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Bogoliubov excitations of disordered Bose-Einstein condensates
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We describe repulsively interacting Bose-Einstein condensates in spatially correlated disorder potentials of
arbitrary dimension. The first effect of disorder is to deform the mean-field condensate. The second is that the
quantum excitation spectrum and condensate population are affected. By a saddle-point expansion of the many-
body Hamiltonian around the deformed mean-field ground state, we derive the fundamental quadratic Hamiltonian
of quantum fluctuations. Importantly, a basis is used such that excitations are orthogonal to the deformed
condensate. Via Bogoliubov-Nambu perturbation theory, we compute the effective excitation dispersion, including
mean free paths and localization lengths. Corrections to the speed of sound and average density of states are
calculated, due to correlated disorder in arbitrary dimensions, extending to the case of weak lattice potentials.
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I. INTRODUCTION

The intriguing interplay of Bose statistics, interaction, and
disorder is one of the most prominent problems in condensed
matter physics, known as the dirty boson problem [1,2].
Experimentally, it was first studied with superfluid helium in
aerosol glasses (Vycor) [3]. Over the past years, several groups
have loaded ultracold atoms into optical potentials and studied
Bose-Einstein condensates (BECs) in the presence of disorder
under very clean laboratory conditions [4–9].

In this paper, we study the situation where Bose statistics
and interaction are the dominant effects, and the disorder
weakly perturbs the homogeneous situation. In this regime,
the presence of a well-populated condensate makes Bogoli-
ubov’s theory [10] the most economic description, because
it describes quantum fluctuations around the best mean-field
approximation of the condensate.

What happens to a homogeneous condensate if a weak
external potential is switched on? How are the quantum fluctu-
ations affected? These questions constitute the inhomogeneous
Bogoliubov problem, a problem of notorious difficulty, due to
the broken translational symmetry [11]. Bogoliubov theories
for disordered BECs have been formulated by Lee and Gunn
[12], Huang and Meng [13] and Giorgini, Pitaevskii, and
Stringari [14], complemented by Refs. [15–22], among others.
Yet none of the existing theories covers spatially correlated
disorder and all dimensionalities, which come into focus after
recent experimental advances [23–27].

Moreover, some approaches appear questionable from a
conceptual point of view. Indeed, the primary effect of an
external potential is to deform the condensate itself. This is
most obvious for cold-atom BECs in traps, where the conden-
sate forms in a nonuniform spatial mode that results from the
competition among interaction, kinetic, and potential energy.
Therefore, it is awkward, if not outright inappropriate, to
construct a Bogoliubov theory in terms of fluctuations that are
still defined as deviations from the uniform condensate of the
homogeneous case [13,15,16,20,22]. Instead, Bogoliubov’s
ansatz warrants first determining the deformed condensate
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mode on the mean-field level. Accordingly, we discuss the
number-conserving deformation of the condensate caused by
a weak external potential in Sec. II A.

The deformed condensate is the vacuum of Bogoliubov
fluctuations, to whose description we turn in the second step.
Great care must be taken to ensure that the excitations occur in
modes that remain orthogonal to the inhomogeneous ground
state—even in a disordered situation where the ground state
depends on each realization of the random potential. We have
found it helpful to tackle this formidable problem using a
variational saddle-point expansion, a powerful method central
to the solution of many problems in statistical and quantum
mechanics [28,29]. Such an expansion yields all relevant terms
in a systematic manner, without the need for deciding ad hoc
which terms are to be kept or discarded. Section II B contains
a full account of our formulation, leading to the fundamental
inhomogeneous Bogoliubov Hamiltonian that is quadratic in
the fluctuations.

We emphasize that our approach describes both effects,
the deformation of the ground state and the scattering of
excitations, on the same footing and to the same order in the
external potential. Moreover, our approach involves quantized
fluctuations that always remain orthogonal to the inhomoge-
neous Bogoliubov vacuum. A fully analytical description is
presented up to second order in disorder strength.

The excitation spectrum of any system provides precious in-
formation about its (thermo) dynamic properties. For instance,
a homogeneous interacting Bose gas has a gapless excitation
spectrum. This is consistent with the fact that the low-energy
excitations are the Goldstone modes [30] associated with the
spontaneous U (1) symmetry breaking in the BEC phase. These
low-energy excitations are collective in character, with many
interacting particles oscillating back and forth as in a sound
wave. And really, the dispersion relation at low energy is
linear, its slope being the sound velocity. The sound velocity
is intimately linked to numerous important quantities such as
specific heat and compressibility and, moreover, by a classical
argument due to Landau, is equal to the critical velocity of
superfluidity [31–33].

Since an external potential couples to the particle density
and does not interfere with U (1) symmetry, it is not expected
to induce an excitation gap. However, inhomogeneity should
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certainly affect the speed of sound, which is a nonlinear
function of the particle density. Thus, it is of particular interest
to predict the speed-of-sound correction in disordered Bose
gases. But curiously, the state of affairs for this key quantity is
far from satisfactory. The simplest Bogoliubov theories cannot
predict a change in excitation dispersion at all [13,15,16].
More elaborate calculations by Giorgini et al. [14] predict a
certain positive correction for uncorrelated disorder in three
dimensions, a result which has been exactly reproduced by
Lopatin and Vinokur [34] and Falco et al. [20]. This is
contradicted by Yukalov and Graham [35,36], who report a
decrease in the sound velocity in three dimensions, even in
the case of uncorrelated disorder. A negative correction is also
found, in all dimensions, for spatially correlated disorder with
a correlation length much longer than the condensate healing
length [37].

Clearly, there is a need for a unified theory that describes the
dispersion relation of Bogoliubov excitations in the presence of
disorder with a spatial correlation. In Sec. III, we provide such
a theory, at least perturbatively for weak external potentials,
by applying standard diagrammatic Green function techniques
to the inhomogeneous Bogoliubov Hamiltonian derived in
Sec. II B. We compute the ensemble-averaged disorder cor-
rection to the single-excitation spectrum in general, including
the elastic scattering rate, and corrections to sound velocity
and density of states (DOS).

In Sec. IV, these general results are discussed in greater
detail, with particular emphasis on the case of correlated
disorder. Numerous analytical results are found in certain
limiting regions of the parameter space, which is spanned
by condensate healing length, excitation wave length, and
disorder correlation length. Specific results pertaining to
optical speckle potentials are collected in the Appendix. In
passing, we recover the localization properties of Bogoliubov
excitations in one dimension as described earlier by Bilas and
Pavloff [17] and Lugan et al. [18,19]. We briefly connect to
the case of weak lattice potentials and confirm predictions
by Taylor and Zaremba [38] and Liang et al. [39] within
our formalism. We also reconfirm the positive correction
of the speed of sound by uncorrelated disorder in three
dimensions [14,20,34]. It turns out, though, that this result is
hardly generic, because in lower dimensions and for correlated
disorder in general, one always finds a negative correction.
We confirm our analytical predictions in one dimension by
numerical simulations on the mean-field level, as well as by
exact numerical diagonalization of the Bogoliubov–de Gennes
equations.

Finally, Sec. V concludes and closes the paper with some
open questions.

II. THE INHOMOGENEOUS BOGOLIUBOV
HAMILTONIAN

A weakly interacting Bose gas is described by the (grand
canonical) Hamiltonian [31–33]

Ê =
∫

ddr �̂†
[−h̄2

2m
∇2 + V (r) − µ + g

2
�̂†�̂

]
�̂, (1)

in terms of particle annihilation and creation operators �̂ =
�̂(r) and �̂† = �̂†(r), respectively, which obey the canonical
commutator relations

[�̂(r),�̂(r ′)] = [�̂†(r),�̂†(r ′)] = 0,
(2)

[�̂(r),�̂†(r ′)] = δ(r − r ′).

Atom-atom interaction is taken into account in the form of
s-wave scattering. The s-wave scattering length as determines
the interaction parameter, g = 4πh̄2as/m in three dimensions,
with similar relations in quasi-two-dimensional (2D) and
quasi-one-dimensional (1D) geometries. We treat the case of
repulsive interaction with a constant interaction parameter,
g > 0. This interaction potential is a good approximation in the
regime of low energy and dilute gases, where the gas parameter
(na3

s )1/2 is small, that is, the average particle distance n−1/3 is
much larger than the scattering length as . For dilute ultracold
gases (unlike superfluid helium), this parameter is typically
very small (na3

s )1/2 ≈ 0.01 [40].
We work in the canonical ensemble with a fixed total

number of particles, N = ∫
ddr〈�̂†(r)�̂(r)〉. The chemical

potential µ serves as the Lagrange parameter, which has
to be adjusted accordingly, as a function of external con-
trol parameters. One of these external control fields is the
inhomogeneous external potential V (r). In the laboratory,
this typically comprises a global trapping potential as well
as, say, optical lattices and/or disorder potentials. In the
following, we concentrate on the situation where the global
trapping potential is very smooth, ideally a very large box, and
V (r) then describes the local spatial fluctuations around the
homogeneous background.

Below a critical temperature, the Bose gas forms a BEC
[41], where a macroscopically large fraction of particles
populates the ground state of the single-particle density matrix.
In the absence of interaction, this is just the ground state of
the potential V (r), but also in a dilute interacting Bose gas a
well-defined condensate mode appears, as proven rigorously
in the homogeneous case and three dimensions [42,43].
Within a mean-field description (or, equivalently, Hartree-
Fock theory), the condensate spontaneously breaks the U(1)
gauge invariance of Hamiltonian (1) by settling on a global
phase. In lower dimensions and within confining potentials,
quasicondensates [44–48] exist, whose phase coherence is
not of truly infinite range but can extend over large enough
distances that the condensate shows the telltale signatures of a
phase-coherent matter wave.

Bogoliubov’s theory [10] takes advantage of the macro-
scopically occupied ground state of the BEC and splits the
field operator into a mean-field condensate and quantized
fluctuations:

�̂(r) = �(r) + δ�̂(r). (3)

In contrast to strictly number-conserving formulations [48,49],
one does not count the exact particle number in the condensate
mode. Particles created outside the condensate are implicitly
understood as being removed from the condensate. The small
parameter of expansion (3) is the fraction of particles outside
the condensate, which scales with the gas parameter (na3

s )1/2

[50]. For dilute condensed atomic gases, Bogoliubov theory
proves to be a very adequate description.
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Following this approach, we first describe how the external
potential V (r) affects the condensate mode, strictly within
mean field. In the second step, we determine the relevant
Hamiltonian of the quantum fluctuations around this modified
ground state. We emphasize from the outset that a consistent
Bogoliubov theory requires calculation of both steps to the
same order in V (r); otherwise, one runs the risk of describing
only half of the relevant physics. Instead of deciding ad hoc
which terms should be kept and which not, we resort to
a well-controlled saddle-point expansion of the many-body
Hamiltonian around the mean-field ground state.

A. Deformed mean-field ground state

The mean-field approach, known as the Gross-Pitaevskii
(GP) theory [33,51], neglects the quantum fluctuations and
replaces the field operators by a complex field � = �(r),
such that the many-body Hamiltonian (1) reduces to the GP
energy functional:

E =
∫

ddr

{
h̄2

2m
|∇�|2 + [V (r) − µ]|�|2 + g

2
|�|4

}
. (4)

We wish to determine its ground state as a function of
the external potential V (r). By definition, the ground state
�0(r) = �(r) minimizes the energy functional (4). It obeys
the stationarity condition δE/δ�∗|0 = 0, also known as the
stationary GP equation:

− h̄2

2m
∇2�(r) + [g|�(r)|2 − µ]�(r) = −V (r)�(r). (5)

For a stationary potential V (r), the condensate’s kinetic energy
is always minimized by choosing a fixed global phase, thereby
ruling out superfluid flow or vortices, and without loss of
generality we may take �(r) ∈ R in the following.

In the homogeneous case V (r) = 0, the repulsive interac-
tion spreads the density over the entire available volume, and
n = |�|2 = µ/g. In the inhomogeneous case, however, the
condensate wave function depends via Eq. (5) nonlinearly on
V (r). Numerically, the condensate �(r) can be computed very
efficiently, for any given potential V (r), by propagating the GP
equation in imaginary time [52].

What analytical tools are available? If the external potential
and the condensate wave function vary only very smoothly, the
first term in Eq. (5), the kinetic energy or quantum pressure,
is negligible. In this so-called Thomas-Fermi (TF) regime, the
density profile is then determined by the balance of interaction
and external potential,

nTF(r) = 1

g
[µ − V (r)] (6)

where V (r) < µ and nTF(r) = 0 else. But in a potential that
varies on short-length scales, the kinetic energy term becomes
relevant, and the TF result no longer suffices.

