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Stationary light pulse in solids with long-lived spin coherence

Xiao-Jun Zhang,1 Hai-Hua Wang,1 Lei Wang,1 Ren-Gang Wan,1 Jun Kou,1 Yun-Fei Fan,1 Bing Zhang,1,2 and Jin-Yue Gao1,*

1College of Physics, Jilin University, Changchun 130023, People’s Republic of China
2Mudanjiang Teachers’ College, Mudanjiang 157012, People’s Republic of China

(Received 26 August 2010; published 7 June 2011)

We present a detailed analysis of stationary light pulses (SLP’s) for the case of inhomogeneous broadening in
both optical and spin transitions, which is normally found in solid materials with long-lived spin coherence. By
solving the Langevin equations of motion for the density matrix elements under the integral over the entire range
of the inhomogeneous broadenings, the necessary conditions for creating the SLP in a solid are obtained. Then
the decay and diffusion processes that the SLP undergoes are analyzed. The characteristics of such processes are
studied based on the analytic solution of the SLP with a slowly varying envelope. The dependence of SLP lifetime
on inhomogeneous broadenings of spin and optical transitions, which can be regarded as the laser linewidth in
the repump scheme, has been discussed.
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I. INTRODUCTION

It is well known that if most atoms are on the lower level, a
weak probe beam will be absorbed at its resonance frequency.
However, by coupling an additional laser field; at the adjacent
transition, the probe beam does not undergo an absorption
process. This phenomenon has been referred to as electro-
magnetically induced transparency (EIT) [1]. The dispersion
properties of the dressed samples are spatially homogeneously
modified due to the external traveling-wave (TW) laser beam.
Such schemes have led to many novel phenomena, such as
adiabatic population and coherence transfer [2–4], resonant
enhancement of optical nonlinearities [5–8], and the “storage
of light,” which means reversibly mapping the coherent
excitation of the light into spin coherence [9–12]. Besides
the traveling-wave coupled EIT (TW-EIT), the schemes with
standing-wave driving EIT (SW-EIT) have also been widely
studied [13–17]. Due to periodic modulation in space, such
EIT samples can be exploited to manipulate the propagation
of light, such as the realization of a tunable photonic bandgap
[18–21] and the generation of a stationary light pulse (SLP)
[22–25], which is actually a trapped light pulse with forward
and backward components that can easily be stored and made
to interchange. Owing to the important properties in nonlinear
quantum optics, SLP’s have been extensively studied. The
SLP phenomenon has been demonstrated in both hot atomic
gas [22] by Lukin et al. and cold 87Rb atoms by Yu et al. [26].

Experiments on EIT in solids have been performed. With
much higher laser intensities than those in a gaseous medium,
transparency on the order of 100% can be achieved in
rare-earth ion-doped crystals like Pr:YSO [27] and nitrogen-
vacancy (N-V) centers in diamond [28–30]. A detailed theoret-
ical analysis of EIT in solids was presented in Ref. [31]. Some
interesting phenomena based on TW-EIT, such as all-optical
routing [32,33], light storage [34–37], and enhanced four-wave
mixing [38], just to mention a few, have also been demonstrated
in solid materials. Motivated by practical considerations, we
try to pursue the implementation of SLP’s in solid materials,
which have the obvious advantages, such as high density of
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atoms, compactness, convenience in preparation, the absence
of atomic diffusion, and some disadvantages, such as broad
optical lines and fast decoherence, which make it difficult
for the realization of atomic interference. Although SLP’s are
very promising for the low-light-level nonlinear optics and
the manipulation of photon states due to the increment of the
interaction time between media and light, unfortunately, few
investigations have been done on SLP’s in solid materials.

The main aims of this paper are to clarify the following:
(1) Is it possible to generate SLP’s in inhomogeneously broad-
ening solids with long-lived coherence, such as Pr:YSO, N-V
centers in diamond, and some other rare-earth ion (Ce3+, Eu2+)
doped crystals? (2) If it is possible, what are the characteristics
of the decay dynamics for the SLP in these materials? In order
to answer these questions, here we generalize the theory of
SLP for the case of solids with long-lived coherence. The
scheme of a four-level atomic system with a bichromatic
SW coupling configuration is adopted in order to eliminate
the counterpropagating Raman excitations which prohibit the
formation of SLP’s [26]. Section II lays the groundwork model
for such a configuration as is needed to illustrate our general
approach. It is then used in Sec. III to get the numerical results
and analytic expressions of the SLP’s in order to investigate
SLP decay properties. In Sec. IV, we present our concluding
remarks and a brief outlook.

