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Raman-assisted Rabi resonances in two-mode cavity QED
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The dynamics of a vibronic system in a lossy two-mode cavity is studied, with the first mode being resonant to
the electronic transition and the second one being nearly resonant due to Raman transitions. We derive analytical
solutions for the dynamics of this system. For a properly chosen detuning of the second mode from the exact
Raman resonance, we obtain conditions that are closely related to the phenomenon of Rabi resonance as it is
well known in laser physics. Such resonances can be observed in the spontaneous emission spectra, where the
spectrum of the second mode in the case of weak Raman coupling is enhanced substantially.
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I. INTRODUCTION

The field of cavity QED is one of the main areas of quantum
optical research nowadays [1]. Cavities enhance the interaction
time between an electromagnetic mode and an atomic system,
which increases the coherence time of the atom-radiation
system. This allows superior measurements of quantum
correlations and their properties compared to experiments in
free space. Many quantum optical phenomena in the emission
of cavities could be predicted, such as photon antibunching
and squeezed light [2], stationary occupation inversion [3],
or subnatural linewidths [4]. Cavities are also used to “slow
down” or even freeze radiation fields via interaction on a
sufficiently long time scale [5]. More recently, the dynamics
of single-photon wave packets in the strong-coupling regime
has been theoretically studied [6] and also observed in
experiments [7]. Due to the manifold of interesting features,
cavity structures are one of the fundamental resources for the
technical implementation of quantum information algorithms.

The strong atom-radiation coupling regime of cavity
QED has been studied in various systems. In experiments,
microwave and rf cavities are coupled to Rydberg atoms of
large principal quantum number [8], which propagate through
the cavity. Strong atom-field couplings have also been achieved
in optical cavities [9]. Another interesting development is the
combination of ion trapping and cavity QED [10,11]. The
fabrication of high-quality cavities and ion traps allows one to
keep an interacting atom at a very precise position inside
the cavity for very long times [12]. This yields experimental
realizations for many of the above-mentioned theoretical
predictions. More recently, based on Fabry-Perot interferom-
etry [13], semiconductor microcavities have been developed,
where excitons in quantum dots act as atomic systems [14,15].

In most cases, cavity QED systems describe the interaction
of atoms with a single-mode cavity. However, in general, there
exist more modes. A typical scenario is the quasiresonant
interaction of an atomic transition with a single cavity mode,
which dominates the coupling. The influence of other modes
can often be neglected. Due to their off-resonance, they
contribute in an oscillatory manner to the interaction, which
averages to zero over sufficiently large times.
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Depending on the structure of the atomic system, it may
be possible to excite an additional degree of freedom, such
as a vibrational excitation of a molecule or a trapped ion. In
such situations, additional cavity modes may become relevant
because of Raman resonances. The Raman resonances,
however, essentially leave the Rabi oscillations nearly
unchanged, since the interaction on the Raman resonance
and on the electronic transition are in phase [16]. Typically
the dynamics of the Raman-resonant cavity field follows
that being resonant on the bare electronic transition. The
situation changes drastically when the Raman transition is
quasiresonant, such that the detuning corresponds to the Rabi
frequency of the strongly coupled electronic transition. For
such a scenario, will we use throughout our paper the term
Raman-assisted Rabi resonance (RARR). In such a case, an
irregular behavior of the two cavity modes was predicted [17].
Phenomena of this type may also play some role in
semiconductor microcavities, where phonons may be excited.

In the present paper, we study a vibronic system in a two-
mode cavity, where the first mode is resonant to the electronic
transition. The second mode is Raman quasiresonant, which
leads to vibrational excitations. The remaining detuning from
the exact Raman resonance is a free parameter. We show that
for a detuning of the order of the Rabi-oscillation frequency,
the Raman-assisted mode becomes resonantly driven by the
Rabi oscillation. This drastically changes the dynamics of the
radiation fields in the two modes. Under these conditions,
the excitation of the Raman-assisted mode can significantly
exceed that of the resonant mode, even when the Raman
coupling is much weaker than the pure electronic one.

The paper is organized as follows. In Sec. II we consider
the models of one- and two-mode cavities. Section III deals
with the solution of the dynamics of the two-mode cavity in the
case of RARR. In Sec. IV we study the spectral properties of
the radiation coupled out of the cavity. A summary and some
conclusions are given in Sec. V.