If the external potential is weak, V � gn ≈ µ, the imprint
on the condensate amplitude can be computed perturbatively
[53]. We expand

�(r) = �(0) + �(1)(r) + �(2)(r) + · · · (7)

around the homogeneous solution �(0) = √
n in powers of the

small parameter V/µ � 1. To maintain a fixed average particle

density L−d
∫

ddr|�(r)|2 = n, also the chemical potential is
adjusted at each order:

µ = µ(0) + µ(1) + µ(2) + · · · , µ(0) = gn. (8)

We insert these expansions into Eq. (5) and collect orders up to
V 2/µ2. Because the kinetic energy ε0

k = h̄2k2/2m is diagonal
in k space, solving for �(i) and µ(i) is best done in momen-
tum representation, �k = 〈k|�〉 = L−d/2

∫
ddre−ik·r�(r)

and Vk = 〈k + k′|V |k′〉 = L−d
∫

ddre−ik·rV (r).
The first-order imprint of the potential in the condensate

amplitude reads

�
(1)
k = − (1 − δk0)Vk

ε0
k + 2gn

N1/2. (9)

As expected for a linear response, the shift is directly pro-
portional to the potential’s matrix element Vk. The Kronecker
δ stems from the first-order shift µ(1) = V0 that compensates
the potential average, ensuring that �

(1)
0 = 0 as required by

conservation of the average particle density.
In the denominator, comparison between the interaction gn

and the kinetic energy defines a characteristic length scale of
the BEC, the healing length ξ = h̄/

√
2mgn. Factoring out gn,

one is left with 2 + ε0
k /gn = 2 + k2ξ 2 in the denominator.

This term becomes constant for long-range potential variations
with kξ → 0, and one recovers the TF imprint, (6), for the
density n(r) = |�(r)|2 = n + n(1)(r), in Fourier components
n

(1)
kTF = −Vk/g. In the contrary case, kξ � 1, this denomi-

nator suppresses short-scale potential variations. Indeed, the
condensate avoids rapid variations, which cost too much
kinetic energy, and responds only to a smoothed component
of the external potential [53]. Figure 1 shows a 1D real-space
plot of the condensate density deformed by a rather strong
Gaussian impurity potential of width σ = 0.8ξ . For such
a small impurity, the full numerical solution differs greatly
from the simple TF formula, (6). The first-order smoothing
result, (9), already gives much better agreement. However, we

 0
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x/ξ

n(x)

n
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1st order

2nd order

numerical

V (x)/gn

FIG. 1. (Color online) Condensate density n(x) deformed by
an impurity potential V (x) = V exp(−x2/σ 2) [dashed (black) line]
with V = 0.75gn and σ = 0.8ξ . The numerical solution of the GP
equation, (5) [solid (black) line; under periodic boundary conditions
within the interval shown] differs significantly from the TF result,
(6) [dashed (green) line]. Including first-order, (11), and second-order,
(13), smoothing terms improves the agreement.
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need to push the expansion even farther, to obtain consistent
second-order results later on.

Solving for the second-order imprint brings about terms
of two types. Viewing the GP equation, (5), as a scattering
equation for the field � [54,55], first, one finds a contribution
from double scattering by the external potential V (r) with
free propagation in between. Second, there is a contribution
from the interaction of two single-scattered amplitudes �(1).
Altogether, including the chemical potential shift, the second-
order condensate deformation reads

�
(2)
k = 1

N1/2

∑
p

�
(1)
k− p�

(1)
p

(1 − δk0)ε0
p − gn

2gn + ε0
k

. (10)

For future reference, we also write down the leading-order
terms for the Fourier components of the condensate density
n(r) = |�(r)|2, the inverse field �̌(r) = n/�(r), and the
inverse density ň(r) = n2/n(r). To linear order, one has, of
course, �̌

(1)
k = −�

(1)
k as well as

n
(1)
k = −ň

(1)
k = −2n

(1 − δk0)Vk

2gn + ε0
k

, (11)

using the Fourier convention nk = L−d
∫

ddre−ik·rn(r) for n

and ň, in the same way as for V . Equation (11) is the linear re-
sponse of the condensate density to the external potential [14].

To second order, one finds

�̌
(2)
k = 1

N1/2

∑
p

�
(1)
k− p�

(1)
p

ε0
k − (1 − δk0)ε0

p + 3gn

2gn + ε0
k

, (12)

n
(2)
k = 1 − δk0

Ld

∑
p

�
(1)
k− p�

(1)
p

2ε0
p + ε0

k

2gn + ε0
k

, (13)

ň
(2)
k = 1

Ld

∑
p

�
(1)
k− p�

(1)
p

3ε0
k − 2(1 − δk0)ε0

p + 8gn

2gn + ε0
k

. (14)

In Fig. 1, the results of second-order smoothing are practically
indistinguishable from the full solution of the GP equation.

We note at last that even an external potential with zero
mean causes a negative shift of the chemical potential:

µ(2) = − 1

N

∑
q

ε0
q |�(1)

q |2 = −
∑

q

ε0
q

|Vq |2(1 − δq0)(
2gn + ε0

q

)2 . (15)

A negative chemical potential shift must occur nonperturba-
tively, as can be seen by spatially integrating the GP equation,
(5), after dividing by �(r): the positivity of the kinetic energy
entails that the chemical potential shift, at a fixed average
particle density, must be negative [12].

This concludes our calculation of the inhomogeneous GP
ground state, and we turn to the fluctuations around this
condensate.

B. Bogoliubov excitations

Using the Bogoliubov ansatz (3), we expand Hamiltonian
(1) in powers of δ�̂ and δ�̂†. To zeroth order, we find the GP
ground-state energy E0 = E[�(r)]. The linear term vanishes,
because �(r) minimizes the energy functional, (4). The
relevant contribution is then the quadratic part, Ê = E0 + Ĥ .

Third-order and fourth-order terms in the fluctuations are
neglected. They describe interaction between the excitations
and become relevant only for higher densities or higher
temperatures [56].

For reasons that will become clear in Sec. II B 5, the
inhomogeneous Bogoliubov Hamiltonian is best expressed
in density-phase variables. From �̂ = exp{iδϕ̂}√n + δn̂ =
� + δn̂/2� + i�δϕ̂ + · · · , it follows that

δn̂(r) = �(r){δ�̂†(r) + δ�̂(r)}, (16a)

δϕ̂(r) = i

2�(r)
{δ�̂†(r) − δ�̂(r)}, (16b)

up to higher orders in δ�̂. The commutators, (2), imply
that density and phase (fluctuation) operators are conjugate,
[δn̂(r),δϕ̂(r ′)] = iδ(r − r ′). By expanding the many-body
Hamiltonian to second order in the fluctuations around the
mean-field solution, the relevant Hamiltonian for the excita-
tions is found as [57]

Ĥ =
∫

ddr

{
h̄2

2m

[(
∇ δn̂

2�(r)

)2

+ [∇2�(r)]

4�3(r)
δn̂2

+�2(r)(∇δϕ̂)2

]
+ g

2
δn̂2

}
. (17)

With Eq. (17), the problem is reduced to a Hamiltonian that
is quadratic in the excitations. To this order, there are no
mixed terms of δn̂ and δϕ̂. The perturbing potential V (r)
does not appear directly. Instead, it enters nonlinearly via the
condensate function �(r), which can be predetermined by
solving the GP equation, (5), or calculated perturbatively, as
explained in Sec. II A.

Before discussing the impact of the external potential
further, we briefly consider the excitations of the homogeneous
system.

1. Homogeneous Bogoliubov Hamiltonian

In the homogeneous case V (r) = 0, the Bogoliubov Hamil-
tonian, (17), becomes translation invariant and thus diagonal in
the momentum representation δn̂k = L−d/2

∫
ddre−ik·rδn̂(r)

and δϕ̂k = L−d/2
∫

ddre−ik·rδϕ̂(r):

Ĥ (0) =
∑

k

[
nε0

k δϕ̂
†
kδϕ̂k + 2gn + ε0

k

4n
δn̂

†
kδn̂k

]
, (18)

with ε0
k = h̄2k2/2m. This Hamiltonian looks diagonal, but the

Heisenberg equations of motion for δn̂k = δn̂
†
−k and δϕ̂k =

δϕ̂
†
−k, which obey

[δn̂k,δϕ̂
†
k′] = iδkk′ , (19)

are still coupled. This is resolved by a Bogoliubov trans-
formation [10], coupling density and phase fluctuations to
quasiparticle creation and annihilation operators γ̂

†
k and γ̂k:(

γ̂k

γ̂
†
−k

)
= Ak

(
i
√

n δϕ̂k

δn̂k/2
√

n

)
, Ak =

(
ak a−1

k

−ak a−1
k

)
. (20)
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FIG. 2. Bogoliubov excitations in the homogeneous condensate.
(a) Bogoliubov dispersion relation, (24) (solid line). (b) Density of
states, (26), in three dimensions (solid line). (a, b) Dashed and dotted
lines show low-energy and high-energy asymptotics, respectively.
Dashed (gray) lines foreshadow the disorder corrections provided in
Sec. IV.

A transformation of this kind, with the free parameter ak ,
guarantees that the quasiparticles obey bosonic commutation
relations:

[γ̂k,γ̂
†
k′] = δkk′ , [γ̂k,γ̂k′] = [γ̂ †

k ,γ̂
†
k′] = 0. (21)

Hamiltonian (18) becomes diagonal,

Ĥ (0) =
∑

k

εkγ̂
†
k γ̂k, (22)

by choosing

ak =
(

ε0
k

εk

)1/2

=
(

k2ξ 2

2 + k2ξ 2

)1/4

. (23)

The excitations are found to have the famous Bogoliubov
dispersion relation [10]

εk =
√

ε0
k

(
2gn + ε0

k

) = gn kξ
√

2 + k2ξ 2, (24)

plotted in Fig. 2(a) for reference.
In the high-energy or high-momentum regime kξ � 1, the

excitations are essentially free particles with dispersion ε0
k ,

shifted by the condensate background energy,

εk ≈ ε0
k + gn. (25)

In the low-energy regime, the interaction dominates over
the bare kinetic energy. A single excitation involves many
individual particles, comparable to a classical sound wave.
Indeed, the dispersion relation is linear, εk = h̄ck, with the
bare sound velocity c = √

gn/m. According to a classical
argument due to Landau (Ref. [32], chap. 10.1), this linear
dispersion at low energies implies superfluidity with critical
velocity vc = mink(εk/h̄k) = c.

The transition from sound-wave to single-particle excita-
tions is also reflected in the DOS,

ρ(ε) = Sdk
d−1
ε

(2π )d

∣∣∣∣∂k

∂ε

∣∣∣∣
kε

�(ε), (26)

with Sd = 2,2π,4π the surface of the d-dimensional sphere in
d = 1,2,3, respectively. The k vector at energy ε is given
by k2

ε ξ
2 = [1 + (ε/gn)2]1/2 − 1. Equation (26) shows the

transition from a sound-wave DOS ρsw(ε) ∝ εd−1 to a particle
DOS ρpt(ε + gn) ∝ ε

d
2 −1, as illustrated in Fig. 2(b) for d = 3.

2. Inhomogeneous Bogoliubov Hamiltonian

Let us come back to the Hamiltonian, (17), including the full
imprint of V (r) in the condensate �(r). This inhomogeneity
breaks translation invariance, so the Hamiltonian cannot be
diagonal in momentum representation. However, it is still
quadratic in the fluctuations without any term mixing δn̂ and
δϕ̂, with the general structure

Ĥ = 1

2

∑
k,k′

{
n δϕ̂

†
kSkk′δϕ̂k′ + 1

4n
δn̂

†
kRkk′δn̂k′

}
. (27)

The coupling matrices Skk′ and Rkk′ contain the relevant
information about the Fourier components of the condensate
field �(r) and its inverse �̌(r) = n/�(r), as well as of their
gradients.