II. THEORETICAL MODEL AND BASIC EQUATIONS

We consider an ensemble of double-� four-level atoms
with two excited levels |3〉, |4〉 and two lower levels |1〉, |2〉.
As shown in Fig. 1(a), the optical transitions with |4〉 − |2〉
and |3〉 − |2〉 are coupled by two lasers �c+ and �c− with
frequencies νc+, νc− and opposite wave vectors kc+, kc−. In
the presence of a weak light pulse �p+ which has a frequency
νp+ at the resonance with |1〉 − |4〉 transition and wave vector
kp+ in the same direction of kc+, a similar probe with wave
vector kp− determined by the phase-matching condition kp− =
kp+ − kc+ + kc− will be generated by four-wave mixing.

We define the Rabi frequencies for the coupling
and probe fields as �c+(−) = µ42(32)Ec+(−)/2h̄, �p+(−) =
µ41(31)Ep+(−)/2h̄, where Ec+(−), Ep+(−) are the amplitudes of
the corresponding fields and µij is the matrix element of the
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FIG. 1. (a) Energy-level schematic for the analysis. (b) Sequence
of the coupling fields.

dipole moment between levels |i〉 and |j 〉; it can be estimated
as [31]

µ2
ij = f

e2

h̄c

h̄2λ

4πme

, (1)

where f denotes the oscillator strength. As shown in Fig. 1(b),
in the presence of �c+ in step I, the probe pulse �p+ moves
slowly in the sample. In the following step, �c+ is adiabatically
switched off, and the probe field �p+ (or parts of it) is stored in
the sample as the spin coherence. At the beginning of step III,
both coupling fields �c+ and �c− are switched on, and the
spin coherence is converted into �p+ and �p−, which are
the two components of the SLP. If the condition �p+ = �p−
is satisfied, which means that the probability of the photons
traveling forward equals that of traveling backward, the SLP
is created.

In the usual electric-dipole and rotating-wave approxima-
tions, the dynamics of atomic population and coherence for
the system is governed by a set of Langevin equations for the
density elements given by Eqs. (2)–(10), where �ij and γij

denote the population decay rate and the coherence decay rate,
respectively:

∂tρ11 = �31ρ33 + �41ρ44 + �21ρ22 + ie−ikz(ρ41�
∗
p+

− ρ13�p−) − ieikz(ρ14�p+ + ρ31�
∗
p−), (2)

∂tρ22 = �32ρ33 + �42ρ44 − �21ρ22 + ie−ikz(ρ42�
∗
c+

− ρ24�c+) + ieikz(ρ32�
∗
c− − ρ23�c−), (3)

∂tρ33 = �43ρ44 − �31ρ33 − �32ρ33 + ie−ikz(ρ13�p−
+ ρ23�c−) − ieikz(ρ32�

∗
c− − ρ31�

∗
p−), (4)

∂tρ41 = (−γ41 + iδp+)ρ41 − ie−ikz�p−ρ43

+ ieikz[�c+ρ21 + �p+(ρ11 − ρ44)], (5)

∂tρ31 = (−γ31 + iδp−)ρ31 + ie−ikz(�c−ρ21

−�p−ρ33 + �p−ρ11) − ieikz�p+ρ34, (6)

∂ρ42 = (−γ42 + iδc+)ρ42 − ie−ikz�c−ρ43

+ ieikz[�p+ρ12 + �c+(ρ22 − ρ44)], (7)

∂tρ32 = (−γ32 + iδc−)ρ32 + ie−ikz(�p−ρ12 + �c−ρ22

−�c−ρ33) − ieikz�c+ρ34, (8)

∂tρ21 = [−γ21 + iδ]ρ21 + e−ikz(−�p−ρ23 + �∗
c+ρ41)

− eikz(�p+ρ24 − �∗
c−ρ31), (9)

∂tρ43 = [−γ43 + i(δp+ − δp−)]ρ43 + eikz(�p+ρ13 + �c+ρ23

−�∗
p−ρ41 − �∗

c−ρ42). (10)

The detunings of the coupling fields δc+(−) are given by
δc+(−) = ω42(32) − νc+(−), and the detunings of the probe fields
are δp+(−) = ω41(31) − νp+(−). The parameter δ is δp+ − δc+,
which also equals δp− − δc− based on the phase-matching
condition mentioned previously. In the present analysis, the
following assumptions are made to simplify our calculations:
(i) �41 = �42 = �31 = �32 = �, γ41 = γ42 = γ31 = γ32 = γ ,
γ43 = γ21 = γ0. (ii) The intensities of the coupling fields are
much larger than those of the probe fields, so nearly all the ions
interacting with the fields are on the ground level |1〉 (ρ11 = 1,
ρ22 = ρ33 = ρ44 = 0). Associated with this assumption, the
coherences between the transitions of |4〉 − |3〉, |4〉 − |2〉,
and |3〉 − |2〉 are neglectable. Under the above assumptions,
we redefine the reset off-diagonal density elements as ρ41 =
σ41e

ikz, ρ31 = σ31e
ikz, ρ21 = σ21e

−2ikz, σij = σ ∗
ji . Then, the

density equations become

∂tσ41 = −σ41γ̃41 + i�p+ + iσ21�c+, (11)