II. THE MODEL

In this section, the effects of a single-mode cavity interact-
ing with an atom are briefly examined, before we introduce
the studied two-mode cavity system. For all considered cases,
two conditions are fixed. First, we have no more than one
optical excitation in our system, i.e., no external pumping.
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Second, initially the system is excited only in the electronic
state, whereas the cavity modes are in the ground state.

A. One-mode cavity

Let us first consider an atom in a single-mode cavity. Such
models have been extensively studied; see, e.g., [18]. Hence
we will only briefly recall the main results of the treatment in
order to introduce the notation and to compare the results with
those for the two-mode cavities to be studied in our paper.

For an excited atom in an undamped one-mode cavity which
is initially in the vacuum state, the study of the time evolution
requires only two quantum states: |E〉 = |2,0〉 represents the
excited atom and no excitation in the cavity mode, and |G〉 =
|1,1〉 represents the atom in the ground state and one photon in
the cavity. The Hamiltonian of the system without losses may
be written in the Schrödinger picture as

Ĥ0 = h̄ω21(Â22 + â†â) + h̄δωaâ
†â + h̄ga(â†Â12 + Â21â), (1)

where ω21 is the transition frequency of the atom, δωa =
ωa − ω21 is the detuning between the cavity mode and
the atom, and the atom-field coupling strength is ga . The
operators Âkl (k,l = 1,2) and â are the atomic flip operators
and the photon annihilation operator of the intracavity field,
respectively.

To include the atomic and cavity losses in the Schrödinger
picture, we apply the quantum-trajectory approach; for
details see, e.g., [4]. Hence we arrive at the non-Hermitian
Hamiltonian,

Ĥ0,L = Ĥ0 − ih̄
κ

2
â†â − ih̄

�

2
Â22, (2)

where � is the atomic decay rate and κ is the cavity damping
rate. The state |ψ(t)〉, where

|ψ(t)〉 = e−iω21tCE(t)|E〉 + e−iωa tCG(t)|G〉, (3)

describes the evolution in the time interval before the photon is
coupled out of the cavity. The initial condition is |ψ(0)〉 = |E〉;
CE(t) and CG(t) are the slowly varying probability amplitudes.

The solution of the Schrödinger equation reads

CE(t) = ga

�R
cos(�Rt + φ)e− 1

4 (κ+�)t , (4)

CG(t) = −i
ga

�R
sin(�Rt)e− 1

4 (κ+�)t , (5)

�2
R = g2

a −
(

κ − � − 2iδωa

4

)2

, (6)

tan φ = −κ − � + 2iδωa

4�R
. (7)

For strong coupling (ga � δωa,�,κ), we have a resonant Rabi
oscillation between |G〉 and |E〉 with frequency �R ≈ ga .
The norm of |ψ(t)〉 decreases exponentially with time, which
is caused by κ and �. One may summarize these results
roughly as follows: for perfect resonance and no losses, we
have complete Rabi oscillations between the states |E〉 and
|G〉. In the general case, damping and frequency shifts occur.
When examining the spontaneous emission spectrum, we find
a doublet of peaks in the strong-coupling regime. The width

FIG. 1. Sketch of the vibronic system interacting with the two-
mode cavity. The states |k,l〉 label the electronic and vibrational states,
k = 1,2 and l = 0,1, respectively.

of the split lines is determined by the emission rates � and κ ,
with the splitting being 2�R ≈ 2ga .

B. Two-mode cavity

The basic structure of the system under study is shown in
Fig. 1. We consider a vibronic system in a cavity; the bare
electronic transition of the former couples resonantly to one
cavity mode a, but is off-resonant to the other modes. Via
creation of a vibrational quantum, however, the corresponding
vibronic transition can become nearly resonant with a second
mode b of lower energy. In the low-temperature regime,
vibrational excitations in the excited electronic state can be
neglected. We also may ignore the off-resonant coupling of
the vibrationless transition to the second mode.

Based on these assumptions, the dynamics of our system
can be described by the following three quantum states. First, in
|E〉 = |2,0,0,0〉, the electronic state is excited, the vibrational
mode is in the ground state, and the two cavity modes are
in the vacuum state. Second, |G〉 = |1,0,1,0〉 describes the
vibronic system in the ground state and a photon in the cavity
mode a. Third, in |F 〉 = |1,1,0,1〉, the vibronic system is in
the electronic ground state with a vibrational excitation and
one photon in the cavity mode b.