There is only a single term involving the phase gradients
in the Hamiltonian, (17), proportional to the density. Upon
Fourier transformation, the coupling matrix reads

Skk′ = h̄2

mn
k · k′nk−k′ . (28)

Its diagonal elements are Skk = 2ε0
k , to all orders of V (r), by

conservation of average density. In the homogeneous case, it
reduces to S

(0)
kk′ = 2ε0

k δkk′ . As a function of the condensate field
components, it can be rewritten as

Skk′ = 2g

Ld

∑
p

k · k′ ξ 2 �k− p� p−k′ . (29)

In the Hamiltonian, (17), the density fluctuation δn̂ appears
in several, complicated-looking terms. But the corresponding
coupling matrix Rkk′ can be brought to a form very similar to
(29) by using the Fourier components of the inverse field:

Rkk′ = 2g

Ld

∑
p

r̃k pk′ �̌k− p�̌ p−k′ + 4gnδkk′ , (30)

with r̃k pk′ = [
p2 + 2(k′ − p) · (k − p) + 1

2 (k′ − p)2 +
1
2 (k − p)2

]
ξ 2. In the homogeneous case, it reduces to

R
(0)
kk′ = 2(2gn + ε0

k )δkk′ . In the inhomogeneous case, the
background-mediated coupling between fluctuations, as
expressed by Eqs. (28) and (30), is nonperturbative in the
potential strength [as long as the Bogoliubov ansatz (3)
is valid]. These expressions hold for arbitrary potentials,
if only the condensate � and its inverse �̌ are correctly
determined. Notably, the commutation relations, (19), for the
fluctuation operators, as defined in Eq. (16), remain valid in
the inhomogeneous setting.

For further analysis in terms of Bogoliubov quasiparticles,
we transform to the Bogoliubov basis (20) of the homoge-
neous case. We separate the homogeneous contribution from
the inhomogeneous contribution in the coupling matrices,
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V

γ̂k

γ̂
†
−k

γ̂k+q

γ̂
†
−k−q

Φ
q −q

Φ̌
q −q

Φ
q

Φ̌
q

FIG. 3. Universal Bogoliubov scattering vertex, (31). Bogoliubov
excitations (γ̂k,γ̂

†
−k) are scattered by an effective vertex, nonper-

turbatively determined by the deformed condensate and its inverse,
(�q,�̌q).

Skk′ = S
(0)
kk′ + S

(V )
kk′ and Rkk′ = R

(0)
kk′ + R

(V )
kk′ and define the

effective Bogoliubov excitation scattering vertex,(
A−1

k

)t

2

(
S

(V )
kk′ 0

0 R
(V )
kk′

)
A−1

k′

2
=

(
Wkk′ Ykk′

Ykk′ Wkk′

)
=: Vkk′ , (31)

depicted in Fig. 3. This brings the inhomogeneous Bogoliubov
Hamiltonian, (17), in the form Ĥ = Ĥ (0) + Ĥ (V ) or

Ĥ =
∑

k

εkγ̂
†
k γ̂k + 1

2

∑
k,k′

(γ̂ †
k ,γ̂−k)

(
Wkk′ Ykk′

Ykk′ Wkk′

)(
γ̂k′

γ̂
†
−k′

)
.

(32)

Let us reflect on what has been achieved at this point.
By a saddle-point expansion of the general many-body
Hamiltonian, (1), we have derived the Hamiltonian describing
the dynamics of Bogoliubov excitations in inhomogeneous
external potentials. These excitations are defined as in the
homogeneous case, with now an inhomogeneous contribution
to the Hamiltonian, the coupling matrix Vkk′ , which provokes
scattering between different k modes. This coupling has a
much richer structure than a simple potential scattering term
Vq â

†
k+q âk for single particles. It is both nonlinear in the

potential and contains off-diagonal contributions, because
the underlying condensate background depends nonlinearly
on the potential and mediates anomalous scattering between
quasiparticle excitations. Nevertheless, we have managed to
identify the relevant scattering vertex V , which allows us to
set up a systematic perturbation theory. As the first step for
fully analytical calculations, we have to expand the scattering
vertex to lowest orders in V .

3. Perturbative expansion of the Bogoliubov scattering vertex

We expand the scattering matrix elements in powers of
the inhomogeneous potential Vk, using the smoothing theory

reported in Sec. II A:

V = V = + + + . . .

= V(1) + V(2) + V(3) + . . .
(33)

Each dashed dangling line here represents the bare external
potential Vq [not to be confounded with the dash-dotted double
lines representing the background condensate fields (�q,�̌q)
in Fig. 3]. The scattering vertices V (j ) of order j can be derived
systematically by

(i) computing the ground state, (7), to the desired order;
(ii) computing the inverse field �̌q = (n/�)q ;

(iii) collecting all terms of order j in Eqs. (28) and (30) to
obtain S(j ) and R(j ), and

(iv) applying the transformation, (31), to obtain W (j ) and
Y (j ).

Let us make this procedure explicit for the first orders
j = 1,2.

The first-order scattering amplitudes,

W
(1)
kk′ = w

(1)
kk′Vk−k′ , Y

(1)
kk′ = y

(1)
kk′Vk−k′ , (34)

are both directly proportional to the potential’s matrix element
Vk−k′ , as required by conservation of momentum. All infor-
mation about the interaction and the background condensate
is factorized into the envelope functions

w
(1)
kk′ = (1 − δkk′)akak′ξ 2

2 + ξ 2(k′ − k)2

[
k2 + k′2− k · k′− k · k′

a2
ka

2
k′

]
, (35a)

y
(1)
kk′ = (1 − δkk′)akak′ξ 2

2 + ξ 2(k′ − k)2

[
k2+ k′2− k · k′ + k · k′

a2
ka

2
k′

]
, (35b)

with ak from Eq. (23). We have previously studied the
scattering of Bogoliubov excitations by an isolated impurity, as
described by these matrix elements [57]. An interesting feature
of the transition from sound-like to particle-like excitations is
that the amplitude for elastic scattering |k| = |k′| by an angle
θ is proportional to the remarkably simple envelope function

w
(1)
kk′

∣∣∣
k′=k

= ε0
k

εk

k2ξ 2(1 − cos θ ) − cos θ

k2ξ 2(1 − cos θ ) + 1︸ ︷︷ ︸
=: A(kξ,θ )

(1 − δkk′). (36)

This envelope is responsible for a node in the scattering ampli-
tude at cos θ0 = k2ξ 2/(1 + k2ξ 2), thus interpolating between
the p-wave scattering of a sound wave with θ0 = π/2 and the
s-wave scattering of a single particle [57].

The second-order couplings

S
(2)
kk′ = 1

gn

∑
p

s
(2)
k pk′Vk− pV p−k′ , (37)

R
(2)
kk′ = 1

gn

∑
p

r
(2)
k pk′Vk− pV p−k′ (38)

feature the kernels

s
(2)
k pk′ = 2ξ 2k · k′ [(k − k′)2 + (k − p)2 + ( p − k′)2]ξ 2

[2 + (k − k′)2ξ 2][2 + (k − p)2ξ 2][2 + ( p − k′)2ξ 2]
(1 − δkk′)(1 − δk p)(1 − δ pk′), (39)
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r
(2)
k pk′ = 2ξ 2

{
p2 + 2(k − p) · (k′ − p) + (k − p)2 + 2(k2 + k′2 − k · k′)

3 + (k − k′)2ξ 2 − ξ 2(k − p)2(1 − δkk′)

2 + (k − k′)2ξ 2

}
× 1 − δk p

2 + (k − p)2ξ 2

1 − δ pk′

2 + ( p − k′)2ξ 2
. (40)

Later, the ensemble average over the disorder will restore
translation invariance. The relevant diagonal elements are
s

(2)
k pk = 0 [as required by Eq. (28) and conservation of particle

number] and

r
(2)
k pk = 2ξ 2 p2 + 3(k − p)2 + 3k2

[2 + (k − p)2ξ 2]2
(1 − δk p). (41)

Finally, the matrix elements are transformed according to
Eq. (31), which yields the second-order diagonal scattering
amplitudes

W
(2)
kk = Y

(2)
kk =

∑
p

w
(2)
k pkVk− pV p−k, (42)

where w
(2)
k pk = a2

k r
(2)
k pk/4gn in terms of Eqs. (23) and (41).

4. One-dimensional setting

Before proceeding with the general theory, we briefly
digress into one dimension to discuss the link to previous
works. Using the general formalism developed so far, we can
easily compute the reflection of a Bogoliubov excitation by
a δ-like impurity V (x) = V σ0δ(x) to lowest order in V σ0. In
one dimension, only exact backward scattering occurs, and
the problem involves the coupling element W−k,k . In the Born
approximation, to second order in V , we find the transmission

T = 1 − V 2

4g2n2

k2σ 2
0

(k2ξ 2 + 1)2
. (43)

The impurity becomes perfectly transparent at long wave-
lengths kσ0 → 0. At the crossover kξ ≈ 1 from sound waves
to particles, strong backscattering leads to a transmission
minimum, whereas at high energies the transmission increases
again. The result, (43), is in quantitative agreement with the
results of Bilas and Pavloff [17], taken in the limit of a weak
impurity. It may be useful to note that within our formalism,
we do not require the explicit knowledge of Bogoliubov
eigenstates or distinguish between propagating and evanescent
modes; all the physics is built into the effective scattering
vertex V .

Also, Kagan, Kovrizhin, and Maksimov [58] have con-
sidered tunneling across an impurity, which in their case
suppressed the condensate density very strongly. We agree
regarding the aspect of perfect transmission at low energies.
At high energies, however, Kagan et al. do not find a revival of
transmission. This is reasonable because their strong impurity
deeply depresses the condensate on the spatial scale of ξ ,
and for wavelengths shorter than ξ , transmission remains
suppressed.

5. Appropriate basis for the inhomogeneous Bogoliubov problem

Before deriving physical quantities from the effective
Hamiltonian, (32), which is the subject of Sec. III, it remains

to justify our choice of basis for inhomogeneous Bogoliubov
excitations.

Hamiltonian (17) is quadratic in the fluctuations, whether
written in terms of the single-particle basis δ�̂(r),δ�̂†(r) or
the hydrodynamic basis δn̂(r),δϕ̂(r), and thus can always be
diagonalized: Ĥ = ∑

ν h̄ωνβ̂
†
ν β̂ν . Here, the eigenmodes ν are

populated by bosonic quasiparticles, for which

β̂ν =
∫

ddr[u∗
ν(r)δ�̂(r) + v∗

ν (r)δ�̂†(r)], (44)

[β̂µ,β̂†
ν ] = δµν, [β̂†

µ,β̂†
ν ] = [β̂µ,β̂ν] = 0. (45)

The eigenfunctions uν(r) and vν(r) are solutions of the
Bogoliubov–de Gennes equation, a non-Hermitian eigenvalue
problem:[(

H (r) gn(r)

gn(r) H (r)

)
σ3 − h̄ων

] (
uν(r)

vν(r)

)
= 0, (46)

with H (r) = − h̄2

2m
∇2 + V (r) − µ + 2gn(r) and the Pauli ma-

trix σ3 = ( 1 0
0 −1 ). In the case of broken translation symmetry,

these modes are not indexed by a wave vector k. They do,
however, fulfill the bi-orthogonality relation,∫

ddr[u∗
ν(r)uµ(r) − v∗

ν (r)vµ(r)] = δµν, (47)

and the orthogonality with respect to the condensate [59],∫
ddr �∗(r)[uν(r) − vν(r)] = 0. (48)

The latter relation expresses the bi-orthogonality, (47), with
respect to the zero-frequency Goldstone mode related to the
spontaneously broken U (1) symmetry of the BEC [30,60]. The
orthogonality relations allow the inversion of Eq. (44):

δ�̂(r) =
∑

ν

[uν(r)β̂ν − v∗
ν (r)β̂†

ν ]. (49)

In the presence of external inhomogeneities, and, in partic-
ular, for a disorder potential to which we turn shortly (Sec. III),
this eigenbasis explicitly depends on each potential realization,
which renders it useless for analytical calculations. Instead, we
construct a basis starting from the plane waves that diagonalize
the clean Hamiltonian, while satisfying the orthogonality
relations, (47) and (48), even in the inhomogeneous case. The
price to pay for using a plane-wave index is, of course, that
the disorder leads to scattering between these eigenstates. But
this is always the case in disordered systems, and standard
perturbation theory applies.
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Still, one has essentially two choices. (i) One can define
Bogoliubov operators by an expansion over single-particle
plane-wave modes:

δ�̂(r) =
∑

k

(
u

(0)
k (r)γ̂ (0)

k − v
(0)
k (r)∗γ̂ (0)†

k

)
, (50)

with

u
(0)
k (r) = ukL

−d/2eik·r , v
(0)
k (r) = vkL

−d/2eik·r . (51)

The coefficients uk = 1
2 (a−1

k + ak) and vk = 1
2 (a−1

k − ak) are
custom-tailored to satisfy the bi-orthogonality, (47), for all
k 
= 0, because u2

k − v2
k = 1. But if now the disorder potential

is switched on, the condensate �(r) is deformed and not
orthogonal to the plane waves anymore. Testing condition (48),
we find∫

ddr �(r)
[
u

(0)
k (r) − v

(0)
k (r)

] = (uk − vk)�−k 
= 0. (52)

This overlap with the ground state has disastrous consequences
for the theory. If one tries to work with these operators, the
coupling Wkk′ diverges for k → 0, and perturbation theory will
break down, no matter how small the external potential.

