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Measurement backaction on the quantum spin-mixing dynamics
of a spin-1 Bose-Einstein condensate
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We consider a small F = 1 spinor condensate inside an optical cavity driven by an optical probe field, and
subject the output of the probe to a homodyne detection, with the goal of investigating the effect of measurement
backaction on the spin dynamics of the condensate. Using the stochastic master equation approach, we show
that the effect of backaction is sensitive to not only the measurement strength but also the quantum fluctuation
of the spinor condensate. The same method is also used to estimate the atom numbers below which the effect of
backaction becomes so prominent that extracting spin dynamics from this cavity-based detection scheme is no
longer practical.
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I. INTRODUCTION

The ability of optical dipole traps to simultaneously cool
and trap ground-state atoms in different magnetic sublevels
paved the way for the experimental realization of spinor
Bose-Einstein condensates (BEC) [1], where the liberation
of spin degrees of freedom has added new and exciting
possibilities in the study of BEC [2]. Of particular relevance to
the present work has been the extensive study of spin dynamics
both in theory [3–6] and in experiments [7–11], which aims to
understand how condensate populations exchange coherently
among different internal spin states as well as to explore the
potential of these spin oscillations as probes to the intriguing
physics underlying spin-dependent collisions. So far, such
studies have been carried out mainly in spinor condensates with
sufficiently large numbers of atoms, where the measurement
based on the standard absorption-imaging technique has
established that the spin dynamics agrees well with the result
predicted [6] within the framework of mean-field theory [4,5].

The use of the spinor condensates with relatively large
atom numbers, unfortunately, renders it virtually impossible
to observe beyond-mean-field quantum effects, which, besides
being fascinating by their own rights, are thought to be
responsible for exotic physics in highly correlated systems. In
small spinor BECs, quantum fluctuations of atoms are expected
to play a more prominent role. Hence their spin dynamics
should be governed by spin mixing of quantum-mechanical
nature, which is responsible, for example, for the generation
of squeezed collective spin states and entangled states [12].
However, the absorption-imaging technique, which works well
with large condensates, is no longer an effective detection tool
for condensates with small numbers of atoms as a result of the
much reduced signals. Recently, owing to the experimental
realization of strong coupling between ultracold atomic gases
and cavity [13], spinor BEC confined in a single-mode cavity
has received much theoretical attention [14–17]. In particular,
cavity transmission spectra have been suggested as candidates
for probing the quantum ground state [14] or the quantum spin
dynamics [15] of a spinor BEC.

In all these proposals, one aims to learn the condensate
dynamics from the photons landing on the photoelectric

detector. The detection is a process, according to the Copen-
hagen interpretation of quantum mechanics, that projects the
system (condensate + photon) to one of the states that are
eigenstates of the observable being measured. This causes the
condensate dynamics to be disrupted in a random fashion and
is the underlying physical mechanism behind the measurement
backaction. Motivated by the possibility that such a backaction
may be significant for a small condensate, we investigate, in
the present work, the effect of the backaction on the quantum
spin-mixing dynamics of a small spinor BEC subject to a
homodyne detection as shown in Fig. 1 (see next section for a
detailed description). We take the stochastic master equation
approach, which emulates the experimental process where
many runs of continuous measurements must be performed
before one can arrive at the quantum-mechanical average
of a dynamical observable. We show that the effect of
backaction is sensitive to whether the condensate is in the
ferromagnetic or the antiferromagnetic ground state. We point
out, in connection with the recent interest in the dynamics
of small spinor condensates, that there is a limitation to
this cavity-based detection scheme: for sufficiently small
condensates, the number of experimental runs required to
faithfully extract the internal spin dynamics can be unrealis-
tically large; we estimate the atom numbers above which this
cavity-based homodyne detection scheme is experimentally
feasible.

The paper is organized as follows. In Sec. II, we present a
measurement model and derive the stochastic master equation
(SME) describing the evolution of the spinor BEC. In Sec. III,
we first analyze the measurement backaction in the two-atom
case, where some typical effects, such as the quantum Zeno
effect (QZE) and quantum diffusion [18,19], are clearly shown,
and then extend the analyses to N -atom cases by numerical
simulation with realistic experimental parameters. We show
different responses of the ferromagnetic and antiferromagnetic
ground state to measurements, and measurement-induced
decoherence effects in quantum spin-mixing dynamics. In
Sec. IV, the measurement outcomes are given by averaging
over the photodetector currents of repeated measurements.
Finally, Sec. V concludes the paper.

