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Correlation in a coherent electron beam
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Correlations between successive detections in beams of free electrons are studied with a transmission electron
microscope. For incoherent illumination of the detectors, a certain random coincidence probability is observed,
indicative for uncorrelated arrival times of the electrons. When the illumination is changed from incoherent
to coherent, a reduction of the random coincidence probability is observed, indicative for antibunching in the
arrival times of the electrons. However, the amount of reduction is larger than the theoretically expected value
calculated from the Pauli principle, forbidding more than one identical fermion to occupy the same quantum
state. For a certain coherent illumination of the detectors, where we use magnetic lenses in electron microscopes
for magnifications of the coherence length, we find an enhanced coincidence probability, indicative for bunching
in the arrival times of the electrons. This originates from correlations in beams of free electrons due to Coulomb
interactions.
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I. INTRODUCTION

Quantum interference of two independent, but indistin-
guishable, particles is increasingly important in various areas
of physics. The interference between quantum amplitude for
two particles, emitted from two source points, to be detected
at two detection points, is a direct result of quantum exchange
statistics [1]. Such interference is observed in the coincidence
probability, compared to that of statistically independent
particles, by computing the time correlation function from
the arrival times of the particles. When the two detectors are
separated by a distance less than the coherence length, the
coincidence probability is enhanced for bosons (bunching),
while suppressed for fermions (antibunching), even though
they do not interact with each other. This phenomenon for the
case of photons, known in astronomy as photon bunching in
the light emitted by a chaotic source, was first described by
Hanbury-Brown and Twiss in 1956 [2].

Atoms are massive particles and of a much shorter
wavelength than light photons. The contrasting bunching and
antibunching behavior for the case of atoms was verified in the
same apparatus using two different isotopes of helium: 3He
(a fermion) and 4He (a boson) by Jeltes et al. in 2007 [3]. The
results can be attributed to the different quantum statistics of
each atomic species.

Electrons are massive fermions, but charged particles.
The observation of antibunching behavior for the case of
electrons in a free beam is enormously difficult. There are two
sources of this difficulty: the low degeneracies (the occupation
numbers in phase space) of beams and the Coulomb interaction
between the electrons. Advances in field electron emitters with
high degeneracies have led to the experimental realizations
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of observing the antibunching behavior with electrons in a
free beam [4]. The antibunching behavior in a beam of free
electrons was observed by Kiesel et al. in 2002 [5,6]. (The
antibunching behavior of electrical current in semiconductor
devices was observed in 1998 as a suppression of the shot
noise [7,8].) The relative reduction in coincidences was found
to be in agreement with theoretical expectations, but a detailed
study to verify whether the Coulomb interaction between the
electrons do not play any significant role in their experiment [9]
has yet to be made. The Coulomb potential, which governs the
scattering of one charged particle by another, is so long ranged,
but any corresponding investigation to remove this doubt has
yet to be conducted.

Therefore, this paper deals with basic experimental and
theoretical investigations of the antibunching behavior of
electrons in a free beam by considering the direct Coulomb
interaction between two individual electrons with the aim of
gaining a real understanding of this effect.

II. EXPERIMENTAL RESULTS

A schematic diagram of the experimental setup to observe
the antibunching behavior with electrons in a free beam is
shown in Fig. 1. The instrument was based on a transmission
electron microscope, which has six electromagnetic lenses.
Changing the focal length of electromagnetic lenses is done by
varying the current through the windings of the electromagnet
that makes up the electromagnetic lens. The basic precondition
for the appearance of the quantum interference of two electrons
was the use of a field emitter, resulting in a high beam
degeneracy. The field emitter that we used has a brightness
B/E of 5 × 103 A/cm2 sr eV, an energy full width at half
maximum of 0.4 eV, and a coherence time τc of 3.9 fs. Electrons
were emitted and accelerated to 50–100 keV in the electron
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FIG. 1. The experimental setup. The instrument was based on a
transmission electron microscope, equipped with six electromagnetic
lenses.

gun. Lenses and apertures were set to collimate the electron
beam to get various illuminating conditions.

