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We formulate the time-dependent Bogoliubov dynamics of colliding Bose-Einstein condensates in terms of a
positive- P representation of the Bogoliubov field. We obtain stochastic evolution equations for the field which
converge to the full Bogoliubov description as the number of realizations grows. The numerical effort grows
linearly with the size of the computational lattice. We benchmark the efficiency and accuracy of our description
against Wigner distribution and exact positive- P methods. We consider its regime of applicability, and show that
it is the most efficient method in the common situation when the total particle number in the system is insufficient

for a truncated Wigner treatment.
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I. INTRODUCTION

The collision of two Bose-Einstein condensates (BECs)—if
the relative velocity is sufficiently high—Ileads to the formation
of a halo of scattered atoms. This phenomenon has been
the object of numerous experimental [1-17] and theoretical
investigations [1,10,17-34]. The atoms forming the halo
could be used for precision measurements [35], interferometry
[2,36-39], or tests of quantum mechanics [40]. Condensate
collisions are also related to such phenomena as molecular
dissociation [41-56], atomic four-wave mixing [6,14,57-60],
super-radiant scattering [61-70], atomic parametric down-
conversion [71-77], and the impact of a BEC on a barrier
[78-81].

Recently, in a series of experimental studies [1,2], a
quantitative analysis of the supersonic collisions of two
Bose-Einstein condensates was presented. It was based on
stochastic Bogoliubov equations for a particle field interacting
via a contact potential. In this paper we provide the details of
that method. It relies on solving a set of stochastic equations
in a plane-wave basis, rather than a diagonalization of the
Hamiltonian. We have found this approach to be more effective
as it allows one to study large-scale multimode problems
that would not be possible with direct diagonalization. This
is because in phase-space stochastic methods, such as those
presented in this work, the computational requirements (mem-
ory, time) scale linearly with the number of modes or grid
points.

Several stochastic methods have been used with success
in the past to study the scattered atoms in these systems.
They treated the full atom-field—in contrast to the Bogoliubov
expansion applied here—using the truncated Wigner [23,26,
28,33] and the positive-P representations [17,28,29,32,33].
However, these are not suitable for a majority of current ex-
periments, including the recent metastable helium condensate
collisions [1,2,11,12,17,30]. The truncated Wigner approach
is limited to the case when the total number of atoms in the
system is much larger than the number of necessary modes
[26,82,83], otherwise, significant discrepancies (“truncation’)
with full quantum dynamics appear. The positive- P approach
is complete, but has numerical instabilities that make it useful

1050-2947/2011/83(6)/063625(8)

063625-1

PACS number(s): 03.75.Nt, 05.30.—d, 34.50.Cx

only for short times [28,33,84], often shorter than the duartion
of the collision.

Instead of a full atom-field approach, a wide class of
collisions is described accurately by a Bogoliubov description.
This approach is valid while the number of particles scattered
during the collision is small in comparison with the total,
a condition satisfied in most of the experiments. The time-
adaptive refinement, where the condensate wave function
undergoes mean-field evolution, is sufficient to describe
most collision experiments. Moreover, contrary to a common
fallacy, the Bogoliubov formulation takes into account the later
Bose enhancement and stimulated scattering into quasiparticle
modes that can occur.

The drawback of the Bogoliubov method has been that
an accurate description of the real experimental situation
typically requires a computational grid with 10°~107 points.
A major contributing factor to this large lattice size is the
need to resolve the supersonic wavelengths in the whole
collision region. This large lattice renders a direct solution
of the Bogoliubov—de Gennes evolution equations impos-
sible. To avoid the diagonalization, one can introduce a
phase-space distribution for the Bogoliubov field. We call
this approach stochastic time-adaptive Bogoliubov (STAB).
Here we use a positive-P representation of the scattered
particles, which differs from a previous well-known stochastic
formulation [85], which used a Wigner representation. As is
demonstrated below, the advantage of the present method is a
much better signal-to-noise ratio in the calculations for most
typical regimes of interest. As our positive- P-based method
is based on the broken-symmetry Bogoliubov description, it
is applicable when the scattered particles are well separated
in momentum space from condensates. This is the case for
a wide range of supersonic phenomena, which apart from
condensate collisions include molecular dissociation, super-
radiant scattering, and parametric down-conversion, as well as
supersonic flow past barriers and other impurities [§6—88].