063624-11050-2947/2011/83(6)/063624(8) ©2011 American Physical Society

http://dx.doi.org/10.1103/PhysRevA.83.063624


ZHANG, ZHOU, LING, PU, AND ZHANG PHYSICAL REVIEW A 83, 063624 (2011)

FIG. 1. (Color online) Schematic diagram of homodyne detection.

II. MODEL AND HOMODYNE DETECTION SCHEME

Figure 1 is a schematic of our model made up of three parts:
a F = 1 spinor BEC, a driven ring cavity, and a homodyne
detection arrangement. The BEC is assumed to be sufficiently
small (with less than 1000 weakly interacting atoms) so that its
three spin components, |0〉 ≡ |F = 1,mF = 0〉 and | ± 1〉 ≡
|F = 1,mF = ±1〉, share the same spatial mode. In this so-
called single-mode approximation [20], we can describe the
spinor condensate (subject to a quadratic Zeeman effect) with
the Hamiltonian [16]

Ĥs = h̄λ[(N̂+ − N̂−)2 + (2N̂0 − 1)(N̂+ + N̂−)

+ 2ĉ
†
0ĉ

†
0ĉ+ĉ− + 2ĉ

†
+ĉ

†
−ĉ0ĉ0] + h̄q(N̂+ + N̂−), (1)

where ĉi is the field operator annihilating a bosonic atom in
component |i〉, with N̂i ≡ ĉ

†
i ĉi the corresponding atom number

operator, λ is a coefficient related to the spin-dependent part
of the two-body interaction, and, finally, q is the quadratic
Zeeman shift.

The cavity is assumed to support a π -polarized single travel-
ing mode with frequency ωc, and is driven by an external probe
field with an amplitude η and frequency ωp. As in Ref. [16],
both ωc and ωp are assumed to be sufficiently red-detuned from
the F = 1 ↔ F ′ = 1 atomic transition frequency ωa so that
the excited states can be adiabatically eliminated. Under such
a circumstance, our cavity + condensate system (excluding the
reservoir consisting of the cavity vacuum modes) is described
by a total Hamiltonian Ĥ = Ĥs + Ĥm, where Ĥm is given
explicitly by

Ĥm = −h̄δâ†â + h̄η(â† + â) + h̄U0(N̂ − N̂0)â†â, (2)

with â being the field operator for annihilating a cavity photon
and δ = ωp − ωc the detuning of the probe relative to the
cavity mode frequency. In addition to the cavity photon energy
(the first term) and the Hamiltonian simulating the process
of pumping the cavity mode by the classical external probe
field (the second term), a new term (the last term) appears
in Eq. (2) that characterizes the atom-photon interaction with
an effective strength U0 = g2

0/(ωp − ωa) with g0 being the

atom-cavity mode coupling coefficient. Several comments are
in order. First, the selection rule for dipole transitions involving
π -polarized photons only permits the transitions between
|F = 1,mF = +1 (−1)〉 and |F ′ = 1,m′

F = +1 (−1)〉 and,
consequently, the last term, in the limit of far-off-resonant
atom-photon interaction, is expected to be proportional to
N̂+ + N̂−, which is equivalent to N̂ − N̂0 when the definition
for the total atom number, N̂ = N̂+ + N̂− + N̂0, is taken
into consideration. Second, one can express N̂+ and N̂− in
terms of N̂0 along with two constants of motion under the
total Hamiltonian Ĥ : N̂ and M̂ = N̂+ − N̂− (magnetization)
and, as a result, from now on we will focus our attention
on the dynamics of 〈N̂0〉. Finally, we emphasize that the
dispersive interaction term h̄U0N̂0â

†â in Eq. (2) can cause the
probe field to experience a phase shift proportional to 〈N̂0〉,
which, in the language of measurement in quantum optics,
constitutes the (matter wave) signal we aim to determine from
the measurement of the probe field.

These discussions lend themselves naturally to the final
component of our model. To begin with, we note that N̂0

does not commute with Ĥ and cannot serve as a quantum
nondemolition measurement variable [21] and, thus, the probe
field is to remain as weak as the measurement permits in
order to minimize its backaction on the signal. As the photons
leaking from the cavity are combined with those from a strong
local oscillator prior to the measurement by the photodetector,
the homodyne detection scheme illustrated in Fig. 1 can greatly
enhance the signal-to-noise ratio, while at the same time
allow us to directly measure the quadrature phase amplitude
and hence the 〈N̂0〉-dependent probe phase shift as discussed
above. In practice, in order to gain the spin dynamics, one
must monitor the phase shift continually and perform many
runs of experiments, each of which provides a continual
stream of information about 〈N̂0〉, before one can average
over all the runs to construct the ensemble average 〈〈N̂0〉〉.
The stochastic master equation approach, which combines the
system-reservoir theory with the photon counting theory [22],
is believed to be an excellent tool to simulate such experimental
processes [23]. This is the approach we take in the present
study.