(ii) One can define the excitations via the hydrodynamic
fluctuations, (16),

δ�̂(r) = δn̂(r)

2�(r)
+ i�(r)δϕ̂(r). (53)

Contrary to case i, now the disorder is present from the outset,
such that the fluctuations originate from the disorder-shifted
reference point �(r), which corresponds to the Bogoliubov
vacuum of true excitations, (44). The inverse Bogoliubov
transformation (20),

δn̂k = ak

√
n(γ̂k + γ̂

†
−k), (54)

δϕ̂k = 1

2iak

√
n

(γ̂k − γ̂
†
−k), (55)

then leads to a decomposition of the form, (49),

δ�̂(r) =
∑

k

[uk(r)γ̂k − vk(r)∗γ̂ †
k ], (56)

over mode functions

uk(r) = 1

2

[
�(r)

ak

√
n

+ ak

√
n

�(r)

]
eik·r

Ld/2
, (57a)

vk(r) = 1

2

[
�(r)

ak

√
n

− ak

√
n

�(r)

]
eik·r

Ld/2
. (57b)

In the homogeneous case � = √
n, these functions reduce

exactly to the plane-wave amplitudes, (51). In the inhomoge-
neous case, the plane waves are found to be modified in such
a way that the modes still satisfy the bi-orthogonality, (47).
Moreover, they also respect the orthogonality to the deformed
ground state, (48), because �(r)[uk(r) − vk(r)] is a plane
wave with zero spatial average for all k 
= 0.

In conclusion, the Bogoliubov quasiparticles, defined in
terms of density and phase via (54) and (55) or, equivalently,
by (20), fulfill all requirements for the study of the disordered
Bogoliubov problem. They can be labeled by a wave vector
k, which is independent of the disorder realization V (r),
they fulfill the required bi-orthogonality relation, (47), and,

most importantly, they decouple from the inhomogeneous
condensate ground state.

III. MODIFIED EXCITATION DISPERSION

In the previous section, we have set up the general
formalism for describing Bogoliubov excitations in a weak
external potential, by deriving the relevant Hamiltonian, (32),
in the form Ĥ = Ĥ (0) + Ĥ (V ), where Ĥ (0) describes the clean
system, and Ĥ (V ) the disorder. This structure permits using
the machinery of perturbation theory [61–63]. Presently, we
explore the consequences for the excitation dispersion relation
and the corresponding density of states. These quantities can
be computed via zero-temperature single-excitation Green
functions, for which we calculate the self-energy to order V 2.
From the self-energy, we determine physical quantities like
mean free paths and corrections to the speed of sound. Since
we mainly focus on the case where V (r) is a disorder potential,
we use a notation adapted to that scenario in the following. But
the general theory applies to arbitrary potentials and, notably,
covers the case of weak lattice potentials, to which we devote
a brief discussion in Sec. IV B 4.

A. Green functions

The matrix structure of the scattering vertex V defined in
Eq. (31) suggests introducing the Bogoliubov-Nambu (BN)
pseudospinors �̂k = (γ̂k,γ̂

†
−k)t in terms of which Hamiltonian

(32) takes on a more compact appearance:

Ĥ = 1

2

∑
k

εk�̂
†
k�̂k + 1

2

∑
k,k′

�̂
†
kVkk′ �̂k′ . (58)

The Heisenberg equation of motion for the BN spinor reads

ih̄
∂

∂t
�̂k = σ3

∑
k′

[εkδkk′ + Vkk′]�̂k′ . (59)

Multiplication by the Pauli matrix σ3 is characteristic for the
dynamics within the Bogoliubov–de Gennes symmetry class
that describes bosonic excitations of interacting systems [64].
We see that the Bogoliubov excitation in mode k is scattered
to mode k′ by the potential Vkk′ , the momentum transfer
being provided by the underlying condensate � and its inverse
profile �̌, as represented by the vertex in Fig. 3. The effective
excitation spectrum belonging to the equation of motion, (59),
can be derived by studying the corresponding Green function.

Many-body Green functions contain all the information
about how a quasiparticle created in state k′ at time 0
propagates to state k, where it is destroyed at time t . For
the present, we need only the retarded Green functions at
temperature T = 0. Taking advantage of the Nambu structure,
one defines a matrix-valued Nambu-Green function [61],

Gkk′(t) = �(t)

ih̄
〈[�̂k(t),�̂†

k′ (0)]〉 =
(

Gkk′ (t) F
†
kk′(t)

Fkk′(t) G
†
kk′(t)

)
, (60)

from the single-(quasi)particle retarded Green function

Gkk′(t) = 1

ih̄
�(t)〈[γ̂k(t),γ̂ †

k′(0)]〉 (61)
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and the anomalous Green function

Fkk′(t) = 1

ih̄
�(t)〈[γ̂ †

−k(t),γ̂ †
k′(0)]〉. (62)

Here, 〈·〉 stands for the expectation value in the Bogoliubov
vacuum |0〉 defined by γ̂k|0〉 = 0 for all k. The equation of
motion of G under Hamiltonian (58) reads

ih̄
d

dt
G = σ3δ(t) + σ3[ε + V]G. (63)

In this compact notation, εkk′ = εkδkk′11.

B. Perturbation theory

In the absence of disorder V = 0, the equation of motion,
(63), is readily solved in the frequency domain. The anomalous
Green function F

(0)
kk′(ω) = 0 vanishes, and the conventional

retarded Green function is found as G
(0)
kk′(ω) = δkk′G0k(ω),

with

G0k(ω) = lim
η→0

1

h̄ω − εk + iη
=:

1

h̄ω − εk + i0
. (64)

The infinitesimal shift +i0 stems from the causality factor
�(t), which is characteristic for the retarded Green function,
(61). The Nambu-Green function for the clean system thus
reads

G0k(ω) =
(

G0k(ω) 0

0 G∗
0k(−ω)

)
. (65)

With this, Eq. (63) can be written in the form

G = [
G−1

0 − V
]−1

, (66)

which is a suitable starting point for diagrammatic perturbation
theory.

Equation (66) permits a series expansion in powers of V for
the full Green function, ensemble-averaged over the disorder:

G = G0 + G0VG0 + G0VG0VG0 + · · · . (67)

Without loss of generality, we assume in the following
that the disorder potential is centered, that is, V = 0. Then
second-order and higher moments of the disorder potential
have to be computed: Vk1Vk2 , Vk1Vk2Vk3 , etc. Depending on
the disorder distribution, these moments may factorize into
independent terms. For example, the moments of a Gaussian
random process factorize completely into products of pair
correlations. Thus, series (67) contains reducible contributions
from products of disorder correlations that can be separated
into independent factors by removing a single Green function
G0. This redundancy can be avoided by defining the self-energy
� via the Dyson equation,

G = G0 + G0�G. (68)

The self-energy contains precisely all irreducible contributions
of the disorder-averaged right-hand side of Eq. (67). Moreover,
it directly describes the disorder-induced corrections to the

spectrum, as becomes evident from the formal solution, G−1 =
G−1

0 − �.
In principle, any desired order in the disorder potential V

in the series � = �(1) + �(2) + �(3) + · · · can be determined
by first expanding � = V + VG0V + · · · into powers of the

nonlinear scattering vertex V and then using the perturbative
expansion (33), while retaining only the irreducible contribu-
tions. In practice, of course, the number of diagrams grows
very rapidly with the order. Since all first-order terms vanish
by virtue of V = 0, we concentrate on terms of order V 2. This
so-called Born truncation of the full series is valid for weak
potentials. We find two contributions:

Σ(2) = V(1)G0V(1) + V(2) = +
(69)

The general structure of the first contribution, V (1)G0V (1),
is well known from single particles in disorder [65–68]:
the particle is scattered once by the bare disorder into a
different mode and then scattered once more, back into the
original mode. The second contribution, V (2), is specific to the
Bogoliubov problem and the nonlinear background of the GP
equation, (5): it describes the single scattering of the excitation
by a background fluctuation that is itself second order in the
disorder amplitude.

C. Self-energy

We focus now on the upper left-hand block �
(2)
11 of

the Nambu self-energy matrix, which relates to the normal
retarded Green function and describes the change in the
quasiparticle dispersion.

Spelling out the two contributions, (69), in terms of the
first- and second-order scattering matrix elements, (34) and
(42), we find

�
(2)
11kk′ (ω) =

∑
p

Zk pk′(ω)Vk− pV p−k′ . (70)

Under the sum, we distinguish two essential factors, the
potential correlator and a kernel function. Concerning the po-
tential, we assume for notational convenience that the disorder
is homogeneous and isotropic under the ensemble average,
with a k-space pair correlator,

VqV−q ′ = L−dδqq ′V 2σdCd (qσ ). (71)

The dimensionless function Cd (qσ ) characterizes the potential
correlations persisting on the length σ . Our formulation allows
for a straightforward extension to anisotropic disorder [27] or
lattice potentials; see Sec. IV B 4.

Because this disorder average restores homogeneity, we
only need the kernel function for k′ = k:

Zk pk(ω) =
[
w

(1)
k p

]2

h̄ω − ε p + i0
−

[
y

(1)
k p

]2

h̄ω + ε p + i0
+ w

(2)
k pk, (72)

with the envelope functions defined in Eqs. (35a), (35b), and
(42). This kernel depends solely on the healing length ξ . Fi-
nally, the retarded normal self-energy �

(2)
11kk′ (ω) = δkk′�(k,ω)

takes the functional form

�(k,ω) = V 2σd

∫
ddq

(2π )d
Zk(k+q)k(ω)Cd (qσ ). (73)

This expression is the second main achievement of the present
work. All physical results presented below follow from here
by straightforward calculations.
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D. Disorder-modified dispersion relation

To grasp the significance of the self-energy, it is useful
to define the spectral function S(k,ω) = −2ImG(k,ω) [61],
which contains all information about the frequency and
lifetime of the excitations. In a clean system with dispersion
εk = h̄ω, the spectral function is

S0(k,ω) = −2ImG0(k,ω) = 2πδ(h̄ω − εk). (74)

In the presence of disorder, this function gets modified,
while retaining its normalization,

∫
(dh̄ω/2π )S(k,ω) = 1; this

allows interpretation of the spectral function as the energy
distribution of a quasiparticle with wave vector k. To leading
order in V 2/(gn)2,

S(k,ω) = −2Im�(k,ω)

{h̄ω − [εk + Re�(k,ω)]}2 + [Im�(k,ω)]2
. (75)

The self-energy’s real and imaginary part enter in characteristic
ways. First, the Bogoliubov modes are expressed, according
to the reasoning in Sec. II B 5, in the plane-wave basis,
which is not the eigenbasis of the Bogoliubov Hamiltonian
in the presence of disorder. Thus, k are not “good quantum
numbers,” and the Bogoliubov modes suffer scattering. This
broadens their dispersion relation or, equivalently, implies
the existence of an elastic scattering rate (inverse lifetime),
γk = τ−1

k = −2Im�(k)/h̄. Here, the notation �(k) = �(k,εk)
indicates that one can take the self-energy on the shell to the
lowest order V 2 considered. In terms of length scales, the
scattering rate defines the elastic scattering mean free path ls
via

l−1
s = γk

vg
= −2Im�(k)

∂kεk

, (76)

with the usual definition of the group velocity, h̄vg = ∂kεk =
2gnξ (1 + k2ξ 2)[2 + k2ξ 2]−1/2.

Second, the peak of the spectral density is shifted to

εk = εk + Re�(k), (77)

which defines the disorder-modified dispersion relation, again
to order V 2. Notably, Eq. (77) describes the impact of
disorder on the speed of sound in the low-energy regime.
Indeed, a short calculation shows that the kernel function,
(72), behaves like Zk(k+q)k ∼ k as k → 0, such that there is
always a finite correction to the speed of sound. Within our
theory, the disordered potential conserves the linear character
of the dispersion relation at low energy, as required by the
existence of the zero-frequency Goldstone mode due to the
spontaneously broken U(1) symmetry.

