel j in the reference region.
Usually, S has the form

S(xj ) = f
(
E[N1],E[N2(xj )],E[N1N2(x)],E

[
N2

1

]
,

E
[
N2

2 (xj )
]
,...

)
,

i.e., a function f that involves the correlation function
E[Np

1 N
q

2 (xj )], (p,q � 0), of the observable corresponding
to the total number of photons collected at the bucket
detector, N1, and at the j th pixel of the reference arm,
N2(xj ), respectively. Here, E[X] = 1

K
∑K

k=1 X(k) represents
the average over the set of K realizations. For the sake of
simplicity we consider an imaged object defined by two levels
of transmission, T = 1 and T = 0.

The signal-to-noise ratio of a ghost imaging protocol can
be defined as the ratio of the mean “contrast” to its standard
deviation (mean fluctuation):

SNRS ≡ |〈Sin − Sout〉|√
〈δ2(Sin − Sout)〉

, (1)

where Sin and Sout are the intensity values of the reconstructed
ghost image, when xj is either inside (T = 1) or outside
(T = 0) of the object profile, respectively, and δS ≡ S − 〈S〉
is the fluctuation. The mean value, denoted by 〈 〉, represents
the theoretical expectation value, which can be estimated in
practice by performing space averages over the regions “in”
and “out” of the ghost image.

The ghost image can be reconstructed by exploiting differ-
ent GI protocols, namely, different parameters S. Although all
the protocols exploit the correlations between the object beam
and the reference one, not all of them give the same results in
terms of SNR. In particular, we analyze four different protocols
based on using

(i) the Glauber intensity correlation function, when

S(x) = G(2)(x) ≡ E[N1N2(x)]. (2)

Here, the quantum expectation value is obviously 〈S(x)〉 =
〈N1N2(x)〉, and the variance can be evaluated directly as
〈δ2S(x)〉 = 〈δ2[N1N2(x)]〉/K. The photon numbers are con-
sidered as quantum operators and the quantum mean values
are evaluated in the Appendix, where we describe in detail our
theoretical model.

(ii) the normalized intensity CF, when

S(x) = g(2)(x) ≡ G(2)/ {E[N1]E[N2(x)]} . (3)

We note that unlike all the other parameters considered
in points (i), (iii), and (iv), since both the numerator and the
denominator are normally distributed and have nonzero mean
values [46], the standard deviation of g(2) measurement was
evaluated in our work by means of the uncertainty propagation
of the quantities G(2), E[N1], and E[N2(x)].

(iii) the covariance, or CF of intensity fluctuations,

S(x) ≡ cov(x) = E[ {N1 − E[N1]} {N2(x) − E[N2(x)]} ]

= E[N1N2(x)] − E[N1]E[N2(x)]. (4)

In this case we have 〈 cov(x)〉 = K−1
K (〈N1N2(x)〉 −

〈N1〉〈N2(x)〉). The coefficient depending on the number of
realizations, namely, the number of acquired images, is the
usual one allowing the unbiased estimation of the theoretical
correlation. If we assume that E[N1] and E[N2] can be well
represented by their expectation values 〈N1〉 and 〈N2〉 in the
calculation of the fluctuations (it happens if K � 1), we have

〈δ2cov(x)〉 � 〈δ2[δN1δN2(x)]〉/K
= [〈[δN1δN2(x)]2〉 − 〈δN1δN2(x)〉2]/K.

(iv) the variance of the intensity difference,

S(x) ≡ E[ {N1 − N2(x) − E[N1 − N2(x)]}2 ]

≡ {
E

[
N2

1

] − E
[
N1

]2} + {E[N2(x)2] − E[N2(x)]2}
−2 {E[N1N2(x)] − E[N1]E[N2(x)]} . (5)

Whatever the parameter S, it involves in some form the
CFs, which are second-order intensity moments. Therefore, the
evaluation of its fluctuations requires expressions for the first-
to fourth-order moments of the intensity. These are calculated
in the Appendix, where the details of our model are extensively
described.

We consider several parameters that influence the SNR:
(1) the brightness of the source, which is related to

the average number of photons µ per single spatiotemporal
mode;

(2) the total number M of spatiotemporal modes collected
by each element (pixel) of the spatially resolving detector in
the reference arm. It is approximately given by the product
of the number of spatial modes, Msp = max[Apix/Acoh,1],
and the number of temporal modes, Mt = max[Tdet/Tcoh,1].
Here,Apix,Tdet are the pixel size and the detection (integration)
time, respectively, while Acoh,Tcoh represent the characteristic
coherence area (roughly, the speckle size) and the coherence
time of the source. From the viewpoint of the light statistics,
the total number of modes is M � 1; it is considered
equal to 1 when Apix � Acoh and Tdet � Tcoh. While through-
out the paper we always consider a usual situation in which
the integration time is much larger than the coherence time,
the case of Apix � Acoh and Apix > Acoh are both analyzed
in the text. We stress that M should not be confused with the
number of realizations, for instance, the number of acquired
frames K: M is the number of modes collected by a pixel in
a single acquired frame, so that I ≡ 〈N2〉 = η2Mµ represents
the total number of photons detected in the pixel (η2 being the
detection efficiency), further called the “illumination level.”