We begin with the measurement outcome, i.e., photode-
tector current I (for a single run), which, after subtracting
the constant part due solely to the coherent local oscillator,
reads [22,24]

I = 2κ〈â + â†〉 +
√

2κ
dW (t)

dt
, (3)

where κ is the cavity decay rate and dW (t)/dt repre-
sents Gaussian white noise, with dW (t) an infinitesimal
Wienner increment satisfying the Itô rules 〈〈dW (t)〉〉 = 0 and
dW (t)2 = dt [25].

For the system subject to a continuous homodyne detection,
its time evolution, conditioned on a given set of measurement
outcomes, is described by the stochastic master equation
(SME)

dρc

dt
= − i

h̄
[Ĥ ,ρc] + 2κL[â]ρc +

√
2κ

dW (t)

dt
H[â]ρc, (4)
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where ρc is the conditional density matrix operator for the
cavity mode + condensate system, and L and H are the
superoperators defined as

L[x̂]ρ = x̂ρx̂† − 1
2 x̂†x̂ρ − 1

2ρx̂†x̂,

H[x̂]ρ = x̂ρ + ρx̂† − Tr(x̂ρ + ρx̂†)ρ.

The first term on the right-hand side of Eq. (4) represents the
unitary evolution of the system under Ĥ . The second term
describes the decay of the cavity, originating from coarse
graining over the reservoir degrees of freedom. The last
term is related to the quantum state collapse accompanied
by the detection of each photoelectron at the detector; the
fact that it shares with the current in Eq. (3) the same noise
term, dW (t)/dt , indicates that the evolution of ρc is indeed
conditioned on the current measurement. Both the second and
the last term can affect the dynamics of the cavity field and the
spinor condensate.

To clearly show the measurement backaction on the spinor
BEC, we consider that the measurement system operates in the
regime where the cavity field decays at a rate much faster than
the mean-field phase shift due both to the dispersive atom-
photon coupling, and to the two-body s-wave scattering of
atoms. Under such a condition, we can approximate â around
a mean value α ≡ 〈â〉 ≈ η/κ (the field amplitude of an empty
cavity) with a small fluctuation â′ according to â = α + â′,
and eliminate the modes defined by the bosonic operator â′
adiabatically [19]. In this way, we arrive at the dimensionless
SME for the conditional density operator ρsc = Trcavityρc of
the spinor BEC alone,

dρsc

dτ
= −i[Ĥ ′,ρsc] + 2ξ 2L[N̂0]ρsc

+
√

2ξ
dW ′

dτ
H[N̂0]ρsc, (5)

as well as the scaled photoelectric current

I ′ = 2
√

2ξ 〈N̂0〉 + dW ′ (τ )

dτ
, (6)

where τ = |λ|t is the scaled time, dW ′(τ )/dτ the scaled white
noise, and ξ = U0η/

√
κ3|λ| the measurement strength [26]. If

we were to ignore the measurement backaction, the spinor BEC
would undergo a unitary evolution under the scaled effective
Hamiltonian Ĥ ′ = [Ĥs + h̄U0(N̂ − N̂0)|α|2 − h̄δ|α|2]/h̄|λ|.
In what follows, in order to highlight the essential physics,
we fix the detuning to δ = U0N , so that Ĥ ′ becomes

Ĥ ′ = λ

|λ| [(N̂+ − N̂−)2 + (2N̂0 − 1)(N̂+ + N̂−)

+ 2ĉ
†
0ĉ

†
0ĉ+ĉ− + 2ĉ

†
+ĉ

†
−ĉ0ĉ0] − q ′N̂0 (7)

(after removing a constant term h̄qN̂ ), where q ′ = (q +
U0|α|2)/|λ| is defined as a new quadratic Zeeman shift.