The paper is organized as follows. Section II provides
the Bogoliubov description of a BEC collision. Section III
introduces its positive-P representation, and describes the
resulting stochastic evolution equations used for simulations.
In Sec. IV we compare the accuracy and efficiency of this
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positive- P Bogoliubov method (P-STAB) with the prior trun-
acted Wigner, positive- P, and Wigner Bogoliubov (W-STAB)
methods for several characteristic BEC collision examples. We
conclude in Sec. V.

II. COLLIDING CONDENSATES—THE BOGOLIUBOV
DESCRIPTION

We consider a zero-temperature, single-species bosonic
gas. Asitis dilute, the interatomic interaction can be effectively
reduced to a contact delta potential with strength g. The second
quantized Hamiltonian reads

. . n? .
A= |&x¥i(x) <——v2 + V(x)) U(x)
2m
+ % /d3x 0¥ 0¥ (x),

where m is the atomic mass, g = 4dh’ay /m, with a; being the
s-wave scattering length, and V(x) is the external trapping
potential. The field operator W(x) annihilates an atom at
position x and satisfies the bosonic commutation relations.

In order to start the (half-) collision, a superposition of
two counterpropagating mutually coherent atomic clouds is
prepared by a Bragg pulse. Simultaneously, the trapping
potential is turned off. The two fractions begin to move
apart along the z axis with relative speed 2uv., twice the
atomic recoil velocity. We define a speed of sound using the
density at the center of the initial condensate (7.« ), Obtaining
Cmax = ~/&Mmax/ M. In the supersonic limit, when 2v;ec 2 Cmax,
superfluidity is lost and a certain portion of atoms is scattered
incoherently out of the BECs, forming the halo. The main
focus of experiments and theory are the properties of the atoms
in this halo.

In the time-dependent Bogoliubov approach [we use the
simpler U(1) symmetry-breaking variety], the field operator is
split into

U(x,1) = o(x,1) + 8(x,1), (1)

where ¢(X,7) is the condensate wave function normalized to
N —the number of particles. Its dynamics is governed by the
Gross-Pitaevskii (GP) equation

do(x, K2
d’fl’: D _ [——v2 + g|¢<x,r>|2} sx0). Q)

2m

ih

The Bogoliubov field operator §(x,?) describes the “noncon-
densed particles,” and obeys the equation

5 2
88?)}:’;) - [—h—vz +2gl¢(x,t)|2] S(x,1)

ih
2m

+ g¢*(x, 8" (x,1). 3)

The derivation of this equation is standard and based on
removing higher-order dependence on § and §T—equivalent
to assuming that the influence of the Bogoliubov field on itself
is negligible as compared to the influence of the condensate.

The initial state of the trapped BEC is a solution of the
stationary GP equation

h2
Kepo(X) = [—%Vz + V(%) + g|¢0(x)|2:| $o(x), (4
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with chemical potential . The Bragg pulse transforms the
condensate wave function into

B(x,0) o po()[e™ 7 4 707 /4/2, (5)

where ko = mu./h is the wave vector associated with the
recoil velocity. Neglecting quantum depletion, which is tiny
in most cases, the state of the noncondensed particles is a
vacuum, denoted by |0).

A common approach now would be to diagonalize Eq. (3)
using a Bogoliubov transformation, and solve the resulting
Bogoliubov—de Gennes equations. However, for many systems
of interest one requires 10°-~107 points in x space, which
prohibits such diagonalization.

Instead, we develop an equivalent stochastic description
of Eq. (3) using the positive-P representation. To obtain the
dynamical equations, it is necessary to start from a Hamiltonian
description. Equation (3), together with its conjugate, can be
used to trace back the effective Hamiltonian for the Bogoliubov
field,

N N n? R
He = / d*x 81 (x) (——v2> 5(x) (6a)
2m
+2g / d*x|p(x)|*8T (x)8(x) (6b)

+§ / Pxo®)¥®8tx) + He. (60

Line (6a) contains the kinetic energy of the noncondensed
particles and line (6b) the interaction between condensate and
noncondensate particles. Finally, line (6¢) governs the transfer
of atomic pairs from the BEC to the § field.