A. The optical system

The focusing action using the two lenses is illustrated in
Fig. 2. When the electron beam crosses over at the detectors,
the virtual source is in focus, as in Fig. 2(a). As long as the
diameter of the beam spot size is smaller than the sensitive area
of the detectors, it is not possible to measure the time
correlation, so it is necessary to change the focal length of
the first lens to defocus the virtual source. This can be seen
in the two illustrations in Fig. 2. In Fig. 2(b), little current is
passing through the coils of the first lens (EL1) and relatively
long focal length occurs, resulting in a large final beam spot
size. On the other hand, if the current through the coils of
the first lens is increased, it results in shorter focal length and
increased final beam spot size [Fig. 2(c)]. The current density
j in the electron beam decreases as the final spot size of the
electron beam increases.

Usually, the optical systems are used to project a magnified
image of the object, a thin specimen, into the plane of the
screen. In the experiments, however, there is no specimen in
the path of the electrons. Rather, the beam of free electrons is
itself an object. This means that the optical system projects the
image of a small beam volume into the plane of the screen. The
location of the object, the small beam volume, can be varied by
changing the focal length of the lenses. The distance between
the object and the virtual source is equal to the amount of
defocusing � which can be calculated by direct application of
the lens equation. In this case, the equation for the first lens
(EL1) becomes

1/a1 + 1/b1 = 1/f1 (1)

and that for the second lens (EL2)

1/a2 + 1/b2 = 1/f2, (2)
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FIG. 2. The focusing action of two lenses. The optical system
projects the image of a small beam volume into the plane of the
detectors.

where ai , bi , and fi(i = 1,2) are the object, the image
distances, and the focal length, respectively. a2, b1, and b2

remain constant as we change f1 for defocusing the virtual
source. Then a1 depends only on f1 by Eq. (1). Geometry
shows that � = l1 − a1(f1), where l1 is the distance from the
virtual source to the first lens. If the virtual source is focused
on the detectors, then � = 0. The shorter focal length makes
� > 0, and � < 0 when relatively long focal length occurs.

The length of transversal coherence l⊥ for a quasi-
monochromatic and well-collimated electron beam with cir-
cular symmetry is given by

l⊥ = h̄/p‖β, (3)

where β is the beam angular divergence subtended at the
observation plane and p‖ is the longitudinal component of
the kinetic momentum of electrons. The averaging of p‖ is
to be carried out with the (Gaussian) distribution for scalar
density. By inserting the relation B = j/πβ2 into Eq. (3), we
obtain

l⊥ = (h̄/p‖)
√

πB/j. (4)

The brightness B is conserved in an optical system of
electromagnetic lenses. Therefore, the decrease in the current
density by defocusing the virtual source results in an increase
in the length of transversal coherence.

For a well-collimated electron beam with circular symme-
try, the final spot size of the electron beam is

ld = α|�M|, (5)
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where α is a limiting aperture angle (see Fig. 2) and M =
b1b2/a1a2 is the total magnification of the lens. The final spot
size can be used to estimate the current density in the electron
beam striking the detectors. As explained previously, the
current density determines the length of transversal coherence.
If the transmission electron microscope is operated so that
there is a high total magnification of the lenses, the same
length of transversal coherence would still be obtained as long
as the amount of defocusing was small. It should be noted that
the length of transversal coherence depends only on the current
density, but remains unaffected by the amount of defocusing
or the total magnification of the lenses.

An ideal amplitude splitter such as a half mirror in optics is
not available in electron optics; hence, an electron biprism [10]
needs to be used. The task of electron biprism is to split the
coherent electron wave into two partial waves that are still
coherent, as shown in Fig. 1. This separation can be made so
large that the time correlation of the spatially adjacent regions
can be measured without loss of coherence. In Fig. 2 only
the electromagnetic lenses are shown, as only the coherence
lengths are affected by the lenses.

B. Counting technique

The selection of an appropriate detector and its housing
was the first crucial step in achieving good instrumentation of
correlation measurements. Avalanche photodiodes have been
used successfully in the electron counting mode for correlation
measurements [4]. They are selected because of their short
dead time, sharp pulse height distribution, and fast response.
The avalanche photodiode that we used has a dead time of
480 ps and a timing jitter of 20 ps in timing detection. Good
isolation from electrical interference between the two circuits
of diodes is essential, as crosstalk, the coupling of energy
from one line to another via mutual capacitance, may become
a problem. In order that the degree of coherence might be
varied at will, the diode was mounted on a horizontal slide
which could be transverse normal to the electron beam.