(3) We take into account the overall transmission-
collection-detection efficiency of the two channels, 0 � ηj �
1 with j = 1,2, i.e., the probability to detect an emitted
photon. According to our model, developed in the Appendix,
the situation in which the pixel of the reference detector is
smaller than the coherence area (Apix � Acoh) corresponds to
a reduction of the collection efficiency. Therefore, η2 also
includes a factor that takes into account the geometrical
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TABLE I. Expressions for the signal-to-noise ratio (SNR) of the reconstructed ghost image with thermal light (ThGI) and with twin beams
(TwGI) for different protocols described in the text, in the lossless case (η = 1).

TwGI ThGI

SNRG(2)

√
Mµ(1+µ)√

1+µ(6+M+4MR)+µ2(6+M+6MR+2M2R2)

√
Mµ√

1+2MR+2µ(2+3MR+M2R2)+µ2(6+M+6MR+2M2R2)

SNRg(2)

√
MRµ(1+µ)√

1+µR(2+M+2MR)+µ2[−1+(3+M)R+2MR2]

√
MRµ√

−µ(1+µ)+[1+3µ+(3+M)µ2]R+2M(1+µ)2R2

SNRcov

√
Mµ(1+µ)√

1+µ(6+M+2MR)+µ2(6+M+2MR)

√
Mµ√

1+2MR+4µ(1+MR)+µ2(6+M+2MR)

SNRvar

√
2Mµ(1+µ)√

1+µ(6+4MR)+µ2(6+4MR)

√
2Mµ3/2√

1+µ[7+M(2+4R)]+8µ2(1+MR)+µ3(6+4MR)

collection probability of a photon in a certain spatial mode,
η2 = η2,0 ∗ η2,coll, where ηcoll ≈ min[Apix/Acoh,1].

(4) Finally, the number of spatial resolution cells
of the reconstructed image is represented by R =
Ain/ max[Apix,Acoh], with Ain the area of the ghost image
where T = 1. When the pixel size is equal or smaller than the
size of a single spatial mode, R is determined by the number of
spatial modes, otherwise it is given by the number of pixels in
the area Ain. The ideal condition for maximizing, in principle,
the resolution and the collection efficiency is Apix � Acoh,
that is, the pixel size should approximately coincide with the
speckle size [2].

As an example of a specific relevant case, in Table I we
report the expressions for the SNR calculated for the ideal
case of unity transmission, collection, and quantum efficiency
in both optical paths, η1 = η2 = η = 1. Here and in the
following, the SNR values are normalized to

√
K.

First we observe that both for TwGI and ThGI the
performances of the scheme based on G(2) are drastically
worse than for the other methods because the SNR drops
as SNRG(2) → 1/R (R � 1) and as 1/

√
M (M � 1) with

respect to the resolution parameter R and with respect to the
number of modes detected by each pixel M . At the same time,
all the other protocols (exploiting g(2), cov, and var) scale
as 1/

√
R (R � 1) and asymptotically ∼const with respect

to M , for M � 1. We report the theoretical dependence of
SNRs on R in Figs. 6 and 7 in Sec. III C. This fact makes
the not-normalized and not-subtracted correlation function
G(2), albeit largely considered in the literature (see, for
instance, Refs. [35,45,46]), inappropriate for ghost imaging
when compared with the other protocols. Thus, we do not
investigate it further throughout the paper.

Figure 1 presents the SNR for all the protocols as a
function of the illumination level when M = 1 and η = 1.
In the typical situation of large R (R > 10) it turns out that
SNRg(2) , SNRcov, and SNRvar behave the same for large values
of detected photons I � 1, approaching approximatively the
upper value of (2R)−1/2, although they reach this bound at
different values of the brightness. In particular, for all ThGI
protocols the bound is reached when I � 1. For TwGI based
on the variance and covariance, the condition depends on the
resolution, namely, I � 1/(2R), while our calculation shows
that g(2) reaches the flat region as soon as I � 1/(2R2).
Concerning the performance of a very low-brightness source,
Fig. 1 shows that the advantage of using twin beams is in
general very pronounced, but even with the same source, some

protocols seem to be more convenient than others. In particular,
for ThGI all the protocols scale as ∝I with the exception of the
variance method, for which SNR approaches zero faster, i.e.,
∝I3/2. For TwGI all the methods lead to the same asymptotic
behavior ∝I1/2. Therefore, we can conclude that for the ghost
imaging of a complex object the three protocols exploiting
SNRg(2) , SNRcov, and SNRvar have the same performance at
medium and high intensities (for the same source, quantum or
classical), while for very low brightness, preference should be
given to the normalized correlation function g(2).