III. P-STAB METHOD

A. Positive- P representation of the Bogoliubov field

We employ the positive-P representation to expand the
density matrix for the uncondensed field 6(x,¢) as a distribution
P over local coherent states at each point x in space,

P / PUTIALY. 1Dy DT, (Ta)

where the complex fields ¥ (x) and J (x) are the amplitudes of
the local off-diagonal coherent state projectors A,

Aty ] = Q) A (%), ¥ (x).
=N exp[ / Y8t (x)dx]|0><0|

X exp [ / J(x)*é(x)dx] (7b)

with normalization \” = exp[— [ J(X)*w(x)dx]. The opera-
tor |0)(0| projects onto the vacuum state. As the numerical
computation is made on a grid, the local projectors A, take on
the form

Ay = V@IV 0y (I [S0—p0]av (7¢)
_ lax(al (7d)
(@xlor)x”

where AV = Ax x Ay x Az is the volume per grid point,
a=YXWAV,d = y(x)v/AV, and |a)y is a coherent state

at location x with complex amplitude «. We note that the
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distribution P[iﬁ,%] contains complete information about the
density matrix p.

Since it is non-negative and real, it can be regarded as a
probability distribution of the complex valued fields y(x) and
¥ (x). It is therefore also equivalent to a large ensemble of
samples of the fields. Consequently, the state p is reproduced
by the set of (x) and (x) when the number of samples S
tends to infinity. The assumption that the initial state of § is
the vacuum is represented as

¥(x,0) = ¥(x,0) = 0. (8)

B. Dynamics

The quantum evolution of the state
0P N
lhg = [Hefr, A] 9)

is equivalent to a partial differential equation for P [§9-91,93],
which can be derived using the operator identities

S(X)A = Y (XA, (10)
500A = [J(x)* " %v%} A an
Adtx) = Y (x)*A, (12)
Adw) = [vf(x) + ﬁa&%} Ay

These identities are used to convert the quantum operators
in A inside Eq. (9) to partial derivatives. The resulting
equation is of a Fokker-Planck type and it is well known
that it can be rendered into a random walk of the samples
of ¥ (x) and ¥ (x)—the Langevin equations—which in the Ito
representation read

dyr(x,1) { n?

2 2
- gv + 2glop(x,1)| }w(xyt)

ih

+ g ¢ P (X,1)* + /ihg (X, 1)E(X,1),
(14a)

ih

dfp'(x,t)_ n_, 2l 0
= {_EV +2glo(x,1)] }t/f(x,t)

+ 89X Y (X,1)* + /ilig (X, 1)E(X,1).
(14b)

Here &£(x,t) and g(x,t) are delta correlated, independent, real
Gaussian stochastic noise fields with variances

(Ex,NEX 1)) =0,
L (15)
EXDEX, 1)) = EXDEX 1)) = 8D (x — x)d(t —1)).

and zero mean. Numerically, £ and E are usually approximated
by real Gaussian random variables of variance 1/(AtAV) that
are independent at each point at the computational lattice, and
at each time step of length Ar.

One important feature of Eqgs. (14) is that, similarly to
Eq. (3), they are linear in ¢ and . This way, the nonlinear
instabilities, boundary term systematics [92,93] and finite-
simulation-time issues [84] that may occur in direct positive- P
treatments of the full boson field are absent.
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C. Observables

Expectation values of any normal-ordered observable are
evaluated using the positive- P representation by substituting
8" — y*and§ — y and calculating a stochastic average [93],
denoted as (-),

Stx) T8 S U(x;)*
<H S]] 8<xk)> = lim <H v ] w(xk)> :
J k J k st
(16)
Note that since Eq. (3) is linear, and the initial state is vacuum,

then at all times 7,

(015(x,1)[0) = 0. (17)