E. Average density of states

The quasiparticle dispersion enters practically all ther-
modynamic quantities that determine how the disordered
condensate responds to external excitations, at both zero and
finite temperature. Often, one only needs to know the DOS. In
a disordered system, the spectral function, (75)—remember its
role as the probability density for a Bogoliubov quasiparticle

k to have energy h̄ω—determines the average DOS (AVDOS)
per unit volume as [61,63]

ρ(h̄ω) =
∫

ddk

(2π )d
S(k,ω)

2π
. (78)

As a function of frequency and for weak disorder, the spectral
function, (75), is very well approximated by a Lorentzian
centered at εk/h̄ with a small width γk � εk . Section IV
shows that the relative scattering rate γk/εk of low-energy,
sound-wave excitations tends to 0 and that the main effect of
disorder is the dispersion shift, (77) (in contrast to the case
of single particles in disorder, where the scattering rate is the
dominant quantity [68]). In the sound-wave regime, we can
therefore approximate S(k,ω) = 2πδ(h̄ω − εk) in Eq. (78).
With this, the shift ρ(ε) = ρ(ε) + �ρ(ε) from the clean DOS
in d dimensions [Eq. (26)] reads

�ρ(ε)

ρ(ε)
= −

[
d + k

∂

∂k

]
Re�(k)

k∂kεk

∣∣∣∣
k=kε

(79)

and is thus found to be a function of the dispersion shift, (77).

F. Parameter space of the disordered Bogoliubov problem

Because the self-energy is evaluated to order V 2, all the
corrections it implies will be of this same order. For notational
brevity, we henceforth denote the small parameter of this
expansion

v2 := V 2

(gn)2
� 1. (80)

Furthermore, we observe that the self-energy, (73), depends
on three length scales: the excitation wavelength λ = 2π/k,
the healing length ξ , and the disorder correlation length σ .
The resulting physics can only depend on the value of these
lengths relative to each other:

(1) The correlation parameter ζ = σ/ξ indicates whether
the disordered condensate background is in the TF regime
(ζ � 1) or in the smoothing regime (ζ � 1); see Sec. II A.

(2) The reduced wave number kξ indicates whether the
excitations are sound waves (kξ � 1) or particles (kξ � 1);
see Sec. II B 1.

(3) The parameter kσ discriminates the effectively δ-
correlated regime (kσ � 1) from a very smooth scattering
potential (kσ � 1).

These parameters are not independent, for any given two
of them determine the third, for example, (kσ )/(kξ ) = σ/ξ .
The parameter space thus is a 2D manifold. Nonetheless, it
is useful to keep all three parameters to describe the various
physical regimes. We have therefore found it convenient to
map the entire parameter space to a hexagon (see Fig. 4). The
three symmetry axes connecting the vertices carry the three
dimensionless parameters, such that the extreme values 0 and
∞ occur at opposite vertices. The symmetry axes perpendic-
ular to the edges then represent the values of the length scales
themselves, with their extreme values 0 and ∞ taken on the en-
tire edges. This construction is analogous to the representation
of RGB color space by hue and saturation at a fixed lightness.
Each of the three dimensionless parameters describes one of
the channels, for example, kξ describes the red channel with
kξ = 0 mapped to cyan and kξ = ∞ mapped to red. Similarly,
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σ
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kσkξ

σ
=
∞
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ξ

=
∞

σ
=

0

k = 0
ξ

=
0

FIG. 4. (Color online) Parameter space of the disordered Bo-
goliubov problem, spanned by three length scales: healing length
ξ , excitation wave vector k, and disorder correlation length σ . At
opposing vertices, the three dimensionless parameters kξ , kσ , and
σ/ξ take their extreme value 0 or ∞. On the six edges, one of the
length scales itself is either 0 or ∞.

kσ and σ/ξ define the green and blue channels, respectively,
which completes the color space, as shown in Fig. 4.

IV. RESULTS

All of the physical quantities that we compute in the
following depend crucially on the correlation parameter ζ =
σ/ξ measuring the disorder potential correlation in units of the
condensate healing length. In general, the results even depend
on the specific pair correlation function Cd (kσ ) defined in
Eq. (71). For concreteness and direct applicability to cold-atom
experiments, we study in detail the case of optical speckle
patterns, some properties of which are summarized in the
Appendix. However, many analytical results in limiting cases
are independent of the specific pair correlation and are thus
universally applicable.

A. Mean free paths

1. Elastic scattering mean free path

First, we evaluate the elastic scattering mean free path, in
the dimensionless form 1/(kls) = −2Im�(k)/(h̄kvg), which is
the small parameter of weak-disorder expansions in standard
quantum transport theories [65]. The only possibility for an
imaginary part to occur in the on-shell self-energy, (73), is
by the imaginary part of the Green function, Im(εk − εk+q +
i0)−1 = −πδ(εk − εk+q), multiplying the normal scattering
amplitude. This restricts the integral over the intermediate state
to the energy shell. There, the scattering element simplifies
according to Eq. (36), and we find

1

kls
= πv2

2

kdσ d

(1 + k2ξ 2)2

∫
d�d

(2π )d
A(kξ,θ )2Cd

(
2kσ sin θ

2

)
.

(81)

Figure 5 shows this inverse scattering mean free path plotted
as a function of kξ for a speckle potential [Eq. (A6)] with a
fixed correlation ratio ζ = σ/ξ = 2 in dimensions d = 1,2,3.
The k-dependent fraction in front of the integral in (81) ensures

0.5 1 1.5 2 2.5 3 3.5 4

0.1

0.2

0.3

0.4

0.5

0.6

1

klsv2

kξ

kσ = 1

k = 0

k = ∞

σ

ξ
= 2

FIG. 5. (Color online) Inverse elastic scattering mean free path,
(81), as function of Bogoliubov wave number kξ for disorder with
fixed correlation parameter ζ = σ/ξ = 2, in d = 1,2,3 dimensions
(top to bottom). For small or large kξ , universal limiting behavior is
found (see text). The feature at kσ = 1 is particular to the speckle
disorder [Eq. (A6)]. Inset: the plot’s path in the parameter space
(Fig. 4).

that the mean free path diverges for both very low and very
high momenta, where one recovers essentially a clean system.
In between, around kξ = 1, there is a minimum mean free
path. Figure 5 also shows a feature at kσ = 1, which is
specific to the speckle correlation function used here, due
to the nonanalyticity at the boundary of its support. Indeed,
in d = 1, at this point the contribution of the backscattering
process k → −k becomes impossible at the level of the Born
approximation, which explains the kink at kσ = 1. In higher
dimensions, the angular integration lifts the singularity to
higher derivatives, so that it becomes less conspicuous.

Obviously, the mean free path, (81), depends on the two
dimensionless parameters kξ and kσ . Let us discuss some
interesting limiting cases, which are easily identified in our
parameter space representation.

(i) First, the hydrodynamic limit ξ → 0 is found on the
lower right-hand edge in Fig. 4. Here, we recover exactly the
elastic mean free path for scattering of sound waves [37],
which depends only on the remaining parameter kσ .

(ii) Second, the limit ξ → ∞ is found on the upper left-hand
edge in Fig. 4. There, ξ drops out together with the interaction
energy gn from (81), which reduces exactly to the elastic
mean free path for single-particle scattering, as calculated in
Refs. [67] and [68]. This reduced mean free path kls can again
depend only on kσ .

More generally, let us consider a fixed correlation ratio σ/ξ

of order unity and look at the asymptotics as a function of kξ ,
as plotted in Fig. 5.

(iii) As kξ → 0, also, kσ → 0. Then the potential correlator
becomes isotropic, Cd (2kσ sin θ

2 ) → Cd (0), and pulls out
of the integral over A(0,θ )2 = cos2 θ . This integral yields∫

d�d cos2 θ = Sd/d (a result showing the “concentration of
measure” of the hypersphere’s surface around its equator [69]).
Thus, we obtain

1

kls
= πSdv

2
δ

2d(2π )d
(kξ )d [1 + O(kξ,kσ )], (82)
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where Sd is the unit sphere’s surface (S1 = 2, S2 = 2π , S3 =
4π ), and we define the effective δ-correlation disorder strength,

v2
δ = Cd (0)

σdV 2

ξd (gn)2
. (83)

The low-k behavior 1/kls ∝ (kξ )d indeed appears clearly in
Fig. 5. In our parameter space Fig. 4, this is the asymptotic
behavior of curves starting from the lower edge k = 0, for
intermediate values of σ/ξ , that is, rather in the center of the
edge. Note that l−1

s ∝ kd−1 is proportional to the surface of
the energy shell, that is, the number of states available for
elastic scattering. In the limit k → 0, the elastic energy shell
shrinks and the scattering mean free path diverges, even when
measured in units of k−1.

(iv) Conversely, as kξ → ∞, also, kσ → ∞. But as soon as
kσ � 1, the disorder potential allows practically only forward
scattering, and we can make a small-angle approximation to
all functions of θ , such as 2kσ sin θ

2 → kσθ . Then the final
result can be cast into the form

1

kls
= V 2

E2
σ

fd (σ/ξ )

(kσ )3
[1 + O(1/kξ,1/kσ )], (84)

where Eσ = h̄2/(mσ 2) is the characteristic correlation energy
[67,68], and f1(ζ ) = C1(0) as well as

fd (ζ ) = Sd−1

∫ ∞

0

du ud−2

(2π )d−1

(2ζ 2 − u2)2

(2ζ 2 + u2)2
Cd (u) (85)

in d = 2,3. And indeed, all curves in Fig. 5 show this decrease
as k−3 for high momenta. In our parameter space Fig. 4, this
is the asymptotic behavior of curves arriving at the upper edge
k = ∞ for intermediate values of σ/ξ .

For extreme values of σ/ξ , that is, toward the far left or
right of the parameter space, one can also find interesting
asymptotics when the wavelength 2π/k lies between σ and ξ .

(v) Consider first the case of a potential in the deep
TF regime σ � ξ and excitations with kσ � 1 � kξ . This
describes hydrodynamic excitations, that is, a set of parameters
approaching the right outermost vertex in Fig. 4 along the edge
ξ = 0. Then, by the same reasoning as in the previous case (iv),
strongly peaked forward scattering leads to 1/kls ∝ kσ . This
linear increase in the inverse scattering mean free path would
naı̈vely predict infinitely strong scattering as k increases.
Within the full description, however, this unphysical behavior
stops as soon as kξ ≈ 1 is reached, crossing over to case iv
with an even simpler description, since now ζ � 1, for which
fd (∞) = Sd−1(2π )1−d

∫ ∞
0 du ud−2Cd (u) in d = 2,3.

(vi) Conversely, consider, finally, a potential in the deep
smoothing regime σ/ξ � 1 and excitations with kσ � 1 �
kξ . This describes particle excitations, that is, a set of
parameters approaching the left outermost vertex in Fig. 4
along the edge ξ = ∞. Then, by the same reasoning as in
case iii, isotropic scattering leads to 1/kls ∝ (kσ )d−4. This
low-k divergence of the scattering mean free path naı̈vely
predicts infinitely strong scattering as kσ � 1 and severely
limits the validity of simple perturbation theory for the single-
particle case [67,68]. Not so here, where the divergence is
avoided once kξ ≈ 1 is reached, and the interaction energy
comes into play, crossing over to case iii.
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0.3
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kltrv2

kξ

kσ = 1

d = 1

d = 2

d = 3

FIG. 6. (Color online) Inverse transport mean free path, (81),
including the vertex correction factor (1 − cos θ ) under the integral,
for a speckle disorder, (A6), with fixed correlation parameter ζ =
σ/ξ = 2.

In summary, our perturbation theory provides valid expres-
sions for the elastic scattering rate or inverse mean free path in
the full space of parameters. At a given value of ζ = σ/ξ , the
scattering rate is always a bounded function of k, multiplied
by the small parameter v2 � 1, which vindicates the use of
the momentum basis as a starting point for the perturbation
theory.

2. Transport mean free path

If a disordered BEC is brought out of equilibrium, it will
respond via its excitations. Therefore, it is of interest to study
the transport properties of Bogoliubov excitations. In principle,
a full-fledged quantum transport theory requires calculation
of particle-hole propagators, which is certainly doable using
Hamiltonian (58), but beyond the scope of the present article.
Still, the previous results on the scattering mean free path
can be generalized, with very limited additional effort, to the
Boltzmann transport mean free path [67,68], which measures
the diffusive randomization of the direction of motion. This
transport mean free path ltr is defined by the same integral
expression, (81), where the integrand is multiplied by a factor
(1 − cos θ ). Figure 6 shows a plot of 1/kltr as a function of kξ

for a speckle disorder, (A6), with fixed correlation parameter
ζ = σ/ξ = 2 in dimensions d = 1,2,3.