The last two terms on the right-hand side of Eq. (5) represent
the measurement backaction to the spinor condensate. The
first of these is proportional to the double commutator
[N̂0,[N̂0,ρsc]], which represents a source of decoherence in
the quantum dynamics. It tends to damp the off-diagonal
elements of the density matrix under the basis of the measured
observable N̂0. It represents one form of measurement back-
action as it originates from the fact that any measurements

on the cavity mode require the use of an output coupler
to couple the cavity mode to the field modes outside the
cavity. The last term in Eq. (5) can again be traced to the
measurement induced state collapse in quantum mechanics,
which is a stochastic process and hence depends on the
white noise. The dynamics obtained directly from Eq. (5) is
called the conditional dynamics, while that obtained after the
ensemble average is called the deterministic dynamics. The
last term of Eq. (5) therefore affects the conditional, but not
the deterministic, dynamics. Finally, in principle, there exists
another type of measurement backaction—atom heating due
to the fluctuation of the optical dipole force [27]. However,
since such a fluctuation is proportional to the gradient of
the cavity field intensity, we anticipate the heating effect in
a traveling-wave cavity to be much weaker than what was
observed in a standing-wave cavity [27], and therefore we
neglect it entirely in our work here.

III. SPIN-MIXING DYNAMICS UNDER
THE CONTINUOUS MEASUREMENTS

A. Two-atom case

In this section, we apply the formalism outlined in the
previous section to a two-atom “toy” model, which, in
principle, can be realized in optical lattices [28], to illustrate the
influence of measurement backaction. Due to the conservation
of atom number and magnetization, a spin-1 BEC with two
atoms and zero magnetization is effectively a spin-1/2 system
with two basis states |1〉 ≡ |0,2,0〉 and |2〉 ≡ |1,0,1〉, where
|N+,N0,N−〉 is a Fock state with Ni number of atoms in spin-i
component. In this basis, Ĥ ′ (with q ′ = 0) has the following
matrix representation

Ĥ ′ = λ

|λ|

(
0 2

√
2

2
√

2 −2

)
, (8)

which has two eigenvalues, Ea = 2λ/|λ| and Eb = −4λ/|λ|,
and two corresponding eigenstates |a〉 = √

2/3|1〉 + √
1/3|2〉

and |b〉 = −√
1/3|1〉 + √

2/3|2〉. Here, |a〉 is the ground state
when λ < 0 (ferromagnetic case) and |b〉 is the ground state
when λ > 0 (antiferromagnetic case).

The dynamics of any atomic observable Â in a particular
realization can be constructed with the help of SME (5) starting
from

d

dτ
〈Â〉 = Tr

(
dρsc

dτ
Â

)
. (9)

For our case here, we find that the dynamical equations for the
three Hermitian operators defined as

Ŝx = 1√
2

(ĉ†+ĉ
†
−ĉ0ĉ0 + ĉ

†
0ĉ

†
0ĉ+ĉ−),

Ŝy = i√
2

(ĉ†+ĉ
†
−ĉ0ĉ0 − ĉ

†
0ĉ

†
0ĉ+ĉ−), (10)

Ŝz = N̂0 − 1,
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are closed and can be cast into a matrix form

d

dτ

⎛
⎜⎝

〈Ŝx〉
〈Ŝy〉
〈Ŝz〉

⎞
⎟⎠ =

⎛
⎜⎝

−4ξ 2 ∓2 0

±2 −4ξ 2 ∓4
√

2

0 ±4
√

2 0

⎞
⎟⎠

⎛
⎜⎝

〈Ŝx〉
〈Ŝy〉
〈Ŝz〉

⎞
⎟⎠

− 2
√

2ξ
dW ′

dτ

⎛
⎜⎝

〈Ŝx〉 〈Ŝz〉
〈Ŝy〉 〈Ŝz〉
〈Ŝz〉2 −1

⎞
⎟⎠ . (11)

Here the upper (lower) signs are for the antiferromagnetic
(ferromagnetic) case. The terms associated with the coefficient
−4ξ 2 represent the dampings, typical of the dynamics of
an open system, which destroys the coherence and leaves
the system in a mixed state composed of eigenstates of
measured observables. In the current section, we only consider
the antiferromagnetic case (λ > 0) as it does not exhibit a
qualitatively different dynamics from the ferromagnetic case.