∂tσ31 = −σ31γ̃31 + i�p− + iσ21�c−, (12)

∂tσ21 = −σ21γ̃21 + iσ41�
∗
c+ + iσ31�

∗
c−, (13)

where γ̃41 = γ − iδp+, γ̃31 = γ − iδp−, γ̃21 = γ0 − iδ. In the
following discussion, we focus on step III shown in Fig. 1(b)
and assume that �c+ = �c− = �c. As we know that the
decoherence rate γ −1 is faster than the temporal changes of
fields ∂/∂t [9], we can neglect ∂tσ31 and ∂tσ41 to get the zeroth
solutions of σ31 and σ41, which are

σ
(0)
41 = i[�p+(z,t) + �c(z,t)σ21]/γ̃41, (14)

σ
(0)
31 = i[�p−(z,t) + �c(z,t)σ21]/γ̃31. (15)

By substituting Eqs. (14) and (15) into Eq. (13), the equation
of motion for the coherence σ21 and its zeroth-order solution
can be written as

∂σ21

∂t
= −�2

+(z,t)

γ̃41
− �2

−(z,t)

γ̃31

×
[
−γ̃0 − �2

c(z,t)

γ̃41
− �2

c(z,t)

γ̃31

]
σ21, (16)

σ
(0)
21 = −γ̃31�

2
+(z,t) − γ̃41�

2
−(z,t)

4γ̃21γ̃31γ̃41 + (γ̃31 + γ̃41) �2
c(z,t)

, (17)

where �2
+ = �p+�c+, �2

− = �p−�c−. The zeroth-order so-
lutions are based on the approximation that the probe pulses
have a very large length as compared with the length of the
sample; therefore it can be regarded as a plane wave when it is
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traveling through the medium. In order to describe the group
velocities of the probe fields we need the first-order solution
of σ21. By inserting Eq. (17) into the time-derivative part of
Eq. (16), we obtain

σ21 =
[

∂σ
(0)
21

∂t
+ �2

+(z,t)

γ̃41
+ �2

−(z,t)

γ̃31

] /

×
[
−γ̃0 − �2

c(z,t)

γ̃41
− �2

c(z,t)

γ̃31

]
. (18)

By substituting Eq. (18) into Eqs. (14) and (15), we find the
expressions for the first-order solution of σ41 and σ31 given by

σ41 = α1,3 �p+(z,t) + α2 �p−(z,t)

+α3,3 ∂t�p+(z,t) + α4 ∂t�p−(z,t), (19)

σ31 = α2 �p+(z,t) + α1,4 �p−(z,t)

+α4 ∂t�p+(z,t) + α3,4 ∂t�p−(z,t), (20)

where

α1,j = −iA−3Bγ̃ 2
j1�c(z,t) ∂t�c(z,t)

+ iA−1 [
γ̃21γ̃j1 + �2

c(z,t)
]
, (21)

α2 = −iA−3Bγ̃31γ̃41�c(z,t) ∂t�c(z,t)

− iA−1�2
c(z,t), (22)

α3,j = iA−2γ̃ 2
j1�

2
c(z,t), (23)

α4 = iA−2γ̃31γ̃41�
2
c(z,t). (24)

Here we have introduced two complex parameters,
A = γ̃21γ̃31γ̃41 + (γ̃31 + γ̃41) �2

c and B = −γ̃21γ̃31γ̃41 +
(γ̃31 + γ̃41) �2

c , to simplify the above expressions. It is helpful
to make some remarks on the properties of Eqs. (19) and (20),
which describe the atomic polarizations of a group of ions
defined by the detunings {δp+,δp−,δ} in the total frequency
distributions of the solid materials. In the limit situation when
the coupling fields �c+ and �c− are simultaneously switching
on at the very beginning of step III shown in Fig. 1(b), the
components of the SLP are retrieved by the coupling fields.
Such a process is directly related to the first term on the
right-hand sides of Eqs. (21) and (22), which are proportional
to ∂t�c. In order to establish the stationary light pulse, those
two terms must be equal, which leads to the first condition to
generate the SLP:

δp+ = δp−. (25)

Considering the phase-matched condition, the condition can
be regarded as the same condition as δc+ = δc−, which implies
that the two coupling fields drive the corresponding transitions
with the same detunings and, as we assumed before, the same
Rabi frequencies. It is natural that such conditions come up
according to the pulse-matching phenomenon in EIT [39], and
it is important for the following calculations.