Now we focus on the difference between the signal-to-noise
ratio of TwGI, SNRTw, that is obtained in the limit of large
R, and the corresponding SNRTh obtained with thermal light
in the same limit, by using the covariance as the parameter
for the GI reconstruction. In order to perform a fair and
probably more useful comparison in a practical situation,
we already introduced the “illumination” I = ηMµ, i.e., the
total number of photons detected in the pixel in the single
image. In Fig. 2(a) we report the quantum and classical SNR
for different values of the transmission-detection efficiency,
balanced for the two channels (η1 = η2 = η = 1), while fixing
M = 1 (a single temporal mode and a single spatial mode are
detected). Not surprisingly, the curve for the thermal light is
not influenced by the losses, while the TwGI curve, in general
showing a better performance than the classical one, for high
losses approaches the ThGI. The advantage of twin-beam
light is evident for a low-brightness source, i.e., when the
number of photons per space-temporal mode µ � 1. On the

FIG. 1. Signal-to-noise ratio of the ghost image as a function of
the illumination level I for different protocols investigated in the
paper. The number of detected spatiotemporal modes in a single run
and the resolution parameter are fixed to be, respectively, M = 1 and
R = 100.
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FIG. 2. Signal-to-noise ratio in the covariance case (SNR) of
a ghost image as a function of the illumination level I for twin-
beam and thermal-light GI. The number of detected spatiotemporal
modes in a single run and the resolution parameter are fixed to be,
respectively, M = 1 and R = 100. (a) The three dashed curves refer
to different values of the balanced detection probability η1 = η2 = η.
(b) The unbalanced case, where η1 = 1 and η2 = 0.9,0.5,0.1 from
the higher to the lower curve, respectively.

contrary, when µ � 1, thermal and twin-beam states of light
produce the same results (Fig. 2). The physical reason can be
understood with the help of Eqs. (A3), (A4), and (A5) for the
two-mode statistics. Both classical and quantum light have the
same single-mode thermal fluctuations 〈δ2nj 〉 = ηµ + η2µ2.
However, the photon-number correlations for thermal light,
〈δn1δn2〉Th = 〈n1〉〈n2〉 = η2µ2, are relevant when the number
of photons is large, 〈nj 〉 ≡ µ > 1, and do not include the shot-
noise component ∝ µ, which remains uncorrelated. On the
other hand, the correlations in twin beams are 〈δn1δn2〉Tw =
η2µ(1 + µ), which shows that even the shot-noise component
of the fluctuations is correlated. Moreover, classical two-
mode correlations, generated by a beam splitter obeying the
Bernoulli statistics, are not reduced by the losses, which are
again described by a beam splitter model [see the Appendix
and the discussion after Eq. (A5)].

It is also important to present [Fig. 2(b)] the unbalanced
case, η1 > η2, which in our model includes the typical situation

10-5 0.001 0.1 10 1000 105
S

0.02

0.04

0.06

0.08
SNR

Th

TW

M 1

M 102

M 103

M 10

FIG. 3. Signal-to-noise ratio in the covariance case (SNR) of the
ghost image as a function of the illumination levelI. Here we consider
an ideal lossless situation η1 = η2 = 1 and the resolution is R = 100.

in many experiments where the pixel is smaller than the
coherence area. In this case, η2,coll ∼ Apix/Acoh � 1, and the
advantage of the TwGI is reduced. We observe that thermal
ghost imaging is weakly influenced by the unbalancing. This
indicates that in order to make the best of the TwGI, in the
photon-counting regime one should properly set the pixel
dimension.

In Fig. 3, the dependence of SNR on the number of modes
M collected by a single pixel is shown. We see that the TwGI
is insensitive to M , while the SNR for ThGI is reduced for
large M but can be recovered at higher values of illumination
I. A discussion about that point can be found in the Appendix
after Eq. (A7). This means that ThGI performs best in the
single-mode regime, while TwGI, even at low brightness, can
be easily brought to a high-illumination level by accumulating
a large number of temporal modes in a single frame, without
any decrease in the SNR. However, provided that the source has
the same parameters, i.e., the same brightness µ, the same M

and therefore the same I, the advantages of quantum light can
be of several orders of magnitude, even for large illumination
I (for sufficiently large M).

In conclusion, our discussion demonstrates that single-
mode (M = 1) ThGI is the best solution, considering the less
demanding experimental resources, when one is not limited in
the brightness of light. On the other hand, in situations where
a low light level, µ < 1, is needed, for instance because of the
photosensitivity of the object, quantum light provides a larger
SNR (even for a relatively large illumination level).

III. THE EXPERIMENT

For the experimental comparison of GI obtained with
thermal light and twin beams, we used two setups. In the first
case, GI was performed with bright pseudothermal radiation
(more than 104 photons per radiation mode). In the second
case, nonclassical radiation was used, namely, squeezed
vacuum obtained via type-II parametric down conversion.

In both experiments, we used the “numerical mask” method
suggested in Ref. [45]. We selected two regions, one in
the object beam, where we virtually inserted the mask, and
the other in the reference beam. In the bucket channel, we
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typical framenumerical
mask

Glan prism

FIG. 4. (Color online) Experimental setup for realizing ghost
imaging with pseudothermal light.

simulated the presence of a completely opaque mask, which
fully transmitted light within a certain area Ain and fully
absorbed light outside it. This was done by simply setting
the signals of all pixels outside of this area to zero. This
method, which is only possible with an array photodetector
in the bucket channel, presents the advantage of arbitrarily
varying the shape and size of the mask without any technical
difficulties and provides an ideal limit for this part of the setup
in a realistic situation.