In one dimension, the only contribution to the inverse
transport mean free path is the backscattering contribution
k → −k, such that

1

kltr
= v2

2

kσ C1(2kσ )

(1 + k2ξ 2)2
. (86)

Due to the finite support of the speckle correlation function,
(A6a), backscattering is impossible for kσ > 1, and the
inverse transport mean free path vanishes (within the Born
approximation, and here we do not consider higher-order
corrections to ltr [70,71]), as clearly apparent from Fig. 6. In
dimensions d � 2, there are finite contributions from small
scattering angles. Adapting the reasoning of case iv from
the previous section, one finds that 1/kltr ∝ (kσ )−5, with a
prefactor that can be determined similarly.
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3. Localization length

Just as phonons and particles, Bogoliubov excitations are
expected to localize in disordered environments. Again, a full
calculation is out of reach within the present article, but we can
estimate the localization lengths of our Bogoliubov excitations
in correlated disorder, based on general results on localization
of particles and phonons.

In 1D disordered systems, the localization length lloc = 2ltr,
which describes exponential localization, is directly propor-
tional to the backscattering length that we just calculated [72].
From (86) we deduce

1

klloc
= v2

4

kσ C1(2kσ )

(1 + k2ξ 2)2
, (87)

which agrees perfectly with [18,19], and also with [17], in
the limits σ → 0 and ξ → 0 investigated there. Those phase-
formalism approaches are particularly suited for 1D systems,
whereas our Green-function theory permits going to higher
dimensions without conceptual difficulties.

In two dimensions, the localization length is related to
the transport mean free path via lloc = ltr exp{π

2 kltr}. This
result can be derived using scaling theory arguments that
hold very generally for single-particle excitations, and also,
the localization length of phonons has been shown to scale
exponentially with ltr [73].

In three dimensions, localized and delocalized states can
coexist, as a function of energy separated by a mobility
edge. Phonons are localized at high energies and particles are
localized at low energies [73]. These opposite characteristics
imply that when the disorder is increased, localized modes will
start to appear at energies close to the point where ltr is minimal.

So in all dimensions, localization will be observed most
readily, within finite systems, for modes that have the shortest
localization length. Our results on the transport mean free path
in correlated potentials show (in agreement with the 1D results
of [18,19]) that modes around kξ = 1 will be the first to appear
localized.

In one dimension, we have quantitatively verified prediction
(87) by means of an exact diagonalization of the inhomoge-
neous Bogoliubov–de Gennes equation, (46), after solving the
stationary GP equation, (5), for the condensate. Figure 7 shows
that indeed only Bogoliubov modes at intermediate energies
h̄ων ≈ 0.6gn appear to be localized in the finite system. The
observed localization length is compatible with the prediction,
Eq. (87).

All lengths calculated so far have the property that they
diverge in the limit kξ � 1. In other words, sound waves
can propagate over long distances and for long times in these
disordered systems. It is therefore meaningful to compute the
renormalized speed of sound.

B. Speed of sound

As shown in Sec. III D, the disorder potential shifts the
dispersion relation by �εk = Re�(k). Using Eqs. (77) and
(73), the relative dispersion shift takes the form

�εk

εkv2
= σd

∫
ddq

(2π )d
zkqCd (qσ ). (88)
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FIG. 7. (Color online) (a) Condensate density n(x)/n of a
BEC (system size L ≈ 1700ξ , periodic boundary conditions) in
a blue-detuned speckle potential with amplitude V/gn = 0.3 and
correlation length σ = ξ . (b–d) Selected Bogoliubov modes uν(x)
[solid (red) line] and vν(x) [dashed (blue) line], obtained by exact
diagonalization of the Bogoliubov–de Gennes equation, (46). Low-
and high-energy modes [(b) and (d)] are extended, while localization
is most pronounced at intermediate energies (c). The dashed (gray)
line in (c) shows the exponential envelope predicted by Eq. (87).

The kernel zkq obtains, from the real part of the on-shell kernel
Zk(k+q)k(εk), Eq. (72),

zkq = (gn)2

εk

[
P

[
w

(1)
k(k+q)

]2

εk − εk+q
−

[
y

(1)
k(k+q)

]2

εk + εk+q
+ w

(2)
k(k+q)k

]
, (89)

with the envelopes defined in Eqs. (35a), (35b), and (42).
P denotes the principal value. These equations reduce to
much simpler expressions in different limiting regions of the
parameter space (Fig. 4). We mostly focus on the low-energy,
sound excitations that are of primary interest. Analytical results
are confronted with data from a numerical simulation in
Sec. IV B 2. At last, we show in Sec. IV B 4 that our theory
also covers the case of weak lattice potentials.

1. Limiting cases

Similar to the procedure in Sec. IV A, we compute analyti-
cal results in the limiting cases located at the edges and corners
of the parameter space (Fig. 4).

(i) We start with the hydrodynamic limit ξ → 0, the lower
right edge in Fig. 4. The kernel, (89), simplifies to

− 1

2k2
P

(k2 + k · q)2

q2 + 2k · q
, (90)

after which Eq. (88) reproduces exactly Eq. (29) of Ref. [37].
Notably, the dispersion shift is negative in all dimensions and
for any value of σ/ξ � 1, as anticipated in the schematic plot
in Fig. 2(a). The limiting values are

(91a)�εk

εkv2
=

{ −1/(2d), kξ � kσ � 1,

−(2 + d)/8, kξ � 1 � kσ (91b)

These limiting values are expected to hold over an extended
range of kσ . Thus, they define a shift in the local slope of the
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dispersion relation. In other words, k modes in that particular
range have a modified sound velocity. The magnitude of the
correction depends significantly on the excitation’s ability to
resolve the correlations (kσ � 1) or not (kσ � 1). As noted
in [37], the correction decreases with dimension in the latter
case, but increases in the former, implying that the curves for
different dimensions must cross around kσ = 1.

In passing, we stress that even in the very long-range
correlated limit σ/ξ → ∞, these results are not trivial.
Indeed, one could try and use a simple static local density
approximation (LDA) to derive the result, (91b), for correlation
lengths much longer than the excitation wavelength. In this
regime, the background appears to be locally homogeneous to
the wave, and the local sound velocity c(r) = √

gn(r)/m is
proportional to the condensate field amplitude �(r). Thus, the
LDA expects c/c to be given by �/�, which can be easily
computed from Eq. (10) to yield �cLDA/c = −v2/8. But this
fails to reproduce Eq. (91b). Indeed, the static LDA cannot
capture the scattering dynamics [shown by the first diagram in
Eq. (69)], which is essential for correct determination of the
sound velocity.

(ii) In the regime of particle-like excitations kξ → ∞
(covering cases ii, iv, and vi in Sec. IV A), Hamiltonian
(1) becomes noninteracting. Consequently, one should expect
the entire Bogoliubov problem to reduce to the problem of
single particles in disorder. Indeed, Bogoliubov excitations
in the particle regime see both the external potential and
the condensate background. Sampled at high wave numbers
kξ � 1, the condensate background is smooth and cannot
induce scattering. Fittingly, we found in Sec. IV A 1 that the
elastic scattering mean free path reduces in this limit to the
single-particle expression. In contrast, the deeply inelastic
processes contributing to Eq. (88) remain sensitive to the
condensate background, as encoded by the anomalous and
second-order couplings, (35b) and (42), which do not simply
vanish in the limit ξ → ∞. We find that the leading-order
correction to the dispersion relation (for kξ � 1 and kσ not
too small),

�εk = v2σd

∫
ddq

(2π )d
ε0
qCd (qσ )

(2 + q2ξ 2)2
, (92)

is independent of k. Incidentally, it is exactly opposite to
the negative average shift µ(2) of the chemical potential,
from Eq. (15), for fixed average density. At a fixed chemical
potential, the dispersion shift, (92), would be even twice as
big. Note that this shift cannot be naı̈vely accounted for by an
overall shift gn → gn + µ(2) in the clean dispersion, Eq. (25).
Just like the wrong LDA attempt to explain the sound velocity,
discussed above, this reasoning misses the essential scattering
dynamics.

Equation (92) also differs from the chemical potential
shift for noninteracting particles in disorder [61]. But it
must be kept in mind that the disorder expansion of the
Bogoliubov Hamiltonian in Sec. II B 3 was performed under
the assumption V � gn. For single particles, the interaction
energy gn goes to 0; that is, the ratio of V and gn would have
to be reversed. Therefore, our perturbative theory cannot be
expected to apply universally in this regime.
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FIG. 8. (Color online) Relative correction, (93), of sound velocity
due to a speckle disorder potential, (A6), as a function of the
correlation ratio ζ = σ/ξ in d = 1,2,3 (bottom to top). The exact
formulas are given in Eq. (A11). Dashed lines: universal limits,
collected in Table I. Inset: Same data around the origin, showing
the rapid departure from the leading-order estimate [14,20,34].

In any case, the main effect of disorder in the single-particle
regime is to yield the finite scattering rate calculated in
Sec. IV A, but it produces only a very small shift in dispersion.
In addition, these high-energy excitations are less important
for low-temperature properties of BECs and are not considered
in the remainder of this work.

(iii) Let us turn to the sound-wave regime kξ � 1. In case i
and Ref. [37], this has been achieved by sending the healing
length ξ to 0, thus yielding the dispersion as a function of
kσ , but only for rather long-range correlated potentials with
σ � ξ . To cover arbitrary correlation ratios ζ = σ/ξ , we now
change the point of view and take k → 0. This allows us, in
particular, to reach the case σ � ξ, k−1 of truly δ-correlated
disorder that was inaccessible in Ref. [37]. The kernel, (89),
simplifies, and we find the relative shift in the speed of sound

�c

cv2
= σd

∫
ddq

(2π )d

{
2q2ξ 2

(2 + q2ξ 2)3
− 2 cos2 β

(2 + q2ξ 2)2

}
Cd (qσ ).

(93)

β = �(k,q) is the angle between the direction of propagation
and q. Recently, this result has also been obtained in a
mean-field approach to dipolar condensates in weak disorder
[74]. In contrast to the hydrodynamic case (i), Eq. (93) now
contains two competing contributions with opposite sign (for
an interpretation of these contributions, compare the end of
Sec. IV B 4 and Ref. [74]). In the case of isotropic correlation,
the angular integral maps cos2 β to 1/d. Then, only for d = 1

TABLE I. Limiting corrections of the speed of sound, correspond-
ing to the dashed limits in Fig. 8. For uncorrelated disorder, the
correction is proportional to v2

δ in Eq. (83).

�c/c d = 1 d = 2 d = 3

σ � ξ −v2/2 −v2/4 −v2/6
σ � ξ − 3

16
√

2
v2

δ 0 + 5
48

√
2π

v2
δ
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is the radial integrand strictly negative, and �c is negative as
well. For d > 1, the radial integrand has no definite sign.

To survey the possible outcomes, we plot in Fig. 8 the
correction, (93), to the speed of sound caused by the isotropic
speckle disorder, Eq. (6), as a function of the correlation ratio
ζ = σ/ξ . The curves can actually be given in closed form,
see (A11), but the details depend, of course, on the specific
correlation. In contrast, we can extract universal limits for very
small or very large ζ .

In the long-range correlated limit ζ → ∞, found on the
right edge of the plot, the correlator Cd acts as a δ distribution,
which leads to �c/c = −v2/(2d). This value coincides with
the hydrodynamic limit, (91a), as it should.

In the opposite limit ζ � 1 of δ-correlated disorder, the
correlator Cd (qσ ) → Cd (0) can be pulled out of the integral,
which contributes a numerical prefactor to the expected scaling
with the disorder strength v2

δ defined in Eq. (83). These results
are plotted as dashed lines in Fig. 8 and collected in Table I.
Again, these results cannot be found by the LDA, which would
have to assume that the system is homogeneous on relevant
length scales (σ � ξ, 2π/k), an assumption that is always
violated by the sound-wave limit 2π/k → ∞.

Our result for σ � ξ in d = 3 reproduces the value known
from Refs. [14], [20], and [34]. Interestingly, this is the only
case where the correction to the speed of sound is positive.
Actually, this particular numerical value is of rather limited
use since the Taylor expansion at the origin is converging
very slowly, and already a minor correlation can make a major
difference, as shown by the inset in Fig. 8. Our results, Eqs. (88)
and (93), hold for a much larger range of parameter values and
arbitrary dimensions, which accomplishes one of the main
goals of this work.

