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Formation of magnetic impurities and pair-breaking effect in a superfluid Fermi gas
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We theoretically investigate the introduction of magnetic impurities into a superfluid Fermi gas. In the presence
of a population imbalance (N↑ > N↓, where Nσ is the number of Fermi atoms with pseudospin σ = ↑ , ↓), we
show that nonmagnetic potential scatterers embedded in the system are magnetized in the sense that some of the
excess spin-↑ atoms are localized around them. They destroy the superfluid order parameter around them, as in
the case of the magnetic impurity effect discussed in the superconductivity literature. This pair-breaking effect
naturally leads to localized excited states below the superfluid excitation gap. To confirm our idea in a simple
manner, we consider an attractive Fermi-Hubbard model within the mean-field theory at T = 0. We determine
consistent superfluid properties around a nonmagnetic impurity, such as the superfluid order parameter, local
population imbalance, as well as the single-particle density of states, in the presence of a population imbalance.
Since competition between superconductivity and magnetism is one of the most fundamental problems in
condensed-matter physics, our results would be useful for the study of this important issue in cold Fermi
gases.
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I. INTRODUCTION

Magnetic impurity effects have been extensively discussed
in the field of metallic superconductivity. Within the Born
approximation in terms of magnetic impurity scattering,
Abrikosov and Gor’kov (AG) [1] showed that the supercon-
ducting phase is completely destroyed by magnetic impurities
when the impurity concentration exceeds a critical value.
Even below the critical impurity concentration, they showed
that magnetic impurities remarkably affect superconducting
properties, leading to gapless superconductivity [1,2], where
the superconducting order parameter still exists but the
Bardeen-Cooper-Schrieffer (BCS) excitation gap is absent. We
note that such a pair-breaking effect is absent in the case of
nonmagnetic impurities, which is sometimes referred to as
Anderson’s theorem [3].

Shiba extended AG theory to include multiscattering
processes beyond the Born approximation [4]. He clarified
that magnetic impurities induce bound states below the BCS
excitation gap �. Using numerical renormalization group
theory, Shiba and co-workers further extended this theory
to include the Kondo effect [5,6]. They showed that the
transition from the Kondo singlet to the spin doublet of
magnetic impurity occurs at TK/� � 0.3, where TK is the
Kondo temperature.

The recently realized superfluid Fermi gases in 40K [7] and
6Li [8–10] have the unique property that one can tune the
strength of a pairing interaction by adjusting the threshold
energy of a Feshbach resonance. Using this property, we can
now study superfluid properties from the weak-coupling BCS
regime to the strong-coupling Bose-Einstein condensation
(BEC) regime in a unified manner [11–21]. In addition, since
a cold Fermi gas system is much cleaner and simpler than
metallic superconductors, the former is expected to be a useful
quantum simulator for studying various phenomena observed
in the latter complicated systems, free from extrinsic effects.
For example, the pseudogap phenomenon, which has been
extensively studied in high-Tc cuprates [22–27], has also

been recently discussed in the strong-coupling regime of cold
Fermi gases [28,29]. Since the latter system is dominated by
strong-pairing fluctuations, we can study how the pseudogap
is induced by pairing fluctuations in a clear manner [30–32].
Thus, if one could study magnetic impurity effects in superfluid
Fermi gases, it would be helpful for further understanding the
competition between superconductivity and magnetism, which
is one of the most fundamental problems in condensed-matter
physics.

In this paper, we theoretically discuss the realization of
magnetic impurities in a superfluid Fermi gas. So far, nonmag-
netic impurities have been realized in Bose gases by using other
species of atoms [33] and laser light [34]. In highly polarized
normal Fermi gases, it has been observed that the minority
component behaves as mobile impurities to form Fermi po-
larons [35,36]. One difficulty in realizing magnetic impurities
in a superfluid Fermi gas is that spins (σ = ↑ , ↓) in this system
are actually not real spins but “pseudospins” describing two
atomic hyperfine states. Thus, magnetic impurities must also
be “pseudomagnetic” objects acting on these atomic hyperfine
states. In this paper, to realize such pseudomagnetic scatterers,
we use immobile nonmagnetic impurities as seeds. Although
the nonmagnetic impurities do not destroy the superfluid state
(Anderson’s theorem), the superfluid order parameter may
slightly decrease around the impurities, because of the slight
suppression of particle density, as schematically shown in
Fig. 1(a). In this case, when spin-↑ atoms are added to the
system, since they cannot form Cooper pairs, they behave
like polarized magnetic impurities and destroy the superfluid
order parameter around them. Thus, in order to minimize
the loss of condensation energy by this pair-breaking effect,
as shown in Fig. 1(b), excess spin-↑ atoms are expected
to be localized around the nonmagnetic impurities, because
the superfluid order parameter around the impurities has
already been slightly suppressed before the spin-↑ doping. The
resulting nonmagnetic impurities accompanied by localized
spin-↑ atoms may be viewed as magnetic impurities.
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FIG. 1. (Color online) Schematic picture of our idea for realizing
magnetic impurities. V (x) is a weak nonmagnetic impurity potential
embedded in a superfluid Fermi gas. (a) In an unpolarized Fermi
superfluid, although the nonmagnetic impurity does not destroy
the superfluid state, the superfluid order parameter �(x) is slightly
suppressed around the impurity because of the decrease of particle
density by the impurity potential V (x). (b) When a spin-↑ atom
(solid circle with ↑) is added to the system, this excess atom
is localized around the impurity, so as to minimize the loss of
condensation energy by the pair-breaking effect. As a result, the
impurity becomes magnetic, and the superfluid order parameter is
remarkably suppressed around it.