In the following we will show that the most interesting
situation will not be that of perfect Raman resonance with
the b mode, where the vibrational energy directly fills the
gap between the electronic transition and that mode. For this
purpose, the detuning from the Raman resonance will be
included as a free parameter. Note that this free parameter,
δω, is easily controlled by the cavity length. We will find
situations for which the evolutions of the excitations of the
two cavity modes completely differ from the situation for exact
Raman resonance, as well as from the case of one resonant and
one far-off-resonant mode. In particular, the coupling of the
vibronic system with the mode b will substantially increase
in a RARR scenario. In this situation, the Raman resonance
is replaced by a resonance condition which includes the Rabi
frequency describing the interaction of the vibronic system
with the a mode.

For the system without losses, the Hamiltonian reads

Ĥ = h̄ω21(Â22 + â†â + b̂†v̂†b̂ v̂) − h̄δωb̂†v̂†b̂v̂

+ h̄Â21(gaâ + gbb̂v̂) + H.c., (8)
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where δω = ω21 − ωb − ων is the detuning from the Raman
resonance, with the mode frequency ωb of the b mode,
and the vibrational frequency ων . For the structure of the
vibration-assisted coupling to the b mode, we refer to [19,20].
The coupling strength gb describes the atom-field coupling
on the vibrational sideband. The operators b̂ and v̂ represent
the annihilation operators of the b mode and of a vibrational
excitation, respectively. The actual value for gb can be deduced
from the precise structure of the system under study. For our
purpose, we will assume that gb � ga , which holds true for
systems with a weak vibronic coupling. The state |ψ(t)〉 can
be written as

|ψ(t)〉 = e−iω21tCE(t)|E〉 + e−iωa tCG(t)|G〉
+ e−i(ω21−δω)tCF (t)|F 〉, (9)

where CK (t) (K = E,G,F ) are the occupation probability
amplitudes of the states as defined above.

For perfect Raman resonance (δω = 0), the Hamiltonian
(8) reduces to

Ĥ = h̄ω21(Â22 + â†â + b̂†v̂†b̂v̂)

+ h̄Â21(gaâ + gbb̂v̂) + H.c. (10)

In this case, the solutions for the coefficients are readily
obtained as

CE(t) = cos(�Rt), (11)

CG(t) = −i
ga

�R
sin(�Rt), (12)

CF (t) = −i
gb

�R
sin(�Rt), (13)

�2
R = g2

a + g2
b. (14)

This corresponds to a three-level system, with an effective
Rabi frequency determined by the couplings of the two
vibronic transitions with the two cavity modes. In this case,
the occupation probabilities of the two modes obey exactly
the same dynamics. They are only weighted by the different
(squared) coupling strengths of the corresponding cavity
modes to the different vibronic transitions,

|〈F |ψ(t)〉|2
|〈G|ψ(t)〉|2 = |CF (t)|2

|CG(t)|2 = g2
b

g2
a

. (15)

For a weak vibronic coupling, the occupation of the b mode is
thus very small compared to that of the a mode. Note that in
a somewhat different context, this solution has been used for
cavity systems with degenerate cavity modes [16].

III. RAMAN-ASSISTED RABI RESONANCES

As already stated above, we are interested in the effect
of a Raman-assisted coupling of the atomic system to the
b mode, under conditions when the vacuum Rabi splitting
due to the coupling with the a mode is relevant, leading to
so-called RARR. In this section, we will study the dynamics
without losses. We will visualize the resulting dynamics and
explain the physics behind RARR.

The mathematical structure of a lossless two-mode cavity
interacting with an atom has been studied in [17]. However,
the authors did not consider a physical system realizing the

studied behavior. Even more importantly, they only studied
some special conditions. Hence the authors could not provide a
detailed interpretation of the physics and they did not consider
the RARR, in which we are interested here. As we will show
below, in our system, an interpretation of the dynamics is
straightforward, both for our conditions of RARR and for
those considered in [17].