A digital correlator [11] is needed in order process the
time correlation function in real time, because the data rate
is quite high. The coincidence time window T of 200 ps is
determined by the clock frequency, and the average count n

in the clock interval should be n � 1. The digital correlator
allows us to construct the normalized correlation function
g(2)(D1; D2,τ ) = n1n2/n1n2, where n1n2 is the average co-
incidence counts in a preselected time window T with a
delay τ and ni(i = 1,2) is the average counts in the time T

registered by the detector Di . Uncorrelated arrival times of
the electrons result in a value of 1 for g(2)(D1; D2,τ ). A value
larger than 1 indicates bunching for g(2)(D1; D2,0), while a
value less than 1 indicates antibunching for g(2)(D1; D2,0). A
recent estimation [12] showed that the value of the correlation
function at zero delay is expressed as g(2)(D1; D2,0) ∼ 1 −
Aτc/T , where A(� 1) is a factor depending on the spatial
coherence and the spin polarization. The antibunching signal
Aτc/T may be detected by accumulating the data to reduce the
statistical fluctuations of the measurement. With the practical
value of brightness B/E of 5 × 103 A/cm2 sr eV for extended
operation and the coincidence time window T of 200 ps, the
antibunching signal Aτc/T was found to be 1.6 × 10−5 and
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FIG. 3. Normalized correlation functions for (a) partially coher-
ent and (b) incoherent illumination.

we estimated a data acquisition time of 200 h for detection
with a signal-to-noise ratio of 3 [13].

C. Not magnified by lenses

The correlation functions g(2)(D1; D2,τ ) as a function of
the delay τ in the case where no current is passing through the
coils of the electromagnetic lenses are shown in Fig. 3. The data
acquisition took several hours. The field-emitted current has a
tendency to drift slowly, the average counts ni also drift during
the measurement time, resulting in a distorted g(2)(D1; D2,τ ).
We made a number of shorter time-interval measurements and
computed the average of the correlation function based on
data in each subinterval. The subinterval of 100 s that we used
was not sufficiently short compared to flicker noise observed
over the frequency 102 to 105 Hz, which can be related to
stochastic process due to surface diffusion and desorption of an
adsorbate. Therefore, g(2)(D1; D2,τ ) that we observed suffered
from an almost constant background, which can be computed
from measurements of g(2)(D1; D2,τ ) at large values of τ .
However, the measured time correlation function, neglecting
the baseline, gives a g(2)(D1; D2,τ ) curve from g(2)(D1; D2,0)
to g(2)(D1; D2,0.8 ns) with sufficient precision.

In the insets the rectangles represent the sensitive areas
of the detectors, the semicircles the coherently illuminated
areas split by the electron biprism. The length of transversal
coherence l⊥ is 0.22 mm. The initial observations were taken
with the sensitive areas effectively adjacent and the result is
reported in Fig. 3(a). In this case a small dip was observed in
the correlation around zero delay. The small dip completely
disappeared, as expected, when the separation of the sensitive
areas was large [see Fig. 3(b)], in which position the theoretical
correlation is virtually zero. The results shown in Fig. 3 confirm
that antibunching is observed when parts of the detectors are
coherently illuminated but not when they are widely separated.
However, the observed value of the antibunching signal in the
data shown is 1.1 × 10−4, which is one order of magnitude
larger than that predicted theoretically from the Pauli principle.

D. Magnified by lenses

When the lengths of transversal coherence l⊥ are increased
for totally coherent illumination, the theoretical value of the
antibunching signal Aτc/T increases in a manner dependent
upon the dimensionless parameters, ax/ l⊥ and ay/ l⊥ where
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FIG. 4. Effect of an increase in the length of transversal coherence
by (a) long and (b) short focal length.

ax , ay are the dimensions of the sensitive area along the
x, y directions [13]. Figure 4 shows normalized correlation
functions g(2)(D1; D2,τ ) in the case where the transmission
electron microscope is operated so that the lengths of transver-
sal coherence l⊥ are increased to be 0.47 mm. In Fig. 4(a), the
focal length of EL1 is relatively long (� < 0). On the other
hand, in Fig. 4(b), the focal length of EL1 is relatively short
(� > 0). The absolute values of � are calculated to be of
the order of 1 × 10−2 m. The value of the antibunching signal
is expected to be a few times larger than that for partially
coherent illumination. However, the observed values in both
cases shown in Fig. 4 are of the order of 1 × 10−3, that is, one
order of magnitude larger than that of Fig. 3(a).