Consider two atoms that are initially prepared in state |1〉.
Figures 2(a) and 2(b) illustrate, respectively, conditional and
deterministic dynamics for systems with ξ = 0 (red dotted
lines), 0.5 (blue dashed lines), and 2 (gray solid lines).
For the case of no measurement (ξ = 0), the population
dynamics, 〈N̂0〉/N = (1 + 〈Ŝz〉)/N , undergoes a Rabi-type

0 1 2 3 4 5 6
0.0

0.5

1.0

N
0/N

N
0/N

N
0/N
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0.0

0.5

1.0

0 1 2 3 4 5 6
0.0

0.5

1.0

(a)

(b)

(c)

τ

τ

τ

FIG. 2. (Color online) Evolution of the fractional population in
spin-0: N0/N . (a) and (b) show the conditional and deterministic
evolution, respectively, with the initial state |1〉 and q ′ = 0. The
red dotted line is for nonmeasurement case (ξ = 0), while the blue
dashed line and gray solid line are for the weak measurement
(ξ = 0.5) and strong measurement (ξ = 2) cases, respectively. In
(c), the initial state is |b〉 (see text) and ξ = 0.1. The blue dashed
line shows the conditional evolution, while the gray solid line shows
the deterministic one. The red dotted line is for the nonmeasurement
case.

oscillation with frequency |Ea − Eb| = 6. For a relatively
weak measurement (ξ = 0.5), besides some superimposed
noises, the oscillation in a single run begins to experience a
diffusive phase shift relative to the one without measurement;
this results in a damped oscillation that one expects when
many oscillations with different phase shifts are averaged. For
a relatively strong measurement (ξ = 2), the spin dynamics
is drastically different. This is due to the fact that the system
is “watched” so frequently that quantum Zeno effect (QZE)
begins to manifest itself [18]. Indeed, the conditional evolution
indicates that repeated observations tend to trap the system in
states |1〉 and |2〉, the only two states at which the noise term
in Eq. (11) vanishes. The extra time that the system spends
either in |1〉 or |2〉 in the conditional evolution slows down
the transition of the initial state to other states as shown in the
deterministic evolution, which decays exponentially without
any oscillations. In both weak and strong measurements,
deterministic evolutions converge to a mixed state (〈Ŝx〉 =
0,〈Ŝy〉 = 0,〈Ŝz〉 = 0), the only fixed point of the deterministic
part of Eq. (11) at which the density matrix takes the diagonal
form: ρsc = 0.5|1〉〈1| + 0.5|2〉〈2|.

Let us now discuss Fig. 2(c), which displays the dynamics of
two atoms initially prepared in the antiferromagnetic ground
state |b〉. In the absence of any measurements, as expected,
the system stays in its ground state (red dotted line). For a
weak measurement (ξ = 0.1), the system develops Rabi-type
oscillations in the conditional evolution (blue dashed line),
and is shown to attempt to converge to the mixed state in
the deterministic evolution (gray solid line). As before, QZE
appears (not shown) when the measurement is sufficiently
strong. In the two-atom case, a system starting from the
antiferromagnetic ground state exhibits similar dynamics as
that starting from the ferromagnetic ground state. However,
in the N -atom case, as we show in the subsection below, due
to the difference in the energy level structure and quantum
fluctuation of N̂0, the measurement backaction will have quite
distinct effects on the ferromagnetic and antiferromagnetic
ground states.

B. N-atom case: Conditional population dynamics

Now we illustrate the measurement backaction effect for
a condensate with N = 100 atoms. We also adopt realistic
parameters: κ = 2π × 100 MHz, g0 = 2π × 1.6 MHz, and
λ = 2π × 20 Hz for sodium atoms with a typical density
1014 cm−3 [10]. We estimate that the value of ξ lies in the
range between 10−3 and 10−1, which means measurements
here are always very weak. It is impossible to find a set of
observables that are closed under Eq. (9) as in the two-atom
case. However, under the assumption of perfect detection (with
unit detection efficiency), we can unravel SME (5) into a
equivalent stochastic Schrödinger equation (SSE) [22] in the
sense ρsc = |ψsc〉〈ψsc| as

d

dτ
|ψsc〉 =

[
− iĤ ′ − ξ 2(N̂0 − 〈N̂0〉)2

+
√

2ξ (N̂0 − 〈N̂0〉)dW ′

dt

]
|ψsc〉, (12)

which allows the dynamics of any observables to be calculated
exactly. The simulation is performed using a fourth-order
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Runge-Kutta method for the deterministic part and a first-order
stochastic Runge-Kutta method for the noise part. Further-
more, the SSE (12) shows more clearly that the measurement
backaction effects are dependent not only on the measurement
strength, but also on the quantum fluctuation of the measured
observable N̂0.