A. Experimental setup with pseudothermal light

The experiment with pseudothermal light ghost imaging
was performed with the setup shown in Fig. 4 [43]. Second-
harmonic radiation of a Nd:YAG (yttrium aluminum garnet)
laser with wavelength 532 nm, pulse duration 10 ns, and
repetition rate 47 Hz was incident on an Arecchi’s rotating
ground-glass disk generating pseudothermal light [44]. The
radiation scattered by the disk was split by a nonpolarizing
beam splitter and then both output beams were registered
by two different parts of the matrix of a commercial digital

FIG. 5. (Color online) Scheme of the setup for realizing ghost
imaging with twin beams produced by Type II parametric down
conversion.

photographic camera Sigma SD14. The far-field speckle
patterns, symmetrical in the two parts, were focused on the
matrix by a lens with focal length 50 mm. As a result, the
typical speckle size on the matrix was about 0.230 mm. With
the pixel size of the matrix being 7.8 µm, a single speckle
occupied, on the average, an area of 30 × 30 pixels. This
was confirmed by the measurement of the spatial intensity
correlation function.

The rotation rate of the disk was chosen in such a way
that the speckle pattern did not change noticeably during a
single pulse but changed completely from pulse to pulse. The
camera was taking frames with exposure times 1/50 s, which
was much larger than the pulse duration but still less than the
distance between the pulses. As a result, most of the frames
contained the speckle pattern from a single pulse ( [43], Fig. 4)
and few were “empty.” The total number of captured frames
was 5000. In each frame, we selected square regions in the
two symmetrical parts (Fig. 6 of Ref. [43]), further referred to
as the object and reference channels. As before, in the object
channel, the “masks” were introduced numerically, by simply
ignoring the readings of the pixels outside them.

The intensity of the laser light was reduced by using a Glan
prism; by measuring the signals from separate pixels of the
camera versus the input intensity we verified that the camera
was operating in a linear regime and was not saturated. It is
important that the output data of the camera was written in
the RAW format. The mean values of signals from separate
pixels were on the order of 300 photons, which indicates
that the number of incident photons was at least as much
as that. Hence, per single speckle, i.e., for a single radiation
mode, we had photon numbers as high as 3 × 105. As the
pulse duration was much smaller than the typical time of
the speckle pattern fluctuation, and the pixel size was much
smaller than the speckle size, the number of modes was M = 1.
The transmission-quantum efficiency was quite low (less than
0.01), due to the beam attenuation, but, as discussed in Sec. II,
this is not important for ThGI.

B. Experimental setup with type-II PDC

In contrast to most ghost imaging experiments reported in
the literature that are realized with faint PDC, here we set
an experiment in the mesoscopic regime using a mesoscopic
PDC source and a CCD camera as a photon-number resolving
detector. This represents an important step in view of practical
applications of this method. The setup is reported in Fig. 5.

For generating the twin beams we used a type-II beta barium
borate (BBO) nonlinear crystal (l = 7 mm) pumped by the
third harmonic (355 nm) of a Q-switched Nd:YAG laser. The
pulses had a duration of Tp = 5 ns with a repetition rate of
10 Hz and a maximum energy, at the selected wavelength, of
about 200 mJ. The spurious non-Gaussian components were
eliminated by spatial filtering (a lens with a focal length of 50
cm and a diamond pinhole, 250 µm of diameter) of the beam
that was recollimated with a diameter of wp = 1.25 mm at
the crystal. After the BBO, the pump was stopped by two UV
mirrors (with �98% declared transmission at 710 nm) and by
a low-pass frequency filter (�95% transmission at 710 nm).
The orthogonally polarized down-converted signal and idler
beams were separated by two polarizers (�97% transmission)
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and finally, the far field was registered by a 1340X400 CCD
(Princeton Pixis:400BR with a pixel size of 20 µm, quantum
efficiency of 80%, and readout noise of 4 electrons/pixel). A
mechanical shutter provided synchronization with the laser so
that each acquired frame corresponded to the PDC emission
generated by a single shot of the laser. The far field was
observed at the focal plane of the lens with 10 cm focus in
an “f − f ” optical configuration. Our setup was developed
exploiting the potentiality of the quantum scheme [15], which,
according to the theory, should outperform the classical light
scheme for the same brightness (number of photon per spatio-
temporal mode). For optimizing the detection of quantum
correlations, basically two requirements should be fulfilled.
First, transmission/detection and collection efficiency must be
large. We realized it by reducing the optical losses after the
crystal and using a CCD camera with high quantum efficiency,
while the collection efficiency can be kept high if the pixel area
Apix is larger than the coherence area Acoh (approximatively
a speckle), i.e., a pixel should collect more than one spatial
mode [26]. The second point is that the detection noise must
be low compared with the shot noise. For both these reasons,
it is very efficient to perform hardware binning of the physical
pixels. It consists of grouping the physical pixels in squared
blocks, each of them being processed by the CCD electronics
as single “superpixel.” The number of photons collected by a
superpixel is the sum of photon numbers of each pixel, whereas
the readout noise is just slightly increased with respect to the
one of a single pixel. We chose its dimension comparable
to Acoh, i.e., the pixel (hereinafter we discard the prefix
“super”) size was set to 240 × 240(µm)2. The illumination
I, defined as the number of photons detected by a pixel in
a single shot image (frame), was about I = 1600 (subtracted
for the background). The expected number of temporal modes
Mt = Tp/Tcoh detected in one frame was 5 × 103, considering
the coherence time Tcoh of PDC of the order of 1 ps. The
number of spatial modes detected by the pixel was Msp =
Apix/Acoh � 4. A measure of the coherence area, basically
determined by the pump transverse diameter, is the size of
the spatial cross correlation of the signal and idler intensity
patterns that has been evaluated to Acoh ∼ 120 × 120(µm)2