2. Numerical mean-field study of the sound velocity

We confront the theoretical predictions, (88) and (93), with
data obtained by a numerical simulation in d = 1 on the
mean-field level, using the time-dependent GP equation. This
numerical calculation constitutes an independent check since
it relies neither on the linearization in the excitations nor on
perturbation theory in the disorder potential, which are the two
approximations of our analytical theory.

The numerical procedure was briefly described in Ref. [37].
We generate a 1D speckle disorder potential with correlation
length σ by Fourier transformation from the set of random
complex field amplitudes [see Eq. (A5)] with all k � σ−1.
Then the condensate ground state �(x) solving the GP
equation, (5), is computed by imaginary-time evolution, using
the fourth-order Runge-Kutta algorithm, while keeping the
wave function normalized [52]. Onto this disordered ground
state, a plane-wave Bogoliubov excitation is superposed,
with a small, but finite k and amplitude �. In cold-atom
experiments, such an excitation is routinely imprinted using
Bragg spectroscopy [75–78]. The Bogoliubov transformation
(20) requires the imprints in density and phase to be

δn(x) = 2
√

nak � cos(kx), δϕ(x) = �√
nak

sin(kx). (94)

In the sound-wave regime where ak � 1 [cf. Eq. (23)], the
phase modulation has a much larger amplitude than the
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FIG. 9. (Color online) Relative correction of the Bogoliubov
excitation dispersion relation due to 1D speckle disorder. The full
formula, (88), for kξ = 0.05 [solid (black) line] crosses over from
the limiting case (iii) of low-energy excitations [dashed (green) line;
Eq. (A11a)] to the limiting case (i) of the hydrodynamic regime
[dotted (blue) line; Eq. (A7)]. Inset: The corresponding trajectory
in parameter space. The numerical results (cf. Sec IV B 2) for blue-
and red-detuned speckle with v = +0.03 [vertical (blue) bars] and
v = −0.03 [filled (red) triangles] agree fully with the analytical
theory.

density modulation, and we choose � = 0.3
√

nakv. Then the
real-time evolution under the GP equation is computed using,
again, the fourth-order Runge-Kutta algorithm. The excitation
propagates, with a modified speed of sound, surviving over
a long course of time given by the inverse elastic scattering
rate γ −1

k [cf. Eq. (76)]. To extract the eigenenergy εk , the
deviation δ�(x,t) from the ground state is translated into
Bogoliubov excitations by means of Eq. (20). Monitoring
the phase of γk ∝ e−iεk t/h̄ over time, we extract the phase
velocity vph = εk/h̄k by linear regression. Then the procedure
is repeated for different realizations of disorder with the
same correlation length σ , leading to a whole distribution
of values, from which we compute the average �c/c. As
shown in Ref. [37], for weak disorder the distribution is clearly
single-peaked and allows for meaningful averages.

Figure 9 shows the numerical data superimposed on the
theoretical predictions, as a function of σ . Since kξ = 0.05
is fixed, the curve can be read as a function of kσ at very
small ξ (near the hydrodynamic limit, case i, above) or as a
function of σ/ξ at very small k (near the low-energy limit,
case iii, above). The inset in Fig. 9 depicts the corresponding
trajectory in parameter space. The full prediction, (88), for
kξ = 0.05 is plotted as the solid (black) line. The limiting
cases are available in closed form: Eq. (A7) for ξ = 0 as a
function of kσ and Eq. (A11a) for k = 0 as a function of σ/ξ .
Independently of the details, we find, of course, the relevant
universal limits of Sec. IV B 1.

The numerical data, shown for v = +0.03 [vertical (blue)
bars] and v = −0.03 [filled (red) triangles], follow the ana-
lytical prediction very well. Interestingly, the data points for
red and blue detuning, with opposite signs of v, tend to lie on
opposite sides of the curve, indicating beyond-Born effects of
odd order v3, which are expected for a speckle potential with
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FIG. 10. (Color online) Relative correction, (88), of the disper-
sion relation �εk for different correlation ratios ζ = σ/ξ = 0.2, 0.5,
1, 2, 5, 10, and 20 (top to bottom), for 1D speckle disorder, Eq. (A6a).
The results in Fig. 8 appear at the edge kξ = 0 (circles), whereas the
results shown in Fig. 9 are found at kξ = 0.05 (triangles). Around the
points kσ = 1 (diamonds), the correction behaves nonmonotonically.
The points with error bars close to the curve ζ = 2 show data from
the exact diagonalization of the Bogoliubov–de Gennes equation,
(46) (system size L ≈ 300ξ , correlation σ = 2ξ ) for blue- as well as
red-detuned speckle disorder. Each point represents the energy shift
of the two modes ν = 2j − 1,2j corresponding to the degenerate
modes kj = ±2πj/L of the homogeneous system. The data have been
averaged over a large number r of realizations (rL/σ ≈ 1.9 × 104).
Error bars show the estimated error of the mean value.

its asymmetric on-site distribution, (A2). Attentive readers will
also notice that the data points are shifted asymmetrically with
respect to the curve, which is an effect of order v4.

3. Disorder shift of Bogoliubov spectrum

Finally, we explore the correction of the dispersion relation,
(88), as a function of kξ . Figure 10 shows a family of curves
for different correlation parameters ζ = σ/ξ in one dimension.
This plot actually contains the information in Figs. 8 and 9,
which are taken at fixed values of kξ = 0 and kξ = 0.05,
respectively.

The disorder correction passes through a nonmonotonic
feature around kσ = 1 (represented by open diamonds) and,
finally, diminishes with increasing kξ .

In dimensions d > 1, the curves have a slightly different
shape. The curve with ζ = 20, for example, starts with the
limit, Eq. (91a), at kξ → 0 and passes through Eq. (91b) at
kξ ≈ 0.15. Thus, while the 1D curve starts at −1/2 and passes
through −3/8, the corresponding curve in d = 3 will start at
−1/6 and pass through an extremum around −5/8, before
diminishing in the particle regime. Also, the sharp speckle
features get washed out in higher dimensions.

Complementary to the previous numerical study at constant
kξ , we can verify our predictions also by an exact diagonaliza-
tion of the 1D disordered Bogoliubov–de Gennes equation,
(46). Thus, we obtain the whole spectrum of the system
characterized by its correlation ratio ζ = σ/ξ . For the case
ζ = 2, Fig. 10 shows excellent agreement between prediction
and numerics. As observed previously, the data for red- and

blue-detuned speckle lie to both sides of the O(v2) prediction,
indicating effects of odd orders.

The excellent agreement between both numerical ap-
proaches and analytics demonstrates that our perturbation
theory to order v2 gives an impressive account of all rele-
vant effects over the entire parameter space we set out to
cover.

4. Weak lattice potentials

The inhomogeneous Bogoliubov Hamiltonian, (58), applies
to arbitrary external potentials. In particular, it covers the
important class of weak optical lattice potentials that was
studied in Refs. [38] and [39]. In a sense, understanding the
lattice is a first step to understanding disorder, which can be
seen, by virtue of Fourier decomposition, as a superposition
of lattices with suitably chosen random amplitudes and
phases.

To substantiate this connection, we briefly show that our
formalism reproduces the results in Refs. [38] and [39] for
the speed of sound in weak lattices. In d dimensions, a
separable lattice potential, V (r) = ∑d

j=1 Vj cos(Kjxj ), with
wave vectors K j = Kj êj has Fourier components,

Vq = 1

2

d∑
j=1

Vj

[
δq K j

+ δq(−K j )
]
. (95)

The whole formalism developed in Secs. II and III also applies
to this potential. Notably, the equation of motion, (63), is
still solved by the perturbative expansion, (67), now without
the need for averaging over disorder. The periodic potential
scatters Bogoliubov excitations elastically only at the edges
of the Brillouin zone, kj = ±Kj . Away from the edges,
the dispersion relation is again determined by the diagonal
elements of the Green function G(ε)kk. Expressions like (73)
and (88) are still valid, where the correlator should now be
understood to stand for

V 2σdCd (qσ ) = (2π )d

4

d∑
j=1

V 2
j

[
δ(q − K j ) + δ(q + K j )

]
.

(96)

In the sound-wave limit k → 0, the speed-of-sound correction,
(93), thus reads

�c

c
=

d∑
j=1

{
K2

j ξ 2(
2 + K2

j ξ 2
)3 − cos2 βj(

2 + K2
j ξ 2

)2

}
V 2

j

(gn)2
, (97)

where βj is the angle between the propagation direction and
the lattice direction êj . In the case V2 = V3 = 0, the sound
velocity along the x1 direction reproduces the result in Ref. [38]
[Eq. (52)]. Also, Eq. (97) is precisely Eq. (22) in Ref. [39]
for the potential, (96). This work by Liang et al. [39], while
equivalent to ours as far as the perturbative approach is con-
cerned, has the nice feature that it permits the attachment of a
thermodynamic meaning to the two antagonistic contributions
appearing in Eq. (97): the first, positive term stems from
the disorder shift of the compressibility κ , while the second,
negative one goes back to the change in the effective mass
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m∗. Together, these quantities determine the speed of sound
c = 1/

√
κm∗.1

C. Average density of states

Finally, we turn to the AVDOS, Eq. (78), at very low
energies or k → 0. As shown above, the dispersion is linear
in this limit, so that the AVDOS ρ(ε) = ∫

ddk
(2π)d δ(ε − h̄ck) =

ρ(ε)(c/c)d necessarily has the lowest-order correction

�ρ(0)

ρ(0)
= −d

�c

c
. (98)

In other words, a reduced sound velocity entails an enhanced
DOS, and vice versa, which is the obvious conclusion one can
already draw from the schematic plot anticipated in Fig. 2.
It is instructive to check that identity (98) also follows from
the general equation, (79): There, the linear dispersion implies
k∂kεk = εk , and the fraction approaches �εk/εk . When acting
on this regular function, the operator k∂k inside the bracket
evaluates to 0 at k = 0, and we arrive at (98). Thus, the AVDOS
shift is entirely determined by the sound velocity shift, (93);
see also the analytic solutions, (A11).

In the hydrodynamic regime kξ � 1 realized by ξ → 0
at finite kσ , again, k∂kεk = εk = h̄ck in Eq. (79), which then
reproduces our previous results [37]. The limiting values for
low or high energy compared to the hydrodynamic correlation
energy h̄c/σ , corresponding to (91), are

�ρ(ε)

ρ(ε)
= v2

2
×

{
1, ε � h̄c/σ,

d
4 (2 + d), ε � h̄c/σ.

(99)

In between these limits, the correction �ρ/ρ as a function
of ε can show a surprisingly rich behavior, depending on
the potential correlations. In three dimensions, the cor-
rection is smooth and monotonic, but in one dimension,
speckle correlations are responsible for an unexpected, non-
monotonic behavior with a sharp feature at kεσ = 1, as
discussed in [37].

Note that these simple perturbative results are indeed
expected to hold at low energy or kξ � 1, in stark contrast
to the case of single particles in disorder, where the DOS has
a (nonperturbative) Lifshitz tail at low energy [79,80]. In the
present case, the interparticle repulsion screens the disorder
very effectively at low energy, such that localization effects
are absent (cf. the diverging localization length in Sec. IV A 3)
[12,80]. A transition to the Bose glass phase [1,2] occurs only
for stronger disorder or much weaker interaction, where the
Bogoliubov theory developed here breaks down, and different
approaches are needed [81–83].

V. CONCLUSIONS AND OUTLOOK

In conclusion, we have formulated a comprehensive Bo-
goliubov theory of inhomogeneous BECs. This analytical
theory describes the elementary excitations of condensates
with s-wave interaction, deformed by weak external potentials

1The compressibility correction in Ref. [39] appears with the wrong
sign in Eq. (C1), but Eq. (C6) agrees with our result.

with arbitrary spatial correlations and in arbitrary spatial
dimension. Expanding the many-body Hamiltonian around the
deformed ground state, we have obtained the inhomogeneous
Bogoliubov Hamiltonian. We have justified our choice of the
basis of density and phase fluctuations, which ensures proper
orthogonality between the excitations and the inhomogeneous
Bogoliubov vacuum. Expressed in terms of BN spinors,
all effects of the external potential can be collected into
a scattering vertex that is nonperturbative in the external
potential. A fully analytical formulation has been achieved
up to second order in weak potentials, allowing, in principle,
an expansion to even higher orders.