For the antiferromagnetic case, the ground state for Ĥ ′
(with q ′ = 0) is unique and is given by a superposition of all
the Fock states in which the spin-1 and −1 components share
the same atom number:

|ψ〉 =
[N/2]∑
k=0

Ak|k,N − 2k,k〉,

where the amplitudes Ak obey the recursion relation [3]

Ak = −
√

N − 2k + 2

N − 2k + 1
Ak−1.

In this state, the average atom numbers in each spin component
are equal, i.e., 〈N+〉 = 〈N−〉 = 〈N0〉 = N/3, and the num-
ber fluctuation in spin-0 component is super-Poissonian for
N 	 1 [3]. This indicates that the antiferromagnetic ground
state will be quite sensitive to the measurement backaction
effect.

Figure 3 illustrates the conditional population dynamics
of atoms initially prepared in the antiferromagnetic ground
state and the corresponding Fourier spectra for various mea-
surement strengths. As Fig. 3(a) illustrates, a measurement

N
0N

N
0N

N
0N

FIG. 3. Left column: Evolution of normalized particle number in
spin-0 component under a single run of measurements with different
strength (a) ξ = 0.001, (b) 0.01, and (c) 0.1. The initial state is the
antiferromagnetic ground state (see the text) with total atom number
N = 100. The corresponding Fourier spectra are shown in the right
column.

as weak as ξ = 0.001 can induce the system to oscillate
predominantly at frequency 6λ [Fig. 3(d)], the first excited
frequency of the many-body system described asĤ ′ in Eq. (7).
As the measurement strength increases, more and more high-
frequency components contribute to the evolutions. Figure 3(b)
is produced with ξ = 0.01, which is ten times stronger than
in Fig. 3(a). Indeed, instead of one peak, its Fourier spectrum
[Fig. 3(e)] displays four peaks corresponding to the first fourth
excited frequencies. Increasing ξ by another factor of 10 to
ξ = 0.1 leads to a more chaotic evolution as confirmed both by
the population dynamics in Fig. 3(c) and by the corresponding
Fourier spectrum in Fig. 3(f). Here, as a result of a dramatic
increase in the number of eigenstates to which the system can
collapse, QZE becomes more complicated. In Fig. 3(c), only
the transitions to |N/2,0,N/2〉 and |0,N,0〉 are (dimly) visible
because these two have the smallest transition moments to their
neighboring eigenstates. In order to see QZE involving other
transitions, we find from our numerical simulations that strong
measurements with ξ > 10 are typically needed.

The measurement backaction on ferromagnetic spinor con-
densates (λ < 0) will take somewhat different effects because
of their distinct energy-level structures and quantum statistical
properties. The ferromagnetic ground state is (2N + 1)-fold
degenerate, which reads [3]

|ψm〉 =
∑

k

B
(m)
k |k,N − 2k − m,k + m〉,

where m = 0, ± 1, . . . , ± N . Contrary to the antiferromag-
netic ground state, these states possess sub-Poissonian fluctu-
ations in N̂0. To demonstrate the backaction, we choose the one
with m = 0 as the initial state, which has the largest fluctuation
in N̂0.

In Fig. 4(a), the atomic population exhibits a weak Rabi-
type oscillation with an amplitude much smaller than that
for the antiferromagnetic case under the same measurement
strength. The main reason for this reduction is, as indicated
by the Fourier spectrum in Fig. 4(d), that the first excited
frequency is located around ω = 398, which is much higher
than that for the ferromagnetic case and hence is much
more difficult to excite. The reduction in the variance of
N̂0 may also weaken the effect of measurement backaction.
With the increase of the measurement strength, similar to
the antiferromagnetic case, the spin populations oscillate with
multiple frequencies and become irregular with some evidence
of QZE, as shown in Figs. 4(b)–4(f).

C. N-atom case: Comparison between conditional and
deterministic population dynamics

The two examples considered in the previous subsection
demonstrate the effect of the measurement backaction on
the population dynamics of a single experimental realization
and, as in the two-atom case, the deterministic dynamics
will emerge from the average over many runs of numerical
simulations. In order to make a smooth transition to the
subject discussed in the next section, instead of pursuing
such simulations with the two examples considered above,
we seek to show the effect of averaging over many runs from
a spinor BEC initially prepared in its mean-field ground state
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N

0/N
N

0/N
N

0/N

FIG. 4. Same as Fig. 3, except that for a ferromagnetic conden-
sate. Insets show details of the oscillations.

|ψ(τ = 0)〉 = |0,N,0〉, where all the atoms reside in the spin-0
component.