with a linear uncertainty of one physical pixel (20 µm). Thus,
we expected a total number of modes roughly estimated as
M ′ = MtMsp = 2 × 104. On the other hand, by comparing
the excess noise of the single beam measured according to the
definition, E ≡ {E[N2

2 ] − E[N2]2}/E[N2] − 1 ∼ 0.13, with
its expression for thermal statistics E = I/M we obtained
M ∼ 1.2 × 104. We consider the two determinations of the
number of modes M ′ and M compatible, especially because
the value M ′ is certainly affected by a large uncertainty. There-
fore, the number of photons per spatiotemporal mode was
µ = I/(ηM) � 0.21. Under these conditions, we recorded
4000 frames.

C. Experimental results

After having discarded all the frames corrupted by incoming
cosmic rays, as well as “empty” frames in the ThGI setup, we
started the analysis by defining two correlated regions in the
object and in the reference arm. In the TwGI setup, the regions
included 13 × 15 = 195 pixels, while in the ThGI setup, they

contained 750 × 750 pixels. These regions were the same for
all the frames.

In the twin beams setup, one of the main problems we had
to cope with was a strong instability of the Q-switched laser
power from pulse to pulse (about 14%). Since the expectation
value of the number of photons per mode µ is proportional to
the square of the power P of the pump [µ ∝ sinh2(const

√
P )],

fluctuations of P lead to fluctuations of µ. As a consequence,
the temporal statistics on many pulses is characterized by the
mean µ̄ and the variance V(µ). Indeed, using the equations
presented in the Appendix, we have obtained the expectation
value of cov inside and outside of the mask taking into account
the pump instability:

cov′
in = η2M[µ̄(1 + µ̄) + V(µ)(1 + RM)], (6)

cov′
out = η2M2V(µ)R. (7)

When M and R are large, as in our experiment, the
fluctuations of the pump dominate and this introduces a
nonzero covariance for pixels in the reference arm that are,
in principle, uncorrelated with the mask. The overall result is
a strong noise of “background correlation” that hides the PDC
spatial correlation, essential in the ghost image reconstruction.
As a matter of fact, this effect would lead to an increased noise
on the ghost image and a consequent decreasing of SNR.

In order to compensate for the instability of the pump, we
normalized each frame by its average value taken over a certain
CCD spatial region. This procedure completely removed the
problem.

In Fig. 6 we present the obtained experimental values
of the SNR versus the resolution parameter R of the mask
for the case of TwGI. The data set is in agreement with
the theory where the experimental parameters M , µ, and η

have been estimated independently. However, the best fit is
obtained when η = 0.42, which is smaller than the value 0.62
that was measured very accurately in [16]. This discrepancy
can be explained by the relatively small pixel size (reduced
collection efficiency of correlated photons) and the presence

FIG. 6. (Color online) Signal-to-noise ratio for TwGI as a func-
tion of the resolution parameter R. The three series of experimental
data refer to the different correlation parameters considered in our
analysis: g(2), cov, and var. They completely overlap in this regime,
as well as the theoretical curves (dashed line). The theoretical curve
for G(2)(R) is also reported (dotted line). The SNR is normalized by
the square root of the number of frames of the sample K = 4000.
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FIG. 7. (Color online) Signal-to-noise ratio for ThGI as a function
of the resolution parameter R. The three series of experimental data
refer to the different correlation parameters considered in our analysis:
g(2), cov, and var. They completely overlap in this regime, as well as
the theoretical curves (dashed line). The theoretical curve for G(2)(R)
is also reported (dotted line) but in experiment, no readable image
could be obtained from our data set. The SNR is normalized by the
square root of the number of frames of the sample.

of background noise generated by detection and stray light.
A detailed analysis of such problems can be found in [16].
We stress that in our experiment we successfully exploited the
theoretical results, pointing out that the multimode regime is
the most appropriate for TwGI. In fact, by collecting more than
104 space-temporal modes M ∼ MspMt we reached a level
of illumination I = 1600 such that the experimental sources
of noise (such as electronic read noise of the CCD and stray
light, etc.) were almost negligible. For G(2) we only report the
theoretical prediction, which is close to zero. In accordance to
this prediction, our experimental data involving 4000 frames
was insufficient to produce any ghost image with G(2) protocol.