At first sight, if this discrepancy is real, the reader may
worry that systematic errors are present in our estimate of the
correlations. However, it is shown below that, with a high total
magnification of the lenses, we find an enhanced coincidence
probability, indicative for bunching in the arrival times of
the electrons. The lengths of transversal coherence l⊥ are
0.32 and 0.36 mm for Figs. 5(a) and 5(b), respectively. Owing
to the high total magnification, the absolute values of � are
calculated to be of the order of 7 × 10−4 m, which is one order
of magnitude smaller than that of Fig. 4. In the case of Fig. 5(a),
where � < 0, a reduction of the coincidence probability is
still observed. Whereas if � > 0, we can obtain an enhanced
coincidence probability, as shown in Fig. 5(b). The second
important case occurs when a greatly magnified image within
a small distance � of the virtual source is projected on the
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FIG. 5. Effect of an increase in the total magnification of the
lenses by (a) long and (b) short focal length.

detectors. In both cases we clearly observe greater correlations
of the order of 4 × 10−3, inconsistent with the theoretically
expected values calculated from the Pauli principle. We should
also note that the focal lengths can be varied from � < 0
to � > 0 by quite small changes in the current through an
electromagnetic lens. This experiment shows beyond question
that the electrons in coherent beams are correlated and that this
correlation may originate from the direct Coulomb interaction
between two individual electrons.

III. THERMODYNAMIC CONSIDERATIONS

The mutual Coulomb repulsion of the electrons within the
beam is the basic process underlying the (energetic) Boersch
effect: the broadening of the energy distribution of electron
beams at high current densities [14]. The Boersch effect in an
optical system is primarily generated by particle interactions
in the crossover regions of the beam. This effect has been
studied frequently and is now well confirmed experimentally.
In addition, it was pointed out by Rose and Spehr that,
owing to the Pauli principle, a significant reduction of the
Boersch effect is achievable in coherent polarized electron
beams.

On the other hand, we are interested in formulas for
the correlations between successive detections in beams of
electrons. Unlike the Boersch effect, the time correlations are,
in fact, insensitive to variations in the geometry of a beam
with crossovers. Although the following discussion is based
on that of Rose and Spehr [14], we have tried to generalize the
theory to the interpretation of the time correlations in coherent
electron beams.

The time correlations result from statistical electron-
electron interactions within a beam. Here we investigate the
average properties of the beam electrons in a small beam
volume,

V = V‖V⊥, (6)

which moves with the beam and contains N electrons (see
Fig. 6). The one-dimensional volume V‖ expands when the
electrons are accelerated. The two-dimensional volume V⊥
expands in the divergent region and shrinks in the convergent
region of the beam. The expansions or compressions of the

s

V
| |V

Beam axis

β

FIG. 6. Geometry of a rotationally symmetric beam.
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volumes V‖ and V⊥ are assumed to be adiabatic along the beam
axis. If the longitudinal motion in a beam is independent of the
transverse motion, then the Liouville theorem can be applied
to both subspaces separately. Using the Liouville theorem and
introducing the longitudinal temperature T‖ and the transverse
temperature T⊥, one finds the adiabatic relations for a small
beam volume:

T‖V 2
‖ = const, T⊥V⊥ = const. (7)

According to Rose and Spehr the temperatures can be
expressed as

kT‖ = δp2
‖/m (8)

and

kT⊥ = δp2
⊥/m, (9)

where δp‖ and δp⊥ denote the corresponding standard de-
viations of the longitudinal and the transverse momentum
components of the electrons and m is the mass of an electron.
As we see in the following, the standard deviations of
the momentum components are connected with the beam
coherence.