From this fundamental Hamiltonian, one can derive nu-
merous physically relevant quantities by means of standard
perturbation theory. This paper has been devoted to a detailed
discussion of the single-excitation dispersion relation. We
have calculated the mean free path and renormalized speed
of sound, together with the resulting AVDOS, over the full
parameter space of the disordered Bogoliubov problem, with
numerous analytical results in limiting cases. It turns out
that the frequently investigated case of δ-correlated disorder
in three dimensions, with its positive shift in the speed of
sound, is far from generic. Over most of the parameter space,
the speed of sound is reduced. We have confirmed these
predictions in detail by mean-field numerical simulations as
well as exact diagonalization for the experimentally relevant
case of correlated speckle disorder in d = 1.

Strictly speaking, the present work is incomplete, as it does
not prove that the weak disorder under consideration causes
only a small condensate depletion. Indeed, the Bogoliubov
ansatz, (3), relies on the macroscopic population of the
condensate mode. In a pure mean-field description, all atoms
are in the condensate at zero temperature. But due to the
effect of interaction, even at zero temperature, there is a finite
fraction of particles not in the condensate, which constitutes the
so-called quantum depletion, which can be calculated within
Bogoliubov theory [32,33]. The quantum depletion should be
small, thus providing an important, self-consistent check of
the theory’s validity.

In the homogeneous setting, the mean-field condensate
forms in the homogeneous mode, that is, the zero-momentum
state. Thus, the quantum depletion consists of all particles
with nonzero momentum. The density of these particles can
be easily calculated within Bogoliubov theory [32,33], with
the result (we take d = 3 here) that the fractional quantum
depletion δn/n = 8(na3

s )1/2/3
√

π is proportional to the root
of the gas parameter and thus very small, especially for dilute
and weakly interacting cold gases.

It is not immediately obvious how to generalize the
recipe “count all particles with nonzero momentum” to the
inhomogeneous case. The vast majority of works dedicated to
the inhomogeneous Bogoliubov problem simply calculates the
same quantity, namely, the number of particles with nonzero
momentum. But one has no means of knowing whether these
particles belong to the deformed condensate or to the true,
disorder-induced quantum depletion. And really, the supposed
“depletion” calculated by Huang and Meng, followed by
Refs. [13–16], involves only the condensate deformation at
a fixed chemical potential, which is a mean-field effect as
described in Sec. II A.
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To assess the true condensate depletion, one has to
determine the density of particles not in the condensate at
all, irrespective of their particular momentum [84]. With the
general Bogoliubov Hamiltonian at hand, we have calculated
this disorder-induced quantum depletion [85]. We find that it
is much smaller than the mean-field condensate deformation.
This is no surprise: To first order, the external potential merely
deforms the condensate. The scattering of particles out of
the condensate is a second-order effect, mediated by the
interaction between particles and the condensate. Details of
the full calculation, including finite-temperature effects, will
be discussed in a forthcoming publication [86].

These results validate and strengthen the Bogoliubov
approach, and we expect that the theory we have developed
here should fare very well in describing the excitations of in-
homogeneous BECs. As an immediate extension of the present
work, finite-temperature effects can be captured very straight-
forwardly by the Matsubara formalism [61], allowing the cal-
culation of the heat capacity and many other (thermo)dynamic
response functions. This is left for future work.
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APPENDIX: OPTICAL SPECKLE DISORDER

1. Statistical properties

The optical speckle field of a laser defines a disor-
der potential with very well-controlled statistical properties
[25,70,87,88]. When coherent laser light is directed on a
rough surface or through a diffusor plate, the elementary
waves originating from different points have random phases
and form a random interference pattern in the far field.
By virtue of the central limit theorem, the resulting field
E(r) is a complex Gaussian random process. For notational
simplicity, we consider a scalar field with dipole coupling
to a single atomic transition and neglect polarization issues.
The electronic atomic ground state is then subject to the
light-shift potential induced by the intensity I (r) = |E(r)|2
[89]. The magnitude and sign of this potential depend on
the laser detuning from the dipole transition frequency. For
a far-detuned potential, one has

V (r) = V

(
I (r)

I0
− 1

)
. (A1)

The prefactor V contains the atomic polarizability, besides all
other proportionality factors, and we have shifted the potential
to zero average, V (r) = 0. The magnitude of V gives the

variance of the potential fluctuations, V 2 = V (r)2, which can
be readily adjusted in the experiment by changing the overall
laser intensity. Because the intensity is the modulus square
of the Gaussian field E , the potential has a skewed on-site
probability distribution for w = V (r)/V :

P (w)dw = �(w + 1)e−(w+1)dw. (A2)

A blue-detuned potential with V > 0 consists of high potential
bumps rising over a flat baseline. A red-detuned potential with
V < 0 instead corresponds to a random set of deep wells.

The potential correlation between different spatial points is
captured by the pair correlator

Ĉd (r/σ ) = V (r)V (0)/V 2, (A3)

which decays from the starting value Ĉd (0) = 1 to 0 on the
scale of the correlation length σ . In momentum representation,
the normalization implies the useful identity∫

dd (qσ )

(2π )d
Cd (qσ ) = 1. (A4)

A speckle pattern’s correlation is entirely determined by
the fact that the Fourier components of the field Ek are
independent, complex Gaussian random variables with a pair
correlation,

E∗
kEk′ =: γ (k)δkk′ , (A5)

which defines the degree of coherence γ (k). In one dimension,
for a rectangular source, the degree of coherence γ (k) =
γ�(1 − kσ ) [68] has a uniform weight inside the interval
of allowed k values. The correlation length σ depends on the
laser wavelength and the imaging optics and is typically of
the order of 1 µm or smaller [90]. It is not easy to create an
isotropic multidimensional speckle field in the laboratory [27].
For the purpose of the present paper, we follow Pilati et al. [82]
and define the isotropic speckle disorder on the grounds of
Eq. (A5) with the same γ (k) in all dimensions. This definition
grasps the essential feature of speckle disorder, namely, the
finite support of its power spectrum. The extension to a
more realistic, possibly anisotropic correlation function for
a given experimental configuration is straightforward within
the present formalism.

The potential correlator Cd (kσ ), used in Eq. (71) and the
following, then is obtained as the autoconvolution of the field
correlator γ (k), that is, of a d-dimensional ball of radius
σ−1. Thus, Cd (qσ ) is centered at q = 0 and vanishes like
(2 − qσ )

d+1
2 at q = 2σ−1. Explicitly, in d = 1,2,3, one has

C1(qσ ) = π

2
(2 − qσ ) �(2 − qσ ), (A6a)

C2(qσ ) =
[
8 arccos

(qσ

2

)
− 2qσ

√
4 − q2σ 2

]
�(2 − qσ ),

(A6b)

C3(qσ ) = 3π2

8
(2 − qσ )2(4 + qσ ) �(2 − qσ ). (A6c)

Figure 11 shows these isotropic correlation func-
tions, multiplied by the d-dimensional integration element
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FIG. 11. (Color online) Isotropic speckle correlation function
as a function of reduced momentum in d = 1,2,3. To show com-
parable scales, we plot [Sd/(2π )d ](qσ )d−1Cd (qσ ), including the
d-dimensional volume integration element.

Sd (qσ )d−1/(2π )d , where Sd is the unit-sphere surface (S1 = 2,
S2 = 2π , S3 = 4π ).

2. Analytical dispersion corrections

The speckle correlation functions, (A6), yield closed-form
expressions for the dispersion correction, (88), in important
limiting cases.

a. Hydrodynamic limit ξ = 0

In d = 1, the correlation function, (A6a), is piecewise
linear, and the integral (88) over the hydrodynamic kernel
(90) yields the dispersion shift [37,91]:

�εk

εkv2
= −1

2
− kσ

8
ln

∣∣∣∣1 − kσ

1 + kσ

∣∣∣∣ + k2σ 2

8
ln

∣∣∣∣1 − k2σ 2

k2σ 2

∣∣∣∣ . (A7)

This result is plotted as the dotted (blue) curve in Fig. 9. It
is nonanalytic at kσ = 1, corresponding to the nonanalyticity
of the speckle pair correlation function (A6a) at the boundary
of its support. Using Eq. (A7), we can also write down the
AVDOS shift (79) in closed form:

�ρ(εh̄c/σ )

ρ(εh̄c/σ )v2
= 1

2
+ ε

4
ln

∣∣∣∣1 − ε

1 + ε

∣∣∣∣ − 3ε2

8
ln

∣∣∣∣1 − ε2

ε2

∣∣∣∣ . (A8)

It shows a pronounced dip around ε ≈ 0.7 and a sharp
logarithmic divergence at ε = 1 [37], resulting from the
nonanalyticity of (A7) at kσ = 1.

In higher dimensions, the integral, (88), gets more compli-
cated, but we find partial analytical results in two dimensions.
Denote the angular part of the integral, (88), over the
hydrodynamic kernel, (90), by A2(q). We drop the principal
value P in Eq. (90) and reinsert the infinitesimal imaginary
shift in the denominator. Then we can compute the angular
integral analytically as a closed-path integral in the complex
plane z = eiβ , β = �(k,q):

A2(q) = −1

2

S2

(2π )2

[
1 −

( q

2k

)2
+ k2 1 − q2/(2k2)

q
√

q2 − (2k)2

]
. (A9)

In general, the last term is too complicated for the remaining
radial integral to be evaluated in closed form. For kσ > 1,
however, the integrand of Eq. (88) is restricted to q � 2/σ <

2k. There, the last term in (A9) is imaginary and does not
contribute to Re�, such that

�εk

εk

= −v2

2

(
1 − 1

8k2σ 2

)
, kσ > 1. (A10)

In the AVDOS, (79), this leads to a totally flat plateau, as
shown in Fig. 5 of Ref. [37].

b. Lowest-energy excitations, k → 0

Also, in the low-energy limit (iii) in Sec. IV B 1, we can
find analytical solutions. The integral, (93), with the speckle
correlator, (A6), evaluates to closed form in all relevant
dimensions:

�c

cv2
= −3

8
z

[
cot−1

(
z
) + 1

3

z

1 + z2

]
, d = 1, (A11a)

�c

cv2
= z3 2z

√
1 + z2 − 1 − 2z2

√
1 + z2

, d = 2, (A11b)

�c

cv2
= z4

[
7 + 5 cot−1(z)

2z
− (6 + 7z2) ln

(
1 + z2

z2

)]
,

d = 3 (A11c)

with z = ζ/
√

2. All three cases are plotted in Fig. 8; the result,
Eq. (A11a), also features in Fig. 9.
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CHRISTOPHER GAUL AND CORD A. MÜLLER PHYSICAL REVIEW A 83, 063629 (2011)

[14] S. Giorgini, L. Pitaevskii, and S. Stringari, Phys. Rev. B 49,
12938 (1994).

[15] M. Kobayashi and M. Tsubota, Phys. Rev. B 66, 174516 (2002).
[16] G. E. Astrakharchik, J. Boronat, J. Casulleras, and S. Giorgini,

Phys. Rev. A 66, 023603 (2002).
[17] N. Bilas and N. Pavloff, Eur. Phys. J. D 40, 387 (2006).
[18] P. Lugan, D. Clément, P. Bouyer, A. Aspect, and L. Sanchez-

Palencia, Phys. Rev. Lett. 99, 180402 (2007).
[19] P. Lugan and L. Sanchez-Palencia, Localization of Bogoliubov

quasiparticles in interacting Bose gases with correlated disor-
der, e-print arXiv:1105.0610 (2011).

[20] G. M. Falco, A. Pelster, and R. Graham, Phys. Rev. A 75, 063619
(2007).

[21] L. Fontanesi, M. Wouters, and V. Savona, Phys. Rev. Lett. 103,
030403 (2009).

[22] Y. Hu, Z. Liang, and B. Hu, Phys. Rev. A 80, 043629 (2009).
[23] M. Lewenstein, A. Sanpera, V. Ahufinger, B. Damski, A. Sen,

and U. Sen, Adv. Phys. 56, 243 (2007).
[24] I. Bloch, J. Dalibard, and W. Zwerger, Rev. Mod. Phys. 80, 885

(2008).
[25] L. Sanchez-Palencia and M. Lewenstein, Nat. Phys. 6, 87 (2010).
[26] G. Modugno, Rep. Prog. Phys. 73, 102401 (2010).
[27] M. Robert-de Saint-Vincent, J.-P. Brantut, B. Allard, T. Plisson,
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