In summary, we have demonstrated ghost imaging with twin
beams in a mesoscopic regime (µ = 0.21,M ≡ MspMt =
1.2 × 104, I = 1.6 × 103) by a photon-number resolving
detector for such parameters of the source (number of photons
per mode and the illumination level) for which thermal ghost
imaging provides much worse SNR, according to the values
reported in Fig. 3.

On the other hand, Fig. 7 shows the results of ThGI
experiment. The illumination level was about I ≈ 300, photon
number per mode µ ≈ 3 × 105, the number of modes M = 1,
and the resolution parameter R was varied from R ≈ 20 to
R ≈ 130 by changing the size of rectangular numerical masks.
One can see that the experimental points agree well with the
theoretical dependence for SNR, which, according to Table I,
is in this case similar for all three methods (based on variance,
covariance, and g(2)) and given by SNR = √

2R.

IV. CONCLUSIONS

In providing the reader, in view of practical applications,
with a general exhaustive description of ghost imaging,
we have discussed both thermal and twin-beam GI for

four different protocols, based on the measurement of the
following values: the Glauber correlation function G(2) =
〈N1N2〉, the normalized Glauber’s correlation function g(2) =
G(2)/〈N1〉〈N2〉, the covariance cov = 〈δN1δN2〉, and the
variance of the difference signal var = 〈δ2(N1 − N2)〉.

A first significant result, in accordance with the analysis
in [46] for thermal light, is that the G(2) method performs
much worse than the others (the SNR falling rapidly with the
resolution parameter, i.e., the number of speckles transmitted
through the mask in the object channel, and with the number
of spatio-temporal modes detected by the reference detector):
thus, albeit often considered in the literature for the sake
of simplicity, the G(2) method is not worth using in real
applications.

On the other hand, the other methods have similar perfor-
mances. For all of them, twin-beam GI performs largely better
than thermal-light GI at low illumination levels (few photons
per pixel in a single shot), while they become equivalent at
high illumination levels (many photons per pixel in a single
shot). Furthermore, TwGI is insensitive to the number of modes
collected by a pixel and can be brought to a large illumination
level by accumulating a large number of temporal modes in
a single shot, even maintaining low brightness, which means
low photon number per spatiotemporal mode. This is what is
realized in our experimental demonstration, in which about
20 000 modes are accumulated in the 5 ns duration of the
pump pulse. ThGI performs best in the single-mode regime.
In summary, ThGI is preferable whenever one does not have
limits on the brightness (e.g., photo-sensible samples), due to
its simpler realization.

Finally, we have demonstrated the perfect agreement of
the developed general theory of GI with experiment in some
particularly interesting (and sometimes unexplored) regimes
for both TwGI and ThGI.
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APPENDIX

In this Appendix we calculate the correlation functions
needed for evaluating the SNR of different GI schemes. For
both thermal and PDC light we first consider the single-mode
statistics and then we extend it to a more general multimode
case. Only later do we introduce the bucket detector that
integrates the light over all the spatial modes in the mask
(“object”) beam.

PDC [48], in the approximation of a plane and monochro-
matic pump beam of frequency ωp, can be described by
an evolution operator U that is the product of independent
operators, each acting on a couple of symmetric modes (q,�)
and (−q,−�) [47]:

U = exp

(
− i

h̄

∫ ∞

0
H (t ′)dt ′

)

=
⊗
q,�

exp[ξa
†
1(q,�)a†

2(−q, − �) − H.c.], (A1)
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where ±� is the detuning of the signal(1) and idler(2) photons
with respect to the degeneracy frequency ωp/2, ±q are the
symmetric and correlated transverse wave vectors, a

†
1 and a

†
2

are the creation operators of the signal and idler photons,
respectively, and ξ (q,�) ∝ √

P is the coupling coefficient (P
being the pump laser beam power). Therefore, it can be seen
as a collection of independent processes where couples of
symmetric modes are correlated and the output field operators
for signal and idler are

b1(q,�) = U (ξ )a1(q,�) + V (ξ )a†
2(−q,−�),

(A2)
b2(q,�) = U (ξ )a2(q,�) + V (ξ )a†

1(−q,−�),

where U (ξ ) = cosh(ξ ) and V (ξ ) = sinh(ξ ) determine the
mean photon number per mode µ = V (ξ )2 by their maximum
value and the coherence time by their inverse width in �. Here
the phases are not considered because they do not play any
role in the photon-number statistics.

In our model we assume ηj (j = 1,2) to be the detection
probabilities for the photons in the mode j . Here, ηj is
a coefficient that includes transmission, detection (quantum
efficiency, QE, of the detector), and collection efficiency ηj,coll

of the photon emitted in a certain spatial mode. In particular,
in our model the collection efficiency can be less than 1 when
the pixel of the spatially resolving detector is smaller than the
spatial mode at the detection plane. In that case, the probability
to collect a photon emitted in a certain mode is ηj,coll =
Apix/Acoh. All the losses can be taken into account by a model
in which a beam splitter with transmission ηj is preceding
an ideal detector (QE = 1) [49]. For the calculation of the
photon-number correlation function nj = b

†
j bj , this leads to

a simple substitution bj → √
ηjbj in the normally ordered

expressions for the operators. The single-mode photon-number
statistics as well as the two-mode correlation can be obtained
through a straightforward calculation by the relations (A2),
with the input state being the vacuum one:

〈nj 〉 = ηjµ,

〈n2
j 〉 = ηjµ + 2η2

jµ
2,

(A3)
〈n3

j 〉 = µηj

(
1 + 6µηj + 6µ2η2

j

)
,

〈n4
j 〉 = µηj

(
1 + 14µηj + 36µ2η2

j + 24µ3η3
j

)
,

〈n1n2〉 = µ(1 + 2µ)η1η2,

〈n2
1n2〉 = µη1η2[1 + 6µ2η1 + µ(2 + 4η1)],

〈n2
1n

2
2〉 = µη1η2[1 + 24µ3η1η2 + 6µ2(η1 + η2 + 4η1η2)

(A4)
+ 2µ(1 + 2η1 + 2η2 + 2η1η2)],

〈n3
1n2〉 = µη1η2

[
1 + 24µ3η2

1 + 18µ2η1(1 + η1)

+ 2µ(1 + 6η1)
]
.

For our purposes we focus on the correlation in the far field
obtained as the focal plane of a thin lens of focal length f in an
f − f configuration and around degeneracy (� = 0). Here,
any transverse mode q is associated with a single position
x in the detection (focal) plane according to the geometric
transformation (2cf/ωp)q → x [4], with c being the speed

of light. We observe that the diffraction effects arising from
the transverse finite dimension of the optical system (typically
the pump profile in the twin-beam generation process) lead
to a nonzero transverse coherence area, Acoh, in the far
field, representing the uncertainty in the arrival point of the
correlated photons. The fluctuation of the difference photon
number is 〈δ2(n1 − n2)〉Tw ≡ 〈δ2n1〉 + 〈δ2n2〉 − 2〈δn1δn2〉 =
2ηµ(1 − η) for η = η1 = η2. Thus, in the ideal lossless case
(η = 1), a perfect correlation appears in the photon number
since 〈δ2(n1 − n2)〉Tw = 0 (sub-shot-noise regime [14,15,50]).

In the case of thermal radiation we assume a set of
independent modes ai (i = 1, . . .) addressed to the input of
a 50% beam splitter performing the transformations b1,i =
(ai + avac,i)/

√
2 and b2,i = (ai − avac,i)/

√
2, where avac is the

mode at the vacuum input port of the beam splitter. The
photon-number correlation of the beams at the two output ports
are obtained by exploiting the rule 〈(a†

i )pa
p

i 〉 = p!〈a†
i ai〉p,

for normally ordered moments of thermal light. For the
single-beam moments, taking into account the losses, we found
again the expressions in Eqs. (A3). This is in agreement with
the fact that each beam from PDC, considered separately,
manifests thermal statistics. On the other hand, the correlations
of photon numbers between thermal beams 1 and 2 are

〈n1n2〉 = 2µ2η1η2,〈
n2

1n2
〉 = 2µ2η1η2 (1 + 3µη1) ,

(A5)〈
n2

1n
2
2

〉 = 2µ2η1η2
[
1 + 12µ2η1η2 + 3µ(η1 + η2)

]
,〈

n3
1n2

〉 = 2µη1η2
[
1 + 9η1µ + 12µ2η2

1

]
.

In contrast to the quantum case, the correlation between the
photon numbers in the coupled modes is not perfect; hence,
for thermal light we have 〈δ2(n1 − n2)〉Th = 2ηµ, which
represents the shot-noise limit. At the same time, the excess
noise ∼µ2 in the second equation in Eqs. (A3) disappears
regardless of the losses.

According to our experimental realization (but without loss
of generality), we start by considering a situation in which
both reference and object beams are detected by a spatially
resolving array of detectors (the pixels of a CCD camera in
our case). Each pixel collects a number M � 1 of independent
spatiotemporal modes in the far field and the total number of
photons detected by the pixel is Nj = �M

i=1nj,i , with j = 1,2.
It is easy to show that the moments of the N distribution can
be expressed in terms of single-mode moments in Eqs. (A3)
as

〈Nj 〉 = M〈nj 〉,〈
N2

j

〉 = M
〈
n2

j

〉 + M(M − 1)〈nj 〉2,

〈
N3

j

〉 = M
〈
n3

j

〉 + 3M(M − 1)
〈
n2

j

〉〈nj 〉
+M(M − 1)(M − 2)〈nj 〉3, (A6)

〈
N4

j

〉 = M
〈
n4

j

〉 + M(M − 1)
(
3
〈
n2

j

〉2 + 4
〈
n3

j

〉〈nj 〉
)

+6M(M − 1)(M − 2)
〈
n2

j

〉〈nj 〉2

+M(M − 1)(M − 2)(M − 3)〈nj 〉4.
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Since the modes of signal and idler fields are pairwise
correlated, the correlators of the count numbers in two
symmetrical pixels (collecting M correlated modes) are

〈N1N2〉 = M〈n1n2〉 + M(M − 1)〈n1〉〈n2〉,〈
N2

1 N2
〉 = M

〈
n2

1n2
〉 + M(M − 1)

(〈
n2

1

〉〈n2〉 + 2〈n1n2〉〈n1〉
)