A. The longitudinal mode

For a quasi-monochromatic electron beam, the energy
deviation δE is small compared with the average kinetic
energy of the beam electrons. Then δE‖ is approximately given
by δE � v‖δp‖, where v‖ is the average of the longitudinal
velocity component of the electrons [15]. If we assume
a beam of totally polarized electrons which consists of a
single lateral mode, the Pauli principle requires the inequality
δEτc � h̄ where τc is the uncertainty in the times at which
two electrons cannot be located simultaneously in the time
interval t to t + τc. Using the inequality together with Eq. (8)
and δp‖ � δE/v‖, we obtain a lower limit for the longitudinal
temperature:

kT‖ = h̄2/v2
‖τ

2
c m. (10)

As was pointed out by Rose and Spehr, the axial distance
of two electrons cannot become smaller than the length of
longitudinal coherence v‖τc resulting from Fermi statistics.
Hence, the coherence time τc is connected with the lower limit
for the longitudinal temperature via Eq. (10).

To examine the behavior of a particle system, one must
check which of the effects dominates. Here the effects are
correlations due to the Pauli principle and the Coulomb
interactions. In Fig. 7(a), the energies kT‖/2 of the lower
limit for the longitudinal temperature and the corresponding
energies Ec(l‖) = e2/4πε0l‖ of each electron in the Coulomb
potential at the length of longitudinal coherence l‖ = v‖τc

are plotted on a double logarithmic scale as functions of
the coherence time τc. To roughly survey the dependence
of the energies kT‖/2 and Ec on the coherence time τc, we
consider as an example an electron beam emanating from
a field emitter with energy 0.4 eV and accelerated up to
100 kV. These values correspond to average longitudinal
velocity components v‖ of 3.7 × 105 m/s and 1.6 × 108 m/s,
respectively. For a coherence time τc = 1 fs we obtain from
Eq. (10) kT‖ = 0.54 eV and Ec = 3.8 eV at the surface of
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FIG. 7. The energies kT‖ and kT⊥/2 obtained by the Pauli
principle and the corresponding Coulomb potentials Ec(l‖) and
Ec(l⊥).

the cathode. If the electrons are accelerated up to 100 kV,
we find kT‖ = 2.8 µeV and Ec = 8.8 meV. In both cases
kT‖/2 < Ec, so that the dominant mechanism of the cor-
relations must be the direct Coulomb interactions between
two individual electrons. With increasing coherence time
τc > 1 fs the energy kT‖/2 of the thermodynamic limit
decreases much faster than the energy Ec in the Coulomb
potential. Only in the regions τc < 0.07 fs at the surface
of the cathode and τc < 0.16 × 10−3 fs after the acceler-
ation of the electrons kT‖/2 is greater than Ec. Conse-
quently, the Coulomb interactions can be considered as the
dominant mechanism of the correlations that we observed.

B. The transverse mode

For a well-collimated electron beam with circular symme-
try, the deviation δp⊥ of the transverse momentum component
of the electrons is connected with the average p‖ of longitu-
dinal momentum component by the relation δp⊥ � p‖β. By
inserting this relation into Eq. (9) and using Eq. (3), we obtain

kT⊥ � p2
‖β

2/m = h̄2/l2
⊥m. (11)

This relation states that for a beam of a given current jV⊥
the transverse temperature T⊥ is determined by the length
of transversal coherence l⊥. It follows from Eq. (7) that the
transverse temperatures T⊥ at every focus or crossover can
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become very high, since V⊥ is proportional to the cross section
of the beam. After passage through the crossover the beam
diverges and the transverse temperature T⊥ decreases quadrat-
ically with increasing the distance s from the crossover (Fig. 6).
This behavior implies that the highest transverse temperature
and hence the minimum length of transversal coherence are
obtained at the crossover. In Fig. 7(b), the energies kT⊥/2
of the transverse temperature and the corresponding energies
Ec(l⊥) = e2/4πε0l⊥ of each electron in the Coulomb potential
at the length of transversal coherence l⊥ are plotted on a
double logarithmic scale as functions of l⊥. For a length of
transversal coherence l⊥ = 0.1 mm we obtain from Eq. (11)
kT⊥ = 0.008 neV and Ec = 0.014 meV, so that kT⊥/2 � Ec.
With increasing length of transversal coherence l⊥ > 0.1 mm
the energy kT⊥/2 of the thermodynamic limit decreases much
faster than the energy Ec in the Coulomb potential. Only
in the region l⊥ < 0.03 nm kT⊥/2 is greater than Ec. In
practice the dominant mechanism of the transverse motions
must be the Coulomb interactions.