In a solid system, both optical and spin transitions are
inhomogeneously broadened due to the inhomogeneity of the
crystalline field. The broadenings of the optical transitions
|4〉 − |1〉, |3〉 − |1〉 and the spin transition |2〉 − |1〉 are shown

Fopt

Fopt

Fspin

Fopt

Fspin

)c()b()a(

FIG. 2. Schematic level diagram of a four-level system with
optical and spin inhomogeneous broadenings. (a) The rectangles
denote the inhomogeneous broadenings for the transitions from the
corresponding level to the level |1〉. The dash-dotted lines denote the
broadening line centers, and the solid lines denote energy levels of
an arbitrary ion we choose. We assume that all the lasers are assumed
to be resonant with the line centers of the corresponding transitions.
(b) The inhomogeneous broadening of the transition |3〉 − |1〉. We
treat it as the optical broadening. (c) The inhomogeneous broadening
of the transition |4〉 − |1〉. After the broadening of |3〉 − |1〉 have been
taken into account, as shown in (b), the broadening of |4〉 − |1〉 is no
longer considered as optical broadening but the spin broadening. For
the ions with the same energy level |3〉 (no rectangle for |3〉), the
frequency distribution is determined by the broadening of |4〉 − |3〉
(solid rectangle). Such a model is based on the assumption that the
spin broadening is always much smaller than the optical broadening.
The dotted rectangle denotes the optical broadening of |4〉 − |1〉 if all
the ions are under consideration.

in Fig. 2(a). We assume that all the lasers are resonant with
the line centers of the corresponding transitions. The energy
levels for an ion we choose arbitrarily are denoted by solid
horizontal lines in Fig. 2(a), and the relation between the laser
and this chosen ion is just like what is shown in Fig. 1(a).

In order to describe the changes which are induced by
such broadenings, we have to average σ41 and σ31 over the
frequency distributions independently to get the total atomic
polarizations:

�41(31) =
∫∫∫

F(δ,δp+,δp−)σ41(31)(δ,δp+,δp−) dδ dδp+ dδp−.

(26)

The frequency distribution can be written as

F(δ,δp+,δp−) = Fspin(δ)Fopt(δp−)Fspin(δp+), (27)

where the spin (optical) frequency distribution function is
denoted by Fspin (Fopt).

The inhomogeneous broadening of transition |2〉 − |1〉,
namely, the spin broadening, is denoted by Fspin(δ). For the
solid materials with long-lived spin coherence, the width of the
spin broadening is relatively small, usually several kilohertz.
The function Fopt(δp−) corresponds to the broadening of the
transition |3〉 − |1〉 which is treated as the optical broadening as
shown in Fig. 2(b). The optical broadening width is quite large
for the relevant materials (2 GHz for Pr:YSO, 375 GHz for N-V
centers in diamond); however, as reported in Ref. [27], not all
of the ions in the solid can interact with the laser fields, but only
a small fraction of them. This is due to the fact that a repump
field is used to prepare the system, so the optical broadening
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is very small, and mainly contributed by the laser linewidth
(usually 1 MHz). The broadening of the transition |4〉 − |1〉
is considered a spin broadening and denoted by Fspin(δp+) in
Eq. (27). The physical reason for such treatment as shown in
Fig. 2(c) is that for the ions which have the same value of δp−
(in another words, the same energy level of |3〉), the level |4〉
of those ions are distributed over a small range because of the
inhomogeneous broadening of the transition |4〉 − |3〉, which
could be regarded as the same as that of the spin transition
|2〉 − |1〉. So, after we treat the broadening of |3〉 − |1〉 as the
optical broadening, the broadening of |4〉 − |1〉 should be taken
as the small spin broadening. This also means that for the ions
with the same detuning δp−, the detuning δp+ varies over a
small range instead of being equal to δp−, so condition (25)
cannot be satisfied. However, if the broadening of the spin
transition is much smaller than the laser linewidth of the
coupling fields, e.g., in Pr:YSO, the spin transition broadening
is about 30 kHz, and the linewidth of the coupling field is
normally 1 MHz. Condition (25) can be satisfied roughly.
Therefore, we can disregard |3〉 − |4〉 broadening by setting
Fopt(δp+) = 1, which means that ω43 is of the same value
for all the ions, and the transition frequency of |4〉 − |1〉 is
fully determined by the transition frequency of |3〉 − |1〉. But
the inhomogeneous broadening of |1〉 − |2〉 is still taken into
account, because most ions are on these levels.