Recalling Eq. (8), the Schrödinger equation for this system
leads to a third-order differential equation for the coefficients
of the state |ψ(t)〉, such as

[
d3

dt3
− iδω

d2

dt2
+ (

g2
a+g2

b

) d

dt
− ig2

aδω

]
CE(t)=0. (16)

These equations of motion can be easily solved in general,
but the analytical expressions do not yield much insight into
the physical phenomena. Thus we focus on some more direct
descriptions of the system at hand. An exponential ansatz eλi t

for the solution leads to three purely imaginary solutions, as
we included no losses. They represent the three, generally
incommensurate, eigenfrequencies of the system.

In Fig. 2 they are shown as functions of δω for ga/gb = 10.
For convenience, we label them as λi (i = 1,2,3) for further
discussions. One can see that for almost no detuning, we
reobtain the results for a perfect Raman resonance; see
Eqs. (10)–(15). For very large detuning, δω � ga , the b mode
is far off-resonant, even from the vibrational state of the atom.
Hence it is suppressed, as in the usual case of single-mode
cavity QED. The Rabi frequency of the oscillation between
the electronic state and the a mode becomes ga , independently
of gb.

Around δω ≈ ga , we observe in Fig. 2 an avoided crossing
between λ2 and λ3. In the region of this crossing, we have
λ2 ≈ λ3 ≈ −λ1 ≈ iga . Hence the main Rabi cycle between
the atom and the a mode is not suppressed. Parallel to this
transition, the close frequency branches λ2 and λ3 lead to
an independent oscillation with the frequency �(λ3 − λ2)/2,
with � being the imaginary part. As this frequency is also not
suppressed, we obtain two independent oscillations in different
frequency ranges: the fast Rabi oscillation with approximately
ga and the much slower one with the frequency �(λ3 − λ2)/2.

0.0 0.5 1.0 1.5 2.0
1.0

0.5

0.0

0.5

1.0

1.5

2.0

δω ga

Im
λ i

g a
,i

1,
2,

3

FIG. 2. Imaginary parts of the solutions λ1 (dashed line), λ2 (solid
line), and λ3 (dotted line) as functions of δω. They are obtained from
an exponential ansatz for Eq. (16) for the parameter ga/gb = 10.
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The three occupation probability amplitudes, given as a
sum of the three resulting exponentials with corresponding
prefactors, are of the form

CE(t) =
3∑

n=1

(λn − iδω)λn

g2
a + g2

b + (3λn − 2iδω)λn

eλnt , (17)

CF (t) =
3∑

n=1

−igbλn

g2
a + g2

b + (3λn − 2iδω)λn

eλnt , (18)

CG(t) =
3∑

n=1

−iga(λn − iδω)

g2
a + g2

b + (3λn − 2iδω)λn

eλnt . (19)

In the region around δω ≈ ga , we see that the coefficients
proportional to λn − iδω decrease significantly. Hence the
coefficient CF (t) plays an increasing role. The main transition
is expected to be the strongly coupled electronic one between
|E〉 and |G〉. However, on a longer time scale, the occupation
of the b mode, being related to the state |F 〉, may even exceed
the occupation of the strongly coupled a mode, due to the
effect of RARR.

In Fig. 3 we compare the occupation probabilities |CK (t)|2
of the states |K〉 (K = E,F,G) for ga/gb = 10, for both the
perfect Raman resonance [δω = 0, Fig. 3(a)] and for RARR

FIG. 3. (Color online) Occupation probabilities as a function of
the scaled time gat for the atomic excited state (black dotted line),
the resonant a mode (blue solid line), and the b mode (thick red
dashed-dotted line) for ga/gb = 10. (a) The pure Raman resonance
δω = 0, where the b mode is magnified by a factor of 10 to be clearly
visible. (b) The RARR scenario, with the Raman-assisted transition
being detuned by δω = ga .

[δω = ga , Fig. 3(b)]. The time evolutions can be seen to differ
substantially in both cases. As expected from Eq. (15), for
Raman resonance, the occupation |CF (t)|2 of the b mode is
shown to follow that of the a mode, |CG(t)|2, but the former is
smaller by two orders of magnitude. For the RARR scenario,
all three occupation probabilities still show the typical Rabi
oscillations, but for specific time intervals, the occupation of
the b mode even exceeds that of the a mode.

The physical explanation of this situation is rather simple.
The b mode is quasiresonant and, in slowly varying variables,
its occupation probability is oscillating with a frequency offset
of δω relative to the main Rabi cycle. Thus it becomes very
small in the case of Raman resonance. By choosing δω ≈ ga ,
the vibronic transition becomes resonantly driven, which is
caused by the Rabi oscillation between the states |E〉 and |G〉.