IV. ANALYTICAL CALCULATIONS

A thermodynamic equilibrium of the beam electrons in a
small beam volume will be established only if the electrons
suffer many collisions in the region between the emitter
and the observation plane. This is the case for very high
current densities obtained with thermionic cathodes. In the
case of low current densities, only few collisions occur. Then
it is appropriate to assume that the main contribution to the
correlations results from a single scattering which altered the
direction of two neighbor electrons. To simplify the discussion,
we restrict our investigations to nonrelativistic calculations in
the laboratory system. As shown in Fig. 8, we consider two
electrons e1 and e2 moving in directions parallel to the beam
axis. Suppose the initial velocity of e1 to be v + �v, e2 to be v,
and the difference between the initial positions of the two
electrons perpendicular to the beam axis is �x, which implies
that an impact parameter of two colliding electrons is equal
to �x. After the collision the electrons are deflected by an

∆x

v+∆v

v ∆
t

v

χ

θ1

θ2

χ
v1

v2

r
ϕ

e1

e2

e1

e2

FIG. 8. Two colliding electrons e1 and e2 moving in directions
parallel to the beam axis.

angle χ , which is related to the impact parameter �x and the
initial velocity �v moving in opposite directions in the center
of mass frame by

tan(χ/2) = e2/2πε0m(�v)2�x. (12)

When referring back to the laboratory system, ei is scattered
by an angle θi(i = 1,2). From Fig. 8, it follows that the angle
θi is connected with the angle χ and the velocity vi(i = 1,2)
of the two electrons after their encounter by the relation

sin θi = �v sin χ/2vi. (13)

If the velocities of any two electrons within their center of
mass system are small compared to the mean velocity of the
electrons in the laboratory system, then the difference between
the initial energies of the two electrons can be expressed as
�E � mv(�v). Using the relation for two electrons with �E,
the maximum angle,

tan θm � 1

1 + 2mv2/�E
, (14)

is obtained when they are deflected in directions perpendicular
to the beam axis in the center-of-mass frame. In this case
χ = π/2, and the corresponding velocity of the two electrons
after their encounter is found as v1 = v2.

The long-range Coulomb potential will cause a slight
deflection no matter how far apart the colliding electrons are
from each other. Now we assume that the main contribution
to the time correlations results from the collision between the
electrons which are deflected by the angles θi larger than the
beam angular divergence β. Most collisions occur in the region
near the tip or focus of the beam, where the electron density
is high. However, according to Eq. (14), the amount of large
angle scattering will decrease with increasing the velocity v

of the two electrons. This restricts the velocity v for a given
energy deviation �E. For example, if we take θm = 10−4, we
obtain from Eq. (14) that the maximum velocity of the two
electrons for �E = 0.1 eV is about 9.4 × 106 m/s, while for
�E = 0.01 eV the maximum velocity is 3.0 × 106 m/s. As a
consequence, we consider that most of the collisions, which
cause the time correlations, occur in front of the tip, where
the electrons start with initial velocities of 3.7 × 105 m/s and
are accelerated up to 1.6 × 108 m/s by a compound system of
electrostatic and magnetic lenses.

A. The expected correlation by Coulomb repulsion

To obtain an expected value of the time correlations we
assume that the starting times of the different electrons are not
correlated. Then the distribution function for time intervals
between adjacent starting times t can be expressed as the
simple exponential shape λe−λt , where λ is the average rate at
which electrons are starting. The probability of time intervals
smaller than t can be obtained by integrating this distribution
between 0 and t :

p(t) =
∫ t

0
λe−λt ′dt ′ = 1 − e−λt . (15)

In the experiments, the counting rate is low enough so that
λt � 1. Then Eq. (15) reduces to p(t) � λt .
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The time necessary for an electron to be accelerated in
the electron gun is of the order of 2 × 10−9 s. During this
time the electron encounters neighbor electrons with the initial
velocity �v in the center-of-mass frame. In a sufficiently small
paraxial domain, the difference of two colliding electrons’
positions r can be approximated by the axial distance of the two
electrons l = v�t . Thermodynamic considerations are useful
for determining an expected value of the time correlations
by Coulomb scattering. The minimum axial distance lm of
two colliding electrons is obtained from the conservation of
energy: kT‖/2 = Ec(lm) as

lm = e2/2πε0kT‖. (16)

When the electrons are accelerated, the longitudinal tem-
perature T‖ is decreased according to Eq. (10), resulting in
an increase of lm. Owing to this behavior, each of the two
electrons, which are separated initially by an axial distance
l < lm, is scattered by the angles θi . If the angles θi exceed
the beam angular divergence β, the Coulomb scattering will
cause a correlation between the arrival times of the electrons
which strike the detectors. To obtain an expected value of the
correlation function we assume that the characteristic length
of the correlations lc, which is related to the correlation time
tc by lc = v‖tc, is found from Eq. (16) using the maximum
velocity given by Eq. (14).