As an example, the one-particle density matrix is given by

p1(x,X,1) = (¥ (x, (1))
= p(x,1)"p(x 1) + (§T(x,)8(x',1))
+¢(x,0)" ($(x,1)) + p(x 1) (5T (x,1))
= ¢p(x.1)*o(x 1) + (§T(x,)8(x',1))
= px. (X 1) + (P, Y (X, 1)),

where we used Eq. (17) on the second-to-last line. The number
of noncondensed atoms is

SN = / ($Txéx))d*x = / T YE))ad’x.  (18)

For a general observable F , the best estimate of its

expectation value ( F') is given by the mean of its corresponding

estimator f(y,¥,¢),
F - (f)sl-

The uncertainty in this mean is best estimated via the variance
of a set of subensemble means: We divide the S realizations
into n bins of equal size s (so § = sn), and the jth subensemble
(j =1,...,n) gives a subensemble mean F; = (f) ;. Due
to the central limit theorem, these subensemble means are
approximately normal distributed (which is not necessarily
the case for the estimators from individual realizations). As a
result, the uncertainty in the final mean (F = 1 > Fjalso)

is well estimated by
AF — /var[Fj]'
n—1

D. Orthogonality and applicability

19)

It is well known that the U(1) symmetry-breaking Bogoli-
ubov approach encounters some problems at long evolution
times. These are related to an incomplete treatment of the the
phase spreading of the condensate [94]. As this approach does
not preserve the orthogonality of the noncondensed field §(x)
with the condensate mode [95], the part of § that accumulates
atop the condensate could just as well be considered to still be
part of the BEC, and discounted from the number of scattered
particles.

For this reason, the results of the above method should be
treated with caution when modes having significant overlap
with the condensate are relevant. In practice, such modes lie
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in parts of k space close to the condensate clouds. Fortunately,
the bulk of the halo is well separated from the condensates and
remains unaffected.

More generally, supersonicity always leads to orthogonality
between scattered and condensed atoms because the con-
densate mode function contains no plane-wave components
above the speed of sound. This allows the use of the method
presented here for collisions of BECs, molecular dissociation,
super-radiant scattering, parametric down-conversion, or flow
past barriers and other impurities.

IV. RELATIONSHIP WITH COMPARABLE METHODS

Stochastic evolution equations have been previously de-
rived for Bogoliubov descriptions of cold atom systems by
Sinatra et al. [85] using the Wigner representation. An imme-
diate question is how the positive- P-based method presented
here compares. We expect that the positive-P method will
tend to be inherently less “noisy” initially due to a lack of the
starting noise that is necessary to represent the vacuum in the
Wigner treatment. It is also instructive to compare performance
and accuracy with the two other stochastic methods used
previously (positive- P and truncated Wigner) which treat the
whole atom field ¥ as one unit without using the Bogoliubov
approximation. In this section we will benchmark these four
simulation methods.

A. Wigner STAB

Representing the U(1) symmetry-breaking description of
Sec. [T using the Wigner representation we obtain the following
stochastic description of the field §(x). There is only one
complex field ,,(x), with the initial vacuum described by
a random initial condition that places half a virtual particle
into each mode,

N At ~
Yu(x.0) = ——[§(x.0) + iE(x.0)]. (20)
[The noises & andg are as defined by Eq. (15) ]. The subsequent

evolution contains no noise and is

VD)

— h2 VZ +2 ‘ 2 p
dt { m glo(x.1)] }ww(x, )

+g ¢(X,1) Y (x,1)". 1)

Observable calculations differ somewhat because the half-
particle occupation of the initial modes must be corrected for.
For example,

PLXX 1) = GG + Y0 Y (K 1)
- %S(X —x). (22)

This is the symmetry-breaking analog of the more involved
number-conserving description of Sinatra et al. [85] and shares
the same noise properties. However, the same orthogonality
caveats (Sec. III D) apply as for the P-STAB method derived
in this paper.
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FIG. 1. (Color online) The convergence of observable estimates
in the two Bogoliubov methods as the number of trajectories is
increased. The system is the *He collision of [1]. The quantity
shown is the total number of atoms in the halo at ¢t = 120 us, well
after the end of the collision. Narrow k-space regions containing
the condensates were excluded from the atom sum. Black solid
line: Wigner Bogoliubov calculation (W-STAB); red dashed line:
positive- P Bogoliubov (P-STAB).