This effect is well known in laser physics for two-mode laser
beams. The so-called Rabi resonances lead to an enhanced
atomic excitation if the first laser mode is resonant with the
atomic transition and the second one is detuned by the Rabi
frequency characterizing the atom-field coupling with the first
mode [21,22]. The essential difference in our cavity QED case,
compared to laser physics, is that we have a limited amount of
energy, as there is only one optical excitation. Consequently,
as the occupation of the b mode increases, the occupations of
the other two states are reduced, until the former becomes
dominant and the Rabi oscillations nearly die out. In this
case, both the atom and the a mode approach the values of
|CE(t)|2 = |CG(t)|2 = 1/4. Over time, the process is inverted,
with the b mode driving the Rabi cycle between |E〉 and |G〉,
and the evolution starts over again.

From this interpretation, it becomes clear why the authors
of [17] could not explain their results. As the eigenfrequencies
are incommensurate, the two oscillations do not map onto each
other with rational values. This yields a phase shift, leading
to a more or less irregular evolution. Furthermore, the authors
considered the situation for ga/gb = 2. In this case, the change
of the occupation of the b mode is large, even within one
Rabi cycle. Thus the b-mode occupation probability reaches its
maximal value and decreases again within a few Rabi cycles.
Due to the irrational relations, this maximum may appear at
some random phase in the oscillation. Hence the dynamical
pattern in such a case may seem to be “chaoticlike;” cf. [17].
For gb � ga , however, the change of the occupation of the b

mode is rather small within one Rabi cycle and the dynamics
of the two modes appears to be regular.

IV. SPECTRAL PROPERTIES OF THE EXTERNAL FIELD

Let us now include the losses into this system, as in Eq. (2).
The Hamiltonian then reads

ĤL = Ĥ − ih̄
�

2
Â22 − ih̄

κ

2
â†â − ih̄

κ

2
b̂†b̂, (20)

where Ĥ is the lossless Hamiltonian in Eq. (8). The b mode
has the same emission rate κ as the a mode, as this rate is
just a geometric parameter of the cavity. Note that the losses
here include the out-coupling of the photon from the b mode,
but no decay of the vibrational quantum to be excited in
the Raman-assisted transition. These excitations have usually
much longer lifetimes than the electronic excited state and
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the intracavity photons. Thus we may disregard the decay of
vibrational excitations.

Similar to the results of the single-mode calculations
[see Eqs. (4)–(7)], now there appear shifts in all eigenfrequen-
cies λi . In the strong-coupling regime, these shifts become
negligibly small. A real damping part occurs in all frequencies,
with a damping rate of (� + κ)/4. In the following, we will
study the photon emission properties of our system, which can
be easily measured in the field outside the cavity.

There are three different decaying channels through which
the photons may leave the cavity. First, it can be directly
emitted from the atom out of the side of the cavity. This
process occurs due to the atomic decay with the rate �. In an
experiment, where the experimenter usually excites the atom
and is interested in the photons emitted along the cavity axis,
these events represent unwanted photon losses. Second, a
photon can be emitted out of the cavity mode a to record
a count at a detector around the frequency ωa with rate κ .
Third, it can be emitted from the b mode, leading to a recorded
event around the frequency ωb. This process also occurs with
a rate κ . We remind the reader that the two mode frequencies
ωa and ωb are supposed to be significantly different and thus
they can be analyzed independently.

According to the quantum-trajectory method [6], the
probabilities pi(t) of emitting the photon at time t through
one of the three channels, i = 1,2,3, are given by

p1(t) = �

∫ t

0
dt ′|CE(t ′)|2, (21)

p2(t) = κ

∫ t

0
dt ′|CG(t ′)|2, (22)

p3(t) = κ

∫ t

0
dt ′|CF (t ′)|2. (23)