B. The shift of virtual source point

In geometrical optics, we treat light beams as rays that
propagate along straight lines except at the lens, where the
rays may be bent or refracted. This approach had been also
assumed to be completely accurate for beams of free electrons,
which propagate along straight lines except at the lens, where
the beams may be deflected. However, we recognize that the
Coulomb scattering among the electrons within the beam also
causes a significant deflection for the electrons within the
correlation length. The simple model based on the two electron
collision approximation gives us a good description of the
trajectory displacement caused by the collisions in front of the
tip. If the center of mass of the two electrons moves nearly
parallel to the beam axis in the laboratory system, then it will
coincide with a point in front of the tip at the time when the
difference of two electrons’ positions reaches a minimum. As
shown in Figs. 9 and 10, trajectories starting from the virtual
source A are bent in such a way that their asymptotes intersect
in a small zone around the point B, and after the collision
the virtual source point of the two electrons will shift from A
to B. This implies that in front of the tip, the trajectories of
the electrons within the correlation length are bent in such a
way that they seem to have emerged from the point B. The
effect resulting from a shift of virtual source point for the
electrons within the correlation length depends on the path of
the electrons through the lenses. We consider that the amount
of defocusing � will determine the influence of the shift of
virtual source point on the correlation between the arrival times
of the electrons.

In the case of the short focal length with a high total
magnification of the lenses 0 < � � 7 × 10−4 m, the small
zone around the virtual source point B can be focused on the
detectors. From the classical point of view, this will lead to an

Electron

Detectors

(a) (b)

Virtual
source

Shift of
virtual source

A

B

A

e1 e2

D1 D2

FIG. 9. Influence of the shift of virtual source point from A to
B when the point B is focused on the detectors as in Fig. 2(c).
(a) Parts of the electrons within the correlation length will not strike
the detectors without shifting the virtual source point. (b) The two
electrons scattered through large angles by Coulomb potential fall on
the detectors within the coincidence time window.

enhanced coincidence probability, indicative for bunching in
the arrival times of the electrons, because without shifting the
virtual source point, parts of the electrons within the correlation
length will not strike the detectors, as shown in Fig. 9. Without
an analysis based on quantum statistics, it can be expected to
exhibit an enhanced coincidence probability, which originate
from Coulomb repulsion of the electrons within the beam. To
obtain an expected value of the correlation function for this
behavior, we assume that the joint probability that the first
electron e2 arrives at the detector D2 and another electron e1

arrives at the detector D1 within the coincidence time window
T (>tc) is proportional to p′(tc) = 1 − e−λ′tc , where λ′ is an

Electron

Detectors

Virtual
source

Shift of
virtual source

A

B

A

e1 e2

D1 D2

(a) (b)

FIG. 10. Influence of the shift of virtual source point from A to B
when the point B is not focused on the detectors as in Fig. 2(b). (a) The
electrons within the beam will strike the detectors if scattering effects
remain negligibly small. (b) The two electrons scattered through large
angles by Coulomb potential yield a null probability for joint detection
in the coherence area.
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average rate depending on the current density near the tip. Then
the probability for joint detection in the coherence volume
p(T ) increases to p(T ) + p′(tc)/2. The first term represents
the same coincidence probability as the result for a beam of
electrons, with an average rate of λ, arranged to fall on the
detectors. It includes the process in Fig. 9(b) in which the two
electrons scattered through large angles by Coulomb potential
fall on the detectors within the coincidence time window. The
additional probability represented by the second term arises
from the electrons, with an average rate of λ′, arranged not
to fall on the detectors. For a low counting rate (λT � 1) the
value of the correlation function at zero delay may be written
as g(2)(D1; D2,0)∼1 + Cλ′tc/2λT , where C(�1) is a factor
depending on the energy distribution and the virtual source
diameter.