We adopt the Lorentzian function

Fspin(opt)(x) = wspin(opt)

π
(
w2

spin(opt) + x2
) (28)

to model the inhomogeneous broadenings. Where the param-
eter wspin(opt) is the width of the inhomogeneously broadening
for the spin (optical) transition. Using the theorem of residues,
the results of Eq. (26) can be obtained easily:

�41 = β1 �p+(z,t) + β2 �p−(z,t)

+β3 ∂t�p+(z,t) + β4 ∂t�p−(z,t), (29)

�31 = β2 �p+(z,t) + β1 �p−(z,t)

+β4 ∂t�p+(z,t) + β3 ∂t�p−(z,t), (30)

where1

β1 = −i
[
2�2

c(z,t) − GoptGspin
]

×P −3�c(z,t)∂t�c(z,t) + iG−1
opt, (31)

β2 = −i
[
2�2

c(z,t) − GspinGopt
]

×P −3�c(z,t)∂t�c(z,t), (32)

β3 = iP −2�2
c(z,t), (33)

β4 = iP −2�2
c(z,t). (34)

The parameters Gspin = wspin + γ0, Gopt = wopt + γ can be
regarded as the total decoherence rates of the spin and

1Here the expressions of β1 and β2 have already been simplified.
The neglected term is −i(PGopt)−1 �2

c(z,t), whose absolute value is
much smaller than that of iGopt on the basis of Gspin � Gopt.

optical transitions, respectively. Because we choose the
Lorentzian function to model the inhomogeneous broadening
line shape, the total decoherence rates appear simply as the
summation of the inhomogeneous broadening widths and the
decoherence rate of the corresponding transitions. On
the other hand, the Gaussian function which is indeed more
accurate for the inhomogeneous broadening line shape will
lead to much more complex results and a less clear physical
picture on the effect of the broadenings. The parameter
P = GspinGopt + 2�2

c(z,t) is just used to simplify the above
expressions.

After the inhomogeneous broadenings have been taken into
account, the wave equations which describe the motion of two
probe pulses can be used to analyze the system,

∂�p+
c ∂t

+ ∂�p+
∂z

= ig�41, (35)

∂�p−
c ∂t

− ∂�p−
∂z

= ig�31. (36)

Here g = 4πνNeff µ2/(h̄ c), ν is the transition frequency, µ is
the dipole moment, and Neff is the effective density of atoms
depending on the laser linewidth �jit. If the density of the atoms
is N , the effective density should be Neff = N�jit/wopt [31].
This is because of the use of an optical repump scheme, as was
done in Ref. [27].

Equations (29)–(36) are our main results, and could be
applied in a rather general fashion when the SLP in the four-
level inhomogeneously broadened system is to be investigated.
It is worth mentioning that the four parameters (β1, β2, β3, β4)
can describe the main properties of the system. First, β1 and
β2 are responsible for the retrieval process at the beginning of
step III shown in Fig. 1(b). After inserting Eqs. (31) and (32)
into Eqs. (35) and (36), it is clear that the condition

�c �
√

GoptGspin

2
(37)

must be satisfied in order to convert the coherence back into
photonic excitation. Note that this condition is quite similar to
the EIT condition for the samples without any broadenings.

The parameters β3 and β4 which stand for the coefficients
of ∂t�p+ and ∂t�p− are of the same value; such a property
directly results from the assumption γ31 = γ41 and δp+ = δp−
and is quite important for pulse matching of the SLP’s
components. Apparently, if there is a tendency that the two
components are deviating from each other (∂t�p+ �= ∂t�p−),
it will be averaged by the polarizations so that the SLP can
survive in the sample.

Then, as the answer to the first question we raised in Sec. I,
we come to the following conclusion: It is possible to generate
the SLP in solid materials as long as (i) the decoherence rates
of the optical transitions are of the same magnitude, (ii) the
broadening width of the spin transition is small enough that
the condition of δp+ = δp− can be satisfied approximately,
and (iii) the coupling fields are strong enough to satisfy
condition (37).