B. Full-field methods

For some parameters, another good alternative is to use
the truncated Wigner representation to simulate the complete
boson field directly, as was done by Norrie et al. [23,26]. This
has the advantage of being applicable beyond the undepleted
source approximation. However, the total number of particles
should be significantly larger than the number of modes (for
correctness [26,28]). This approach requires the truncation of
some high-order terms in the partial differential equation for
the resulting phase-space distribution P, leading to the name
“truncated” Wigner representation. Here there is one complex
field Yw(x) [no separate condensate field ¢(x,¢)] with the
initial state

A ~
Yw(x,0) = ¢(x,0) + g[&(x,o) +iEx.01.  (23)

The subsequent evolution contains no noise and is

2
n D {—h—W + gww(x,mz} Pwxn. (24
t 2m

The one-particle density matrix is given by

p1(x.X 1) = (Yw X, Yw (X, 1))g — 38x —X).  (25)

Finally, a direct treatment of the full field using the positive-
P representation has been used [11,28,29,32,33]. Here there
are two complex fields v, (x) and v, (x) with the initial state

¥, (x,0) = ¥,(x,0) = ¢(x,0). (26)
The evolution is

' dlﬁ (X,l) 712 it *
lhI:i—t = {_%vz + 8V (1) Y, (X,1)

+\/ihg§(x,t)}1/fp(x,t), 27
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FIG. 2. (Color online) Slices of the halo density on the plane
k. = 0, perpendicular to the collision direction, for the *He collision
of [1]. t = 48 us, right at the end of the collision. Both results
are from ensembles of 224 realizations. (a) Wigner Bogololiubov;
(b) positive- P Bogoluiubov.

V2 4 g, (X,0)* ¥ p(x,1)

.hd%(x,r) h?
h——=9 — —
dt 2m

+/ihg E(x,n} Vp(x.0). (28)
The one-particle density matrix is calculated with

PrXX 1) = (P (1) Y (X))t (29)

C. Efficiency measures

When considering the halo, the most pertinent observables
have been the total number of particles, the density distribution
in k space, and density correlations between specified regions
in the halo. Accuracy in the latter two kinds of observables
hinge on a good signal-to-noise ratio of the local density
in k space. The uncertainty of the final estimates is given
by Eq. (19), a function of the ratio between variance of the
estimator and the number of realizations S o« n. So, other
things being equal, the computational effort required to achieve
a set accuracy will scale as that variance. Accordingly, in
Figs. 3 and 4 (upper panels) we will show how the variance
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FIG. 3. (Color online) 2?Na BEC collision as in [28,32,33]. N =
1.5 x 10°. Upper panel: Variances of local atom density estimators
in the slice at k, = 0 obtained for various methods, as for use in
Eq. (19)—see text. An average value over all k, and k, locations in
the slice is shown. Lower panel: Number of scattered atoms in the
halo. Solid red line: positive- P Bogoliubov simulation as described
in this paper; blue circles: Wigner Bogoliubov simulation; dot-dashed
green line: truncated Wigner simulation; dashed black line: positive-
P simulation of the full field.

of the estimators of halo density in k space compare between
methods as a function of time. In Figs. 1 and 2 we directly
show the noise that is seen with the full-field positive- P and
Wigner Bogoliubov treatments.
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FIG. 4. (Color online) *Na BEC collision with the same pa-
rameters as used in [23]. N = 6 x 10°. Upper panel: Variances of
local atom density estimators in the slice at k, = 0 obtained for
various methods, as for use in Eq. (19)—see text. An average value
over all k, and k, locations in the slice is shown. Lower panel:
Number of scattered atoms in the halo. Solid red line: positive-P
Bogoliubov simulation as described in this paper; blue circles: Wigner
Bogoliubov simulation; dot-dashed green line: truncated Wigner
simulation; dashed black line: positive-P simulation of the full
field. The Bogoliubov simulations were stopped when the depletion
reached 10%.
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D. The low and moderate particle number case

Let us first consider the common case when the total number
of atoms in the halo is quite low—so low that the number of
halo atoms per mode is much less than one. Here we expect
the initial noise in the Wigner methods (20) or (23) to be a
severe problem, since the initial atom number variance there is
1/2 per mode, regardless of how many true atoms are present.