Here we number the decay channels in the order of their
explanation above. The limit t → ∞ yields the total emission
probabilities through each decay channel. These probabilities
are shown as functions of δω in Fig. 4. The a mode has a
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FIG. 4. (Color online) The time-integrated probabilities of find-
ing the emitted photon in the a mode (red dotted curve) or the
b mode (blue solid curve) are given as a function of δω. The
dashed black curve describes the photon losses out of the side of
the cavity. The parameters are chosen as �/ga = 0.05, κ/ga = 0.07,
and gb/ga = 0.1.
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FIG. 5. (Color online) Logarithmic plot of the spontaneous
emission spectrum along the cavity axis for the two-mode cavity
with perfect Raman resonance (red dashed line, δω = 0) and RARR
(black solid line, δω = ga). The parameters are the same as in Fig. 4.
The two vertical lines indicate the resonance frequencies ωa (right)
and ωb (left) of the cavity modes.

significantly higher emission probability than the b mode,
since it is on average more strongly occupied. For δω close
to zero, the corresponding ratio reflects that of the coupling
strengths, ga to gb. For large detuning, practically no emission
is given from the b mode, as it is far off-resonance. In the case
of RARR, δω = ga , the emission from the b mode is enhanced
by a factor of about 30 compared with exact Raman resonance.
Thus, it is approximately half of the total emission probability
of the a mode.

Now we study the spontaneous emission spectrum of the
described system. We calculate the time-integrated spectra as
used in [4]. In the Schrödinger picture, the spectrum of the
two-mode cavity can be easily obtained via

S(ω) = κ/(2π )[Sa(ω) + Sb(ω)], (24)

Sa(ω) =
∫ ∞

0
dt

∫ ∞

0
dt ′C∗

G(t)CG(t ′)e−i(ω−ωa )(t−t ′), (25)

Sb(ω) =
∫ ∞

0
dt

∫ ∞

0
dt ′C∗

F (t)CF (t ′)e−i(ω−ωb)(t−t ′). (26)

The respective single-mode spectra Sa(ω) and Sb(ω) are
located around their resonance frequencies. Thus we obtain
well-separated spectra, provided that ωa − ωb � ga is ful-
filled. We may again distinguish the two cases of exact Raman
resonance, δω = 0, and of RARR, δω = ga .

The spectra for both scenarios are shown in Fig. 5.
For the exact Raman resonance, we obtain the expected
frequency spectrum with two Rabi-split peaks around each
mode frequency. For the RARR, however, we get a triplet
structure around both mode frequencies. Both the spectra of
the a mode and the b mode undergo a slight splitting at the
low-frequency side, which is of the order of gb. As an important
effect of RARR, we observe a substantial enhancement of the
emission spectrum of the b mode at the low-frequency side.

V. SUMMARY AND CONCLUSION

In summary, we have studied a two-mode cavity system
with a single vibronic system inside it. One of the cavity modes,
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the a mode, was assumed to be resonant to the bare electronic
transition. The other one, the b mode, is far off-resonant
with respect to the electronic transition, so that it would be
ignored in standard scenarios of cavity QED. However, in our
approach, the b mode couples nearly resonant to a vibronic
transition of the atomic system, with some detuning that can
be properly adjusted. For exact Raman resonance of this mode
with the corresponding vibronic transition, we reobtain the
known results that the dynamics of both modes undergoes
the same Rabi oscillation. For rather weak vibronic coupling,
the occupation of the b mode is almost suppressed compared
with that of the a mode. Hence for exact Raman resonance,
the contribution of the former to the dynamics of the system
is very small.

The effects of the b mode become more important if we
choose a detuning from the exact Raman resonance by the
Rabi frequency for the strong interaction of the a mode with the
electronic transition. In this case, we obtain a Raman-assisted
Rabi resonance, which substantially increases the influence of
the b mode on the system dynamics. The occupation of the b

mode can even exceed that of the strongly coupled a mode,

thereby draining the population of the main Rabi cycle. Over
time, the occupation of the a mode increases again, and so
forth.

We have also studied the spontaneous emission spectrum of
the output field from the two-mode cavity. Due to the Raman-
assisted Rabi resonance, the spectrum around the frequency of
the b mode is strongly enhanced at its low-frequency side. The
spectra of both cavity modes are split into triplets, with the
dominant splitting being caused by the Rabi frequency driving
the electronic transition through the a mode. In addition,
the spectra on the low-frequency sides of the two modes
show another splitting with the Rabi frequency driving the
interaction with the b mode. Altogether, our results clearly
show that Rabi-resonance effects may strongly modify the
dynamics and the emission spectra of a two-mode cavity
interacting with a vibronic system.
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