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Nonlinear features of quantum fluctuations in a slow-inversion laser
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We study the field correlation functions and the natural laser spectrum for a slow-inversion laser with the
thresholdless intensity fluctuations. In such a laser, the spontaneous-emission-driven relaxation oscillations are
responsible for some unique features: The field correlation function oscillates with the frequency of relaxation
oscillations ωr and the laser line changes its profile. We show that appreciably above threshold the laser spectrum
consists of three lines. In addition to the main line at the frequency of the lasing mode ωc appear two lines at
frequencies ωc + ωr and ωc − ωr . The spontaneous emission noise in such lasers gives rise to nonlinear stochastic
effects: Quantum noise affects the oscillation frequency ωr and the decay rates of the field correlation function.

DOI: 10.1103/PhysRevA.83.063803 PACS number(s): 42.50.Lc, 42.50.Ar, 42.55.Ah

I. INTRODUCTION

Quantum noise of laser radiation occurs from spontaneous
emission of photons into a lasing mode. Evolution of quantum
fluctuations depends on the relation between three relaxation
rates in a laser: γp for the atomic polarization, γN for the
population inversion, and �c for the field intensity in the cavity.
In a class-A laser [1], when γp,γN � �c, one can, due to
fast relaxation in an active medium, adiabatically eliminate
the atomic polarization and the populations of laser levels. In
such lasers, the relative photon-number fluctuations undergo
a sharp reduction at the laser threshold (see, for example,
Refs. [2–5]). A different behavior of quantum fluctuations
appears in slow-inversion lasers of small cavity size [6–10].
Such lasers belong to class B [1] (γp � �c � γN ). In class-B
lasers, photon-number fluctuations may be very high, even far
above threshold [6–10]. Such behavior of quantum fluctuations
was called thresholdless [6].

In previous investigations, the intensity fluctuations and
photon statistics of a slow-inversion laser were studied theoret-
ically and experimentally [6–10]. The questions not considered
before concern the optical spectrum and the field correlation
function in lasers with the thresholdless intensity fluctuations.
These problems were studied in previous publications using a
class-A laser description (see, for example, Refs. [2–5,11–13])
and also for a bad-cavity laser (when �c � γp,γN ) [14,15].
In all these studies the relative intensity fluctuations above
threshold are low and thus the effect of intensity fluctuations
on the linewidth can be neglected. In this paper, we study
the field correlation function and the laser spectrum for
lasers with thresholdless intensity fluctuations. As is well
known, class-B lasers exhibit relaxation oscillations. We show
that, in lasers with the thresholdless intensity fluctuations,
such oscillations excited by spontaneous-emission noise are
responsible for some unique features: oscillating behavior
of the field correlation function and change of the laser-
line profile. In the presence of spontaneous emission noise,
nonlinear stochastic effects appear in such lasers: Quantum
noise affects the oscillation frequency and the decay rates of
the field correlation function.

This paper is structured as follows. In Sec. II we describe
the theory based on the quasilinear treatment of quantum
fluctuations. In Sec. III we present the results of numerical
simulations, before drawing our conclusions in Sec. IV.

II. THEORY

For a study of quantum fluctuations we choose a solid-state
laser on the Nd:YVO4 (Neodymium doped Yttrium Vanadate)
crystal. A laser configuration making it possible to observe the
thresholdless intensity fluctuations was described in Ref. [6].
We use the same approximations as in Ref. [6]: A single-mode
laser operating at maximum of a homogeneously broadened
gain line in the good-cavity limit (γp � �c), spontaneous
emission is considered as the main source of the quantum
noise; the decay rate of the lower laser level is assumed to be
large and the lower-level population can be neglected.

A. Langevin equations

Using a class-B description one can derive the classical
Langevin equations for the internal complex amplitude of the
cavity mode α = αx + iαy and the population inversion N

(number of the upper-level atoms) [3,16]:

α̇x = αx(βγNN − �c)/2 + Fx,

α̇y = αy(βγNN − �c)/2 + Fy, (1)

Ṅ = P − γNN − βγNNn,

where β is the fraction of the spontaneous emission going
into the lasing mode [6], P is the pump rate, and n =
α2

x + α2
y is the intracavity photon number. The Langevin

noise source F = Fx + iFy has the following correlation
functions: 〈Fx(t)Fx(t ′)〉 = 〈Fy(t)Fy(t ′)〉 = β�cNδ(t − t ′)/2,
〈Fx(t)Fy(t ′)〉 = 0.