The first plots (Figs. 1 and 2) are from Wigner and
positive- P Bogoliubov simulations using the experimental
parameters of [1], which described the collision of a BEC
of metastable “He* atoms. They show the amount of noisiness
in observables after the end of the collision. In this case, no
bosonic enhacement of the scattering process occurred, thus
the total number of atoms in the halo was quite low (*1300),
while the number of modes was 2.95 x 10°.

The next figure, Fig. 3, shows the halo density variance and
the total number of scattered atoms in the collision of a BEC of
150 000 23Na atoms. This case was considered in several previ-
ous works [28,32,33]. Here the halo reached 1.1 x 10* atoms
with 1.08 x 10° modes.

We see that the noise in the Wigner calculations is severe in
these cases, as compared to the positive- P methods. Although
the noise in the P-STAB calculation grows with time, it never
surpasses the level of the Wigner methods for the time scales
shown. The variance in both Wigner methods is identical.

The lower panel of Fig. 3 shows the accuracy of the
methods. Both Bogoliubov methods agree perfectly with each
other and with the exact calculation that uses the positive-P
representation of the full field (for as long as it lasts). The
truncated Wigner displays a false growth of the number of
particles in the halo. This is due to known spurious scattering
by virtual particles when the momentum cutoff is this large,
as described in [28,33,82]. For this simulation, the number of
spatial modes is much larger than the number of true particles
(150 000).

E. The high particle number case

A different situation is presented in Fig. 4, where we
used the parameters from [23], where 6 x 10° atoms of 2Na
participated in the collision. There were 3.14 x 10° spatial
modes. As the final depletion of the condensate is large (about
40%), the Bogoliubov calculation was stopped at ¢ ~ 280 us,
when the depletion reached 10%. Indeed, in the lower panel
of Fig 4, one sees a difference beginning to appear between
the two simulations at this time. In comparison, significant
dynamics lasts until ~ 1000 ws (not shown).

The noise performance of the P-STAB method is superior
here only for ¢ < 300 us. However, this still matches the entire
period when the Bogoliubov description is accurate.

V. CONCLUSIONS

We have developed the above positive-P Bogoliubov
stochastic simulation method for use with cold atom gases
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and benchmarked it with existing approaches. As with other
phase-space methods, it lends itself to simulation of quite
general systems, as the calculation is carried out on a simple
rectangular grid in x/k space, and individual realizations
are run independently of each other. The computational
complexity involved scales linearly with the size of the
computational lattice used, allowing for up to 107 points
in the lattice on a common workstation.

The method is applicable for a wide range of supersonic
phenomena, its main validity conditions being (1) that the bulk
of scattered atoms are well separated from the condensates in
momentum space and (2) that the depletion of the original
condensates can be neglected. The condensate wave function
is, however, free to evolve in time. We note particularly
that the method handles both spontaneous and stimulated
scattering.

The positive- P Bogoliubov method is superior in efficiency
to the Wigner representation in almost all cases that we have
seen where a U(1) symmetry-breaking Bogoliubov method
can still be applied. However, one can imagine some long
time situations where the Wigner simulation wins since, other
things being equal, the variance in the positive-P approach
grows approximately linearly with time, while the variance in
the Wigner method stays approximately constant around its
initial, large value. (These trends are seen in the top panel of
Fig. 3.) For situations where the overlap between the scattered
and condensate field is non-negligible the number-conserving
Wigner method [85] can be used instead. For situations with
large condensate depletion, there remain the truncated Wigner
or positive- P treatments of the full boson field.

A more robust positive-P formulation that explicitly
imposes orthogonality between condensate and quasiparticle
modes as in the number-conserving Bogoliubov treatment [95]
is under development and will be presented in a forthcoming
work.

We did not make comparisons with experimental data
here since such comparison has been made previously [1,2].
However, we do compare to the full field positive- P method.
It is equivalent to full many-body quantum calculations and
as such it can be used as a reference for other theoretical
calculations.
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