Based on the above conclusions, we believe that the suitable
solid materials are Pr3+:Y2SiO5, N-V centers in diamond,
and Eu2+-doped crystals like Eu2+:CaF2, Eu2+:SrF2. On the
other hand, Ce3+-doped crystals (Ce3+:YAG, Ce3+:LuPO4,
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TABLE I. The experimental parameters of Pr:YSO. λ is the
wavelength of the laser field. The wavelengths of the coupling and the
probe field are nearly the same. f is the optical transition oscillator
strength. I is the intensity of the driving laser. The source of the data
is Ref. [31]

wopt (Hz) wspin (Hz) � (Hz) γ (Hz) �jit (Hz)
2.0 × 109 30.0 × 103 6.1 × 103 9.0 × 103 1.0 × 106

�0 (Hz) γ0 (Hz) λ (nm) f I (W/cm2)
0.01 2.0 × 103 605.7 0.3 × 10−6 90

and Ce3+:YPO4) have large spin broadening which makes the
condition δp+ = δp− hardly satisfied. Although lasers with
large linewidth (nearly 10 MHz) can be used to overcome
this difficulty, it also induces a spin dephasing large enough
to shorten the SLP’s lifetime. So Ce3+-doped crystals are not
suitable for generating the SLP. To sum up, we believe that
Pr3+:Y2SiO5 and N-V centers in diamond might be the best
options. The experimental parameters of these materials are
listed in Tables I and II.

Figure 3 shows the SLP in Pr:YSO. The sequence of
the fields is shown in Fig. 1(b). The data represent a
numerical solution of the wave equations (35) and (36) and
the atomic density matrix equations (2)–(10). The width of the
inhomogeneous broadening of the spin transition in Pr:YSO is
30 kHz and it plays a so important role in creating SLP that we
divide it into 100 terms to calculate the integral in Eq. (26). The
width of inhomogeneous broadening on the optical transitions
is divided into 50 terms, and it is sufficient enough based on
our calculations. As shown in Fig. 3, the SLP only lasts for
about 10 µs due to the strong decay process which will be
quantified theoretically in the following section.

III. THE DECAY AND DIFFUSION PROCESSES

In this section, we use the theoretical approach developed
in the preceding section to investigate the decay and diffusion
processes of the SLP in the solid materials. First of all, we
would like to solve Eqs. (29)–(36) to get the expression for
SLP. By substituting Eqs. (29) and (30) into Eqs. (35) and (36),
the wave equations become

[(c−1 − igβ3)∂t + ∂z − igβ1]�p+ = ig(β2 + β4∂t )�p−,

(38)

[(c−1 − igβ3)∂t − ∂z − igβ1]�p− = ig(β2 + β4∂t )�p+.

TABLE II. The inhomogeneous broadening width of the optical
transition wopt and the spin transition wspin, the optical transition
oscillator strength f , and the density of the ions N . Here Ce:X and
Eu:X stand for the Ce3+- and Eu2+-doped crystals we discuss here.
The source of the data is Ref. [31].

N-V Center Ce:X Eu:X

wopt (Hz) 375 G 100 G 40 − 60 G
wspin (Hz) 2.7 k 1 − 10 M 10 k
f 0.1 10−4 10−4

N (cm−3) 3 × 1018 1020 1019

FIG. 3. Numerical simulation of SLP in Pr:YSO. The forward
and backward fields are plotted in (a) and (b), respectively. The slow
light turning into the coherence of atoms at 45 µs [corresponding to
t1 in Fig. 1(b)] when the forward coupling field is turned off. Both
the forward and the backward coupling fields are turned on at 75 µs
[corresponding to t2 in Fig. 1(b)], and the SLP is established. The
initial width of the Gaussian wave package is 10 µs. The length of
the crystal is 3 mm. The parameters used for the simulation are in
Table I.

(39)

Considering the characteristics of Eqs. (38) and (39), we
introduce two modes as ψ+ = �p+ + �p−, ψ− = �p+ −
�p−. In terms of these modes the propagation equations
read

P −3[P 2gGspin + 2gQ�c(z,t)∂t�c(z,t)]ψ+(z,t)

+ [
c−1 + 2P −2g�2

c(z,t)
]
∂tψ+(z,t) = −∂zψ−(z,t), (40)

gG−1
optψ−(z,t) + c−1∂tψ−(z,t) = −∂zψ+(z,t). (41)

The parameter Q here takes the form of GspinGopt − 2�2
c . Note

that the term of ∂zψ+ is close to zero for the small variation
of the probe pulse in space. Hence, Eq. (41) is describing the
probe pulse-matching process we discussed in the preceding
section: ψ− is absorbed at the rate cgG−1

opt. Usually cgG−1
opt

is much larger than ∂t , e.g., cgG−1
opt ∼ 1010 in Pr:YSO

while the pulse we used in the investigation lasts for about
40 µs, which means ∂t ∼ 107 in our numerical calculations.
This indicates that �p+ and �p− are always matching with
each other quickly, therefore ψ+ can be regarded as the
expression of the stationary light pulse. By neglecting c−1∂t

as compared with gG−1
opt, we obtain the zeroth-order solution

of ψ−,

ψ− = −g−1Gopt∂zψ+(z,t). (42)