The spin-mixing dynamics, in the absence of the probe,
can be well understood from the quantum-fluctuation-driven
harmonic oscillator model [15]. In Fig. 5(a), we compare
the spin dynamics between q ′ = 10 (upper blue solid curve)
and q ′ = 0 (low blue solid curve). In the former case, the
oscillations are weak and approximately harmonic, while the
latter case exhibits oscillations that are clearly of anharmonic
nature. This is because quantum fluctuation in N̂0 is larger
for small q ′ than for large q ′, as shown in Fig. 5(b). The
spin dynamics for q ′ = 0 in a longer time scale is shown by
the solid blue curve in Fig. 6(a), which clearly demonstrates
a typical quantum behavior—collapse and revival of spin
oscillations. The particle number distribution quickly collapses
to a metastable regime with 〈N̂+〉 = 〈N̂−〉 = 〈N̂0〉/2 = N/4
after a time τc 
 (2

√
N )−1. This metastable regime is followed

by several spin oscillations and the cycle repeats itself at a time
interval τr = π [3].

In the presence of the probe, the spin-mixing dynamics
will be affected by the measurement backaction. Various
conditional evolutions with an intermediate measurement
strength ξ = 0.01 are plotted in gray dotted curves in Fig. 5(a).
For the case q ′ = 10, they are not much different from the
nonmeasurement evolution, so that averaging over 10 condi-
tional evolutions appears sufficient to reveal the deterministic
spin dynamics. The quantum measurement backaction are
restrained by the small quantum fluctuation. In contrast,
for the case q ′ = 0, they differ from the nonmeasurement
evolution quite appreciably. In this case, averaging over 10
conditional evolutions (dashed red curve) cannot produce

N
N

0/N

FIG. 5. (Color online) (a) Time evolutions of 〈N̂0〉/N for the
q ′ = 10 (upper curves) and q ′ = 0 (lower curves) case with
the same initial state |0,N,0〉. The blue solid curves correspond to
the evolution without measurement. The gray dotted curves display a
variety of evolutions conditioned on measurement outcomes with
measurement strength ξ = 0.01, and the red dashed curves are
given by averaging over 10 conditional evolutions. (b) The number
fluctuation of spin-0 component Var(N̂0) =√

〈N̂2
0 〉−〈N̂0〉2, with solid

and dashed lines corresponding to the q ′ = 10 and q ′ = 0 case,
respectively.

the anticipated deterministic dynamics and the match is
particularly poor in the metastable regime due to the large
quantum fluctuation there. It requires more runs of measure-
ments to reveal the deterministic spin evolution. The curve
in Fig. 6(b) represents its deterministic evolution given by
averaging over 100 conditional evolutions, which in a short

N
0/N

N
0/N

FIG. 6. (Color online) Comparison between the evolution without
measurement (a) and the deterministic evolution (b) for the q ′ = 0
case in a long time scale.
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time scale traces out the anharmonic spin oscillations clearly
but indicates that the oscillations are gradually damped for
a long time evolution. The damping rate is proportional to
the measurement strength. Finally, the BEC converges to a
mixed state characterized with a diagonal density matrix,
ρsc = ∑N/2

k=0 Pk|k,N − 2k,k〉〈k,N − 2k,k|, where the proba-
bility distribution function Pk is found (not shown) to be a
constant independent of k or Pk = 1/(N/2 + 1) to be precise.
All these are due to the decoherence induced by measurement
as discussed in the two-atom case.

IV. MEASUREMENT OUTCOME:
PHOTOELECTRIC CURRENT

The numerical simulations we have considered so far
show that although each run results in a different conditional
evolution 〈N̂0〉, an ensemble average over dozens of these runs
can already capture quite well the deterministic quantum spin-
mixing dynamics. However, what is accessible in experiments
is not 〈N̂0〉 but the photoelectric current [Eq. (6)]. Thus, in
practice, 〈〈N̂0〉〉 must be inferred by averaging the current
over many runs of measurements. As it turns out, it requires
far more runs to reveal 〈〈N̂0〉〉 indirectly from the ensemble
average of the photoelectric current than directly from the
ensemble average of conditional population dynamics.

Figures 7(a) and 7(b) show the ensemble averages of the
photodetector current I ′ for N = 10 and 100, respectively.
The gray curves represent the results given by 100 runs of
measurements. As can be seen, it is virtually impossible to
extract the deterministic evolutions of 〈〈N̂0〉〉 (shown in the
insets), as they are dominated by white noise. In principle,
one can suppress the noise by averaging over more and
more currents; this is evident from the examples obtained
when we increase the number of runs to 103 (blue curves) and
then to 104 (red curves). However, only in the N = 100 case
can the spin oscillations of deterministic nature be (vaguely)
recognized. As for the N = 10 case, averaging the current
over 104 runs of measurements still does not allow us to
extract the signal.