One can derive from (1) the rate equations for n and N ,
which were used in Ref. [6] under the study of quantum
fluctuations:

ṅ = (βγNN − �c)n + Rsp + fn, (2a)

Ṅ = P − γNN − βγNNn, (2b)

where Rsp = NβγN is the spontaneous emission rate and the
quantum noise source fn satisfies 〈fn(t)fn(t ′)〉=2Rspnδ(t−t ′).
As in Ref. [6], we neglect the inversion noise source fN in Eqs.
(1) and (2b). The influence of inversion noise and justification
for neglecting this noise source was discussed in Ref. [6].
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B. Field correlation function and laser spectrum

For a class-A laser, detailed studies of the field correlation
functions were performed in Ref. [11]. Here we consider
the correlation functions for a class-B laser. Writing the
complex amplitude α in the form α = √

neiφ , we have for the
field correlation function γ (t) and the amplitude correlation
function G(t):

γ (t) = 〈α∗(0)α(t)〉/〈n〉 = 〈
√

n(0)n(t)ei�(t)〉/〈n〉, (3)

G(t) = 〈
√

n(0)n(t)〉/〈n〉, (4)

where �(t) = φ(t) − φ(0).
We calculate γ (t) and G(t) using a quasilinear treatment

of amplitude fluctuations. With a quasilinear treatment, the
amplitude and phase fluctuations are not correlated, and one
has from Eq. (3)

γ (t) = G(t)〈ei�(t)〉. (5)

The steady state (〈n〉 = n0,〈N〉 = N0) can be calculated
from Eqs. (2). One easily finds [6]

n0 = [η +
√

η2 + 4β(1 + η)]/2β, (6a)

N0 = �c

βγN

n0

n0 + 1
, (6b)

where we use the normalized pump rate P/Pth = 1 + η, with
η the pump excess above threshold.

We write n(t) = n0 + δn(t). Linearizing Eqs. (2) around
the steady state, one can find the following expression for the
photon number fluctuations δn(t):

δn(t) = ae−γr t cos(ωrt + ψ0), (7)

where a, ψ0 are an amplitude and an initial phase of the relax-
ation oscillations, respectively, ωr is the relaxation oscillation
frequency given by

ωr =
√

βn0γN�c − (γ1 − γ2)2, (8)

γ1 = γN (1 + βn0), γ2 = �c/n0, and

γr = (γ1 + γ2)/2 (9)

is the damping rate of the relaxation oscillations. We do
not take into account in Eq. (7) the noise source fn as the
noise is delta correlated and yields no contribution in the
correlation function (4) at any time t > 0. Such an account
would be necessary only in the case of a low-band noise with
a bandwidth �ω � γr .

Substitution of Eq. (7) in Eq. (4) yields

G(t) ∼= 1 + 〈δn(0)δn(t)〉 − 〈δn(0)2〉
2n2

0

= 1 + A[e−γr t cos(ωrt) − 1], (10)

where

A = 〈a2 cos2 ψ0〉
2n2

0

. (11)

A contribution in Eq. (5) from phase fluctuations 〈ei�(t)〉
may be calculated in a quasilinear approximation by the same

way as in a class-A laser (see, for example, Ref. [3]) and is
given by

〈ei�(t)〉 = e−Dt/2, (12)

where

D = �c/2n0 (13)

is the phase diffusion constant.
Using Eqs. (10) and (12) we have from Eq. (5)

γ (t) = [1 + A(e−γr t cos(ωrt) − 1)]e−Dt/2. (14)

Equations (10) and (14) for the correlation functions may
be used if ωr is real [see Eq. (8)]:

βn0γN�c > (γ1 − γ2)2. (15)

This is typically fulfilled in a class-B laser well above
threshold. In a solid-state laser on the Nd:YVO4 crystal [6]
with β = 1 × 10−5, �c = 1 × 1011 s−1, γN = 1.3 × 104 s−1,
one can find from (15) that ωr is real if η > 0.058.