Substituting Eq. (42) into Eq. (40) we obtain

∂2
z ψ+(z,t) − g

(
P 2 + 2cg�2

c

)
cP 2Gopt

∂tψ+(z,t)

= g2(P 2Gspin + 2Q�c∂t�c)

P 3Gopt
ψ+(z,t). (43)

Here, we focus on step III shown in Fig. 1(b) when the
coupling fields become constant after time t2. Hence we treat
∂t�c as zero in Eq. (43). Using the Fourier transformation
ψ+(z,t) = √

2/π
∫ ∞

0 ψk(t) cos(kz)dk, the expression of ψk(t)
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takes the form of

ψk(t) = 1√
2a0

exp

(
− k2

4a0

)

× exp

(
−cp

g

g2Gspin + k2PGopt

P 2 + 2cg�2
c

t

)
. (44)

We have assumed here that ψk has the Gaussian shape
ψk(0) = A0 exp[−k2/(4a0)], where A0 and a0 are the constant
parameters. Then the expression for the SLP takes the form of

ψ+(z,t) = A0√
1 + J t

exp

(
− a0z

2

1 + J t

)

× exp

(
− g2Gspin

4a0PGopt
J t

)
. (45)

The parameter J = 4a0cP
2Gopt/[g(P 2 + 2cg�2

c)] introduced
here is just for the simplification of the above equation. As we
can see, the decay and diffusion processes can be obtained
directly from Eq. (45) and they take the form of

Ddec = exp

(
− g2Gspin

4a0PG2
J t

)
, (46)

Ddif = 1√
1 + J t

exp

(
− a0z

2

1 + J t

)
. (47)

For the solid materials considered here, the above ex-
pressions can be greatly simplified. First, for Pr:YSO, N-V
centers in diamond, and Eu2+-doped crystals, the width of the
inhomogeneous broadening of low-frequency transition wspin

is 1∼10 kHz, while the inhomogeneous broadening of optical
transition wopt is modified by the laser linewidth, which can be
1 MHz, and the Rabi frequency of coupling field �c is usually
5 MHz. Therefore, the parameter P defined as GspinGopt +
2�2

c is close to �2
c . Second, to our knowledge, the parameter

g is as large as �c (in Pr:YSO) or in the orders of magnitude
larger than �c (in N-V centers in diamond), Hence J can be
written as 8a0g

−2Gopt(GspinGopt + �2
c) approximately. Based

on these two relations, Ddec gives a “finite lifetime” T1 of the
SLP corresponding to the decay process:

T1 =
[
Gspin

(
1 + GspinGopt

2�2
c

)]−1

≈ 1

Gspin
− Gopt

2�2
c

. (48)

One recognizes the fact that the term G−1
spin dominates

the lifetime T1, which indicates that the small decoherence
γ0 and spin broadening wspin can lead to a long-lived SLP
in the solid material. The rare-earth ion-doped crystals and
N-V centers in diamond have a relatively long-lived spin
coherence, e.g., γ0 = 2 kHz in Pr:YSO and γ0 = 25 kHz in
N-V centers in diamond. To our knowledge, there is no certain
relationship between the decoherence rate and corresponding
inhomogeneous broadening, e.g., wspin = 30 kHz in Pr:YSO
and wspin = 2.7 kHz in N-V centers in diamond. However, the
total decoherence rates (Gspin) of these two materials have the
value of the order of 10 kHz, which is relatively small and
makes them suitable for the experiment.

Ddif describes a typical diffusion process. We integrate
Ddif over z and obtain

∫
Ddifdz = √

π/a0, which is not
dependent on t . But the spatial integral of D2

dif is not a

constant: A(t) = ∫
D2

difdz = √
π/2a0(1 + J t). As we know,

D2
dif represents the energy of the pulse or the number of the

photons. This indicates that besides the decay process Ddec,
there is another (nonexponential) decay of the total number
of excitation, such a phenomenon in cold atoms (without any
inhomogeneous broadening) is studied in Ref. [23]. Here, we
would like to introduce another “characteristic time” of the
SLP in solids by solving the equation of A(T2) = 0.5A(0),
and obtain

T2 = 3g

4a0cGopt
. (49)

Such a result is under the assumption of the larger coupling
Rabi frequency as compared with GoptGspin and