It appears that one could increase the measurement strength
ξ instead of the number of runs to enhance the signal-
to-noise ratio according to Eq. (6). However, in quantum
measurements, the system dynamics is conditioned on the
detection outcomes; increasing the measurement strength
also enhances the quantum measurement backaction. First,
according to the discussion in Sec. II, strong measurement
renders a large decoherence to the measured quantum state,
so that the spin oscillations are rapidly damped. Second, an
increase in ξ will increase the white noise in the stochastic
Schrödinger equation, which in turn demands more runs to
recover the deterministic dynamics. Thus there is a limitation
to what we can do to improve the signal-to-noise ratio by
increasing the measurement strength.

An alternative is to increase the atom number. Not only does
it enhance the signal part of the current in Eq. (6), but also it
reduces the quantum fluctuation of N̂0 and thus the related
measurement backaction. The net effect is the reduction in the
number of required runs. But, as the atom number increases,
the mean-field dynamics will gradually dominate [6], defeating

FIG. 7. (Color online) Measurement outcomes given by averag-
ing over 102 (outmost gray), 103 (inner blue), and 104 (innermost red)
photodetector currents. The total atom number N is 10 in (a) and 100
in (b), and other parameters are the same as in Fig. 5. The insets show
the deterministic evolution of 〈N̂0〉.

the goal of extracting beyond-mean-field quantum dynamics
from this measurement scheme. A possible way to increase
the signal-to-noise ratio without raising the atom number is to
process the current signal using methods such as filtering high-
frequency components and averaging over sliding windows
[29]. However, our study shows that more than 103 runs are
still needed before we can reveal the spin dynamics for a small
BEC with less than 100 atoms.

V. CONCLUSION AND REMARKS

In this work, we have considered a homodyne detection
scheme, which is designed to make a continuous measurement
of the quantum spin-mixing dynamics of a small F=1 spinor
BEC inside an optical cavity. Using the stochastic master
equation approach, we have performed a detailed study of
the quantum measurement backaction on the spin population
dynamics in the bad cavity limit. We have used a simple
two-atom system to illustrate both the measurement-induced
quantum Zeno effect and the measurement-induced diffusive
quantum dynamics. We have applied the physical intuitions
gained from the two-atom model to understand the measure-
ment backaction on the spin population dynamics in a spin-1
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BEC. We have shown that the effect of backaction is sensitive
to the quantum fluctuation of the spinor condensate. Finally,
we stress that this study is motivated by recent proposals
for using measurement techniques popular in cavity quantum
optics to probe the quantum dynamics of small condensates.
An important point we aim to make in this work is that when
applying optical detection techniques to small condensates,
one needs to pay close attention to quantum fluctuations,
which are typically ignored for large condensates. Indeed, we
have shown that due to the quantum measurement backaction,
the number of runs of measurements needed to recover the
deterministic population dynamics from the ensemble average
of the photoelectric current increases as the number of atoms
in the condensate decreases, suggesting that the scheme is not
practical for sufficiently small condensates where the number
of runs can become unrealistically large.
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[4] J. Kronjäger, C. Becker, M. Brinkmann, R. Walser, P. Navez,
K. Bongs, and K. Sengstock, Phys. Rev. A 72, 063619 (2005).

[5] W. Zhang, D. L. Zhou, M.-S. Chang, M. S. Chapman, and
L. You, Phys. Rev. A 72, 013602 (2005).

[6] J. Heinze, F. Deuretzbacher, and D. Pfannkuche, Phys. Rev. A
82, 023617 (2010).

[7] A. T. Black, E. Gomez, L. D. Turner, S. Jung, and P. D. Lett,
Phys. Rev. Lett. 99, 070403 (2007).

[8] M.-S. Chang, C. D. Hamley, M. D. Barrett, J. A. Sauer, K. M.
Fortier, W. Zhang, L. You, and M. S. Chapman, Phys. Rev. Lett.
92, 140403 (2004); M. -S. Chang, Q. Qin, W. Zhang, L. You,
and M. S. Chapman, Nature Phys. 1, 111 (2005).

[9] H. Schmaljohann, M. Erhard, J. Kronjäger, M. Kottke, S. van
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