As long as the virtual source point B is not focused on the
detectors, the electrons which are scattered by angle θi > β

yield a null probability for joint detection in the coherence
area, as shown in Fig. 10. If tc is small compared to T , the
coincidence probability p(T ) decreases to p(T ) − p(tc)/2. For
a low counting rate (λT � 1) the value of the correlation
function may be written as g(2)(D1; D2,0) ∼ 1 − Ctc/2T .
This is the case for the long focal length with a high total
magnification of the lenses 0 > � � −7 × 10−4 m. On the
other hand, blurring the signal and loss of the correlation
could be seen in the case of the lower total magnification
of the lenses |�| � 1 × 10−2 m. This is because defocusing
the virtual source point B will cause an increase of the process
in which electrons initially located out of the coherence area
are deflected by the other electrons in the same coherence
area. As a result, the value of C depends on the amount of
defocusing �. When the electromagnetic lenses are not used,
the optical system has no crossover. This is equivalent to the
case for large amount of defocusing � � 1m. The correlation
signal will become smaller, resulting in the minimum value
of C.

To survey the dependence of C on the amount of defocusing
� we have evaluated C numerically for the experimental
values of the correlations. A Gaussian distribution and its
full width at half maximum δE = 0.4 eV are assumed for the
energy distribution of electron beams. In this case the average
energy difference �E of two electrons vanishes, because
values �E < 0 can occur as much probability as values
�E > 0. For values �E < 0 the two electrons move in the
same direction in the center of mass frame, so that the Coulomb
potential will cause only a slight deflection. Then we choose
the average energy difference in the range �E > 0 as an
appropriate measure of the correlations. This quantity is 0.19
eV for δE = 0.4 eV. Choosing �E = 0.19 eV, χ = π/2,
and θm = 10−4 as an example, one obtains from Eq. (14)
the maximum velocity 1.3 × 107 m/s. Inserting this value
together with lc = v‖tc into Eq. (16) yields tc = 7.4 × 10−12 s,
which may lead to a theoretical limit for the maximum
correlation signal tc/2T = 1.84 × 10−2 for T = 200 ps. In
the case of defocusing � = −0.0007 m we obtain the value
of C = 0.19 from the observed value of the correlation
signal g(2) − 1 � g(2)(D1; D2,0) − g(2)(D1; D2,0.8 ns). This
value seems to be realistic, because the angles χ are distributed
at random in the range 0 < χ < π/2 according to Eq. (12). If
the absolute value of defocusing is increased further, the value

TABLE I. Examples of calculated values.

Defocusing Experimental value Calculated value
� (m) of 103 (g(2) − 1) of C

−0.01 −1.49 ± 0.03 0.081
−0.0007 −3.52 ± 0.03 0.191
+0.01 −1.20 ± 0.04 0.065
+1.439 −0.11 ± 0.02 0.006

of C decreases as listed in Table I. The calculations show
that the value of C is approximately proportional to �−1/2. In
the case of defocusing � = +0.0007 m we obtain the value
of Cλ′/λ = 0.20 from the observed value of the correlation
signal.

The results obtained with this model are in fairly good
agreement with the corresponding experimental values of the
correlations. It is now obvious that the Coulomb interactions
can be understood as the dominant mechanism of the corre-
lations. An exact determination of the values of parameters
would require extensive numerical calculations of the paths of
all the electrons in the tip region.

V. CONCLUSIONS

Basic experimental and theoretical investigations of the
contrasting bunching and antibunching behavior of electrons
in a free beam have been carried out with the aim of a real
understanding of this effect. We have developed an analytical
treatment of the behavior by considering the direct Coulomb
interaction between two individual electrons. In this way, it
has proved possible to achieve fairly good agreement with
the corresponding experimental values of the correlations.
Although the correct determination of the values of parameters
is a difficult task, there will be no intrinsic obstacle that renders
it impossible.

The antibunching behavior in a beam of free electrons
was first described by Kiesel et al. [5]. They claimed that
the reduction in the probability of the time interval between
two successive electron arrivals is due to the Pauli principle.
The type of signals they measured differs from the correlation
function. However, as was pointed out by Shen [9], the
Coulomb interaction appears to be responsible for the effect
seen in their experiment. We hope that this investigation
provides some new understanding of the physical processes
that take place in electron guns.
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