√
cg/2 which

normally hold for the EIT experiment in solids. As we can
see, the parameter Gopt, which is the summation of laser
linewidth and decoherence of the optical transitions (Gopt =
γ + �jit), plays an important role in the diffusion process.
Based on this, we believe that such a diffusion process (or the
nonexponential decay of the pulse) does not result from the
decoherence of the spin transition but from the radiative decay
and the dephasing process of the optical transition. Because of
the relation between the laser linewidth �jit and the effective
density of the ions Neff as we mentioned in Sec. II, the
parameter g which is the function of Neff also depends on
laser linewidth �jit. The dependence of the SLP in Pr:YSO
on the laser linewidth �jit (0.5, 0.8, 1.0, 1.5 MHz) is shown
in Fig. 4. It is clear that the larger laser linewidth results in
the faster nonexponential decay of pulse. We further note here
that comparing with T1 the characteristic time of pulse T2

is rather large, therefore the lifetime of the pulse is close
to T1.

FIG. 4. Stationary light pulse (ψ+) in Pr:YSO for a laser
linewidth of (a) 0.5, (b) 0.8, (c) 1.0, (d) 1.5 MHz. The lighter
color in the grayscale maps corresponds to the higher intensity.
The Rabi frequency of the coupling field is 5 MHz. The density
of Pr3+ ions is 4.7 × 1018cm−3. The other parameters are listed on
Table I.
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)b()a(

FIG. 5. The amplitude of the stationary light pulse in (a) Pr:YSO
and (b) N-V centers in diamond evolving with time t under different
laser linewidths: 0.4 (square), 0.6 (circle), 0.8 (up-triangle), and 1.0
(down-triangle). The coupling frequency is the tenfold of ψ+(t = 0).
The wavelengths of the SLP are (a) 605 nm and (b) 637 nm. Other
parameters are listed in Table II.

Figure 5 shows the amplitude of the SLP in (a) Pr:YSO
and (b) N-V centers in diamond crystals under the different
laser linewidths. The data are calculated from Eq. (45). As
we can see, the lifetime of SLP’s in Pr:YSO and N-V centers
in diamond crystal are of the same magnitude because the
spin broadenings of these materials are both several kilohertz
(wspin = 30 KHz for SLP, and 2.7 kHz for N-V centers in
diamond). However, the SLP in N-V centers in diamond decays
quicker than that in PrYSO; we believe this is because the
rather small effective ion density in N-V centers in diamond
due to the large optical transition inhomogeneous broadening
width (375 GHz). One also notes that the SLP in Pr:YSO is
more sensitive to the laser linewidth. This is because its smaller
optical broadening width makes the effective ion density more
sensitive to the laser linewidth.

Finally, as the answer to the second question we put forth in
Sec. I, the decay process of the SLP in the solid is investigated,
the decoherence and dephasing rates of both the optical and
spin transition are responsible for the lifetime of the SLP, and
the precise expression is presented by Eqs. (48) and (49).

IV. CONCLUSIONS

In summary, we investigated the SLP in solid materials
with long-lived spin coherence, such as Pr:YSO, N-V centers
in diamond, and Eu2+- and Ce3+-doped crystals. The samples

are assumed to be a four-level system dressed by a bichromatic
SW coupling field so that the counterpropagating Raman
excitations can be eliminated. By solving a set of Langevin
equations under the effect of the inhomogeneous broadenings
modeled by the Lorentzian function, we present the conditions
of establishing the SLP in solid materials. Based on such
conditions we believe that it is possible to demonstrate SLP
in the solid materials we mentioned, especially in Pr:YSO and
N-V centers in diamond.

The general expression of the SLP in such solids for the
pulses with a small variation of the envelope (∂t � cgG−1

opt)
has been obtained. It gives clear descriptions of the decay and
diffusion (a nonexponential decay) processes that the SLP in
solids undergoes, and also shows that such processes mainly
result from the decoherence rate and the inhomogeneous
broadenings of the spin and optical transitions, respectively.
The inhomogeneous broadenings are the great negative effect
base on our calculation. The physical reason, we believe,
is that the inhomogeneous broadening which is in the same
position of the decoherence rates for both the optical and spin
transitions can cause a large dephasing rate. Another parameter
that affects the lifetime of the SLP is the laser linewidth, which
can be regarded as the broadening of the optical transition
as long as the repump scheme is considered. Our research
shows that the SLP in Pr:YSO is quite sensitive to the laser
linewidth, and the larger laser linewidth always leads to the
smaller lifetime of the SLP. The detailed expressions of the
characteristic times for both decay and diffusion processes
have been presented.

We expect that our general analysis may prompt a more
exhaustive understanding of the SLP dynamics in solid
materials, and be helpful for experimental research.
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