+M(M − 1)(M − 2)〈n1〉2〈n2〉,〈
N2

1 N2
2

〉 = M
〈
n2

1n
2
2

〉 + M(M − 1)
(〈
n2

1

〉〈n2
2〉 + 2

〈
n2

1n2
〉〈n2〉

+2〈n1n2〉2 + 2
〈
n1n

2
2

〉〈n1〉
)

+M(M − 1)(M − 2)
(〈
n2

1

〉〈n2〉2 + 〈n1〉2
〈
n2

2

〉
+ 4〈n1n2〉〈n1〉〈n2〉

)
(A7)

+M(M − 1)(M − 2)(M − 3)〈n1〉2〈n2〉2,

〈N3
1 N2〉 = M

〈
n3

1n2
〉 + M(M − 1)

(〈
n3

1

〉〈n2〉
+3

〈
n2

1

〉〈n1n2〉 + 3
〈
n2

1n2
〉〈n1〉

)
+M(M − 1)(M − 2)

(
3〈n1n2〉〈n1〉2

+3
〈
n2

1

〉〈n1〉〈n2〉
)

+M(M − 1)(M − 2)(M − 3)〈n1〉3〈n2〉.
The correlators 〈N1N

2
2 〉 and 〈N1N

3
2 〉 can be obtained by

simply exchanging the indexes 1 and 2 in the second and
fourth equations of Eqs, (A7). From the first lines of Eqs. (A6)
and (A7) we see that 〈δN1δN2〉 = M〈δn1δn2〉 (η1 = η2 = 1).
By substituting the two-mode correlators following from
Eqs. (A3) and (A5) we have 〈δN1δN2〉Tw = 〈N1〉 + 〈N2

1 〉/M
and 〈δN1δN2〉Th = 〈N2

1 〉/M for quantum and thermal light,
respectively. These expressions show that thermal correlations
are sensitive to the numbers of modes in both channels, while
the shot-noise term is not reduced by the increase in M . This
provides an intuitive explanation of the different behavior be-
tween TwGI and ThGI with respect to the number of modes M .

Now we introduce the bucket detector whose output is
represented by the operator N1 = �R

k=1Nk,1, i.e., a sum of the
photon numbers over R independent sets of spatial cells, each
one collecting M � 1 modes. R coincides with the number
of pixels of the ghost image if the pixel is sufficiently large

to collect more than one spatial mode, otherwise it coincides
with the number of spatial modes (speckles) itself.

〈N1〉 = R〈N1〉,〈
N2

1

〉 = R
〈
N2

1

〉 + R(R − 1)〈N1〉2,〈
N3

1

〉 = R〈N3
1 〉 + 3R(R − 1)

〈
N2

1

〉〈N1〉
+R(R − 1)(R − 2)〈N1〉3, (A8)〈

N4
1

〉 = R
〈
N4

1

〉 + R(R − 1)
(
3
〈
N2

1

〉2 + 4〈N3
1 〉〈N1〉

)
+ 6R(R − 1)(R − 2)

〈
N2

1

〉〈N1〉2

+R(R − 1)(R − 2)(R − 3)〈N1〉4.

The correlators between the readings of the bucket detector and
those of an arbitrary pixel in the reference channel registering
light correlated with the one passing through the mask (dubbed
with the subscript “in”) are

〈N1N2,in〉 = 〈N1N2〉 + (R − 1)〈N1〉〈N2〉,〈
N2

1N2,in
〉 = 〈

N2
1 N2

〉 + (R − 1)
(〈
N2

1

〉〈N2〉 + 2〈N1N2〉〈N1〉
)

+ (R − 1)(R − 2)〈N1〉2〈N2〉,〈
N1N

2
2,in

〉 = 〈
N1N

2
2

〉 + (R − 1)〈N1〉
〈
N2

2

〉
,

〈
N2

1N2
2,in

〉 = 〈
N2

1 N2
2

〉 + (R − 1)
(〈
N2

1

〉〈N2
2 〉 + 2

〈
N1N

2
2

〉〈N1〉
)

+ (R − 1)(R − 2)〈N1〉2
〈
N2

2

〉
, (A9)〈

N3
1N2,in

〉 = 〈
N3

1 N2
〉 + (R − 1)

(〈
N3

1

〉〈N2〉 + 3
〈
N2

1

〉〈N1N2〉
+ 3

〈
N2

1 N2
〉〈N1〉

) + (R − 1)(R − 2)(3〈N1N2〉
×〈N1〉2 + 3

〈
N2

1

〉〈N1〉〈N2〉)
+ (R − 1)(R − 2)(R − 3)〈N1〉3〈N2〉,〈

N1N
3
2,in

〉 = 〈
N1N

3
2

〉 + (R − 1)〈N1〉〈N2〉3.

The analogous equation for the “out” case is obtained by
using the statistical independence of N1 and N2,out, i.e., by
substituting 〈Np

1 N
q

2,out〉 = 〈Np

1 〉〈Nq

2,out〉, and then applying
Eqs. (A8) and (A6).

By using definition (1) and Eqs. (A8) and (A9) we arrive
at our full analytical expressions for the SNR for the protocols
considered in this paper.
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