To confirm this scenario, in this paper we consider
a two-dimensional attractive Fermi-Hubbard model with a
nonmagnetic impurity. Although this simple lattice model is
different from the real three-dimensional continuum Fermi
gas system, we emphasize that the presence of a lattice,
as well as the low dimensionality, is not essential for the
present problem. Within the framework of mean-field theory at
T = 0, we calculate the spatial variation of the superfluid order
parameter, as well as the local population imbalance, around
the impurity. In a polarized Fermi superfluid, we confirm
that the nonmagnetic impurity is really magnetized. We also
show that the superfluid order parameter is damaged by this
magnetized impurity, leading to bound states below the BCS
excitation gap.

We note that a different method of realizing magnetic
impurities has been recently proposed in Ref. [37], where an
impurity with a↑ �= a↓ is used (where aσ is the scattering length
between the impurity and an atom with pseudospin σ ). We also
note that, under the assumption of the presence of a magnetic
impurity, properties of bound states have been examined in
Ref. [38].

The outline of this paper is as follows: In Sec. II, we explain
our formulation to calculate superfluid properties around a
nonmagnetic impurity. In Sec. III, we numerically confirm our
idea about the formation of magnetic impurities in a polarized
Fermi gas. We discuss bound states induced by the magnetized
impurity in Sec. IV. In Sec. V, we briefly examine the effects
of a trap potential, as well as finite temperatures. Throughout
this paper, we set h̄ = kB = 1 and take the lattice constant to
be unity.

II. FORMULATION

We consider a two-component Fermi gas, described by
pseudospin σ = ↑ , ↓. Assuming a two-dimensional square
lattice, we put a nonmagnetic impurity at the center of the
system. For simplicity, we first ignore the effects of a trap

potential, which will be separately examined in Sec. V. The
model Hamiltonian is given by

Ĥ = −t
∑

〈i,j〉,σ
[ĉ†i,σ ĉj,σ + H.c.] − U

∑
i

n̂i,↑n̂i,↓

+
∑
i,σ

[V (i) − µσ ]n̂i,σ , (1)

where ĉ
†
i,σ is the creation operator of a Fermi atom with

pseudospin σ at the ith site. n̂i,σ = ĉ
†
i,σ ĉi,σ is the number

operator at the ith site. −t describes atomic hopping between
nearest-neighbor sites and the summation 〈i,j 〉 is taken over
nearest-neighbor pairs. −U is an on-site pairing interaction
between a spin-↑ atom and spin-↓ atom. Since we consider a
polarized Fermi superfluid, the chemical potential µσ depends
on σ = ↑ , ↓. The nonmagnetic impurity potential V (i) is
assumed to have the form:

V (i) = V0
�2

(Rx − Rx0)2 + (Ry − Ry0)2 + �2
, (2)

where (Rx,Ry) is the spatial position of the ith lattice site.
(Rx0,Ry0) is the center of the impurity potential.

We treat Eq. (1) within the mean-field theory at T = 0.
Introducing the superfluid order parameter �(i) = U 〈ĉi,↓ĉi,↑〉
(which is taken to be real in this paper), as well as the particle
density nσ (i) = 〈n̂i,σ 〉, we obtain the mean-field Hamiltonian
ĤMF as

ĤMF = −t
∑

〈i,j〉,σ
[ĉ†i,σ ĉj,σ + H.c.] −

∑
i

�(i)[ĉ†i,↑ĉ
†
i,↓ + H.c.]

+
∑

i

[Ṽ (i) − µ]n̂i,σ − h
∑

i

ŝz,i + U

2

∑
i

sz(i)ŝz,i .

(3)

In Eq. (3), we have ignored unimportant constant terms. (We
also ignore them in the following discussions.) ŝz,i = n̂i,↑ −
ni,↓ is the spin density operator and

sz(i) = n↑(i) − n↓(i) (4)

represents the local magnetization. When this quantity be-
comes finite around the impurity, the last term in Eq. (3)
works as an Ising-type magnetic impurity scatterer. The effec-
tive impurity potential Ṽ (i) = V (i) + VHartree(i) involves the
inhomogeneous Hartree term, VHartree(i) = −(U/2)[n↑(i) −
n↓(i) − n0], where n0 is the particle density far away from
the impurity. µ = µav + (U/2)n0 is the effective chemical
potential, where µav = [µ↑ + µ↓]/2. The difference of the
spin-dependent chemical potentials,

h = 1
2 [µ↑ − µ↓], (5)

works as an effective magnetic field in Eq. (3).
Since Eq. (3) has a bilinear form, we can write it in the form

ĤMF = �̂†H̃MF�̂. Here, �̂† = (ĉ†1,↑,ĉ
†
2,↑, . . . ,ĉ

†
M,↑,ĉ1,↓,ĉ2,↓, . . .

,ĉM,↓), where M is the total number of lattice sites. The
Hamiltonian matrix H̃MF is chosen so as to reproduce Eq. (3).
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As usual, Eq. (3) can be diagonalized by the Bogoliubov
transformation,

�̂ = Ŵ

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

γ̂1

γ̂2

...

γ̂M

γ̂M+1

γ̂M+2

...

γ̂2M

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (6)

The 2M × 2M orthogonal matrix Ŵ is determined so as to
diagonalize H̃MF. The diagonalized mean-field Hamiltonian
has the form:

ĤMF =
2M∑
j=1

Ej γ̂
†
j γ̂j , (7)

where Ej is the j th eigenenergy.
The superfluid order parameter �(i) and the particle density

〈ni,σ 〉, are given by, respectively,

�(i) = U

2M∑
j=1

Wi,jWM+i,j�(−Ej ), (8)

n↑