Near threshold (at η � 1), one can find an approximate
expression for the field correlation function γ (t) by the same
way as in Ref. [12]. One can neglect fluctuations δN and put
N = 〈N〉 = N0 in Eqs. (1), then one finds from Eqs. (1)

α(t) = α(0)e−�t , (16)

where

� = (βγNN0 − �c)/2. (17)

Again, in Eq. (16), we do not take into account at t 	= 0 the
noise source F = Fx + iFy as it gives no contribution in γ (t).
With α(t) given by Eq. (16), one has from Eq. (3)

γ (t) = e−�t . (18)

Substitution of Eq. (6b) in Eq. (17) yields

� = D = �c/2n0. (19)

The power spectrum of the laser field (the laser spectrum)
is defined as the Fourier transform of the field correlation
function γ (t):

S(ω) =
∫

dt eiωtγ (t). (20)

Near threshold, one can conclude from Eqs. (18) and (20)
that the laser line has the Lorentz shape with a linewidth
�ω = 2D. Appreciably above threshold, the laser-line profile
changes. Using Eq. (14), one finds from Eq. (20)

S(ω)

1 − A
= D/2

ω2 + D2/4
+ A

2(1 − A)

D/2 + γr

(ω + ωr )2 + (D/2 + γr )2

+ A

2(1 − A)

D/2 + γr

(ω − ωr )2 + (D/2 + γr )2
. (21)

It follows from Eq. (21) that the laser spectrum consists of
three lines. In addition to the main line at the frequency of the
lasing mode ωc, the two lines appear at frequencies ωc + ωr

and ωc − ωr .
Equations (10), (14), (18), and (21) describing the cor-

relation functions, and the laser spectrum was derived at a
quasilinear approximation. Such treatment does not take into
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account nonlinear stochastic effects which appear in a class-B
laser in the presence of noise [17,18]. It was shown in Refs. [17]
and [18] that the relaxation oscillation frequency ωr and the
decay rate of relaxation oscillations γr depend on the noise
intensity. In what follows we show that such effects arise in
lasers with thresholdless intensity fluctuations.

III. NUMERICAL SIMULATIONS

In numerical simulations, stochastic differential equa-
tions (1) were solved by the Euler method using the Box-
Mueller algorithm for the generation of Gaussian noise Fx,y

[19]. We used the following values of the parameters of a

(a)

(b)

(c)

FIG. 1. The correlation functions γ (t) and G(t) at different values
of the pump excess above threshold η. The solid lines show the results
of numerical simulation. Function γ (t) is shown (a) at η = 0.05, and
the dashed curve is a plot of Eq. (22) with �e = 1.05�. Function G(t)
is shown (b) at η = 0.9, and the dashed curve 1 is a plot of Eq. (10)
with the constant A = 0.19 used as a fitting parameter; the values of
ωr , γr were calculated using Eqs. (8) and (9); the dashed curve 2 is
a plot of Eq. (23) with A = 0.22, the shifted frequency ωe = 0.9ωr ,
and the decay rate γe = 3.5γr . Function γ (t) is shown (c) at η = 0.9,
and the dashed curve is a plot of Eq. (24) with A = 0.22, ωe = 0.9ωr ,
γe = 3.5γr , and De = 4D.

solid-state laser on the Nd:YVO4 crystal [6]: β = 1 × 10−5,
�c = 1 × 1011 s−1, γN = 1.3 × 104 s−1.

At first, we describe results obtained near threshold
(η � 1). Figure 1(a) shows the field correlation function
γ (t) at η = 0.05. The results of numerical simulation (solid
line) agree with the theoretical expression (18) but, for better
agreement, one should slightly modify the value of � given by
(19), replacing it on �e = 1.05� [see Fig. 1(a), dashed curve]:

γ (t) = e−�et . (22)

Figure 1(b) shows the amplitude correlation function G(t)
at η = 0.9. The results of numerical simulation are shown by
the solid line. The dashed curve 1 is a plot of Eq. (10) with the
constant A = 0.19 used as a fitting parameter and the values of
ωr , γr calculated using Eqs. (8) and (9). The results obtained in
the numerical simulation for G(t) may be approximated (see
the dashed curve 2) by the expression

G(t) = 1 + A[e−γet cos(ωet) − 1]. (23)

The oscillation frequency ωe and the decay rate γe of the
amplitude correlation function G(t) found in the numerical
simulation (solid line) are different from ωr and γr calculated
at the quasilinear approximation. In the case of η = 0.9, at the
parameters used in the simulations, the shifted frequency ωe

and decay rate γe are ωe = 0.9ωr , γe = 3.5γr .
Consider qualitatively the physical mechanism explaining

the difference observed. The relaxation oscillations in the laser
can be considered as oscillations of a nonlinear oscillator,
e.g., oscillator Toda (see, for example, Refs. [10] and [20]).
The oscillation frequency of a nonlinear oscillator depends
on its amplitude (nonisochronism). In the oscillator Toda, the
oscillation frequency decreases with increasing amplitude. The

FIG. 2. Laser spectrum at the pump excess above threshold
η = 0.9. The solid line is a plot of the laser spectrum S(ω) =∫

dt eiωtγ (t) with γ (t) given by Eq. (24) with A = 0.22, ωe = 0.9ωr ,
γe = 3.5γr , and De = 4D. The dashed curve shows the analytical
results (quasilinear treatment) given by Eq. (21).

063803-3



E. G. LARIONTSEV PHYSICAL REVIEW A 83, 063803 (2011)

FIG. 3. The ratio De/D representing the nonlinear stochastic
broadening of the central peak as a function of the pump excess above
threshold η. The points are the results of the numerical simulation.

correlation functions and the power spectra of the noise-driven
nonlinear oscillators have been studied by many authors (see,
for example, Ref. [21]). Usually, a decay rate of oscillations
increases with increasing noise intensity.

Numerical simulations show that, in the presence of noise,
the field correlation function γ (t) may be approximated as

γ (t) = 1 + A[e−γet cos(ωet) − 1]e−Det/2. (24)

In the case of η = 0.9, at the parameters used in the
simulations, the effective diffusion constant De = 4D, where
D is the phase diffusion constant found in a quasilinear
approximation [see Eq. (13)].

The laser spectrum S(ω) = ∫
dt eiωtγ (t) corresponding to

Eq. (24) is shown in Fig. 2 by the solid line. The dashed line
plots the laser spectrum at the quasilinear approximation given
by Eq. (21). All peaks in the spectrum (the main peak with
the width De and two small peaks with the width 2γe + De)
are broader than at the quasilinear approximation. In the

numerical simulations and in the quasilinear analytic treatment
the laser spectrum consists of three lines. In addition to the
main line at the frequency of the lasing mode ωc, the two lines
appear at frequencies ωc + ωr and ωc − ωr . It is of interest
to study these results experimentally. The laser spectrum S(ω)
can be measured experimentally by means of self-heterodyne
detection [15].

Relative nonlinear broadening of the main peak given by
the ratio De/D is shown in Fig. 3 as a function of the
pump excess above threshold η. Numerical simulations in
this figure have been plotted for the values of η up to 0.9.
The reason for such a limitation is the following. As it was
shown in Ref. [6], to properly describe quantum fluctuations in
Nd:YVO4 microchip lasers, one needs to extend the Langevin
equations (1) and (2), including a dynamic equation for the
lower-level population. Due to the rapid decay rate γb of
the lower level (compared to γN of the upper level), the
lower-level population is small, but it can significantly modify
the photon damping term γ2 = �c/n0 in (8) and (9): γ2 is
replaced by γ2 + γNL, where γNL is an additional damping
term caused by the lower-level dynamics. For the considered
laser on Nd:YVO4, the ratio γNL/γ2 = η2γN/βγb is of the
order of 1 at η = 1. Thus, in numerical simulations at η � 1,
one should take into account a dynamic equation for the
lower-level population. This will be done in future studies.
The thresholdless quantum fluctuations can be observed in
rare-earth microchip lasers [22]. It is of interest to study the
field correlation functions and the natural laser spectrum in
such lasers.

IV. CONCLUSION

In summary, we have shown that in a slow-inversion laser
of small cavity size the field correlation function oscillates
at the relaxation oscillation frequency, and appreciably above
threshold the laser spectrum has three peaks. In such a laser, the
spontaneous emission noise gives rise to nonlinear stochastic
effects: a noise-induced change of the relaxation oscillation
frequency and broadening of all peaks in the laser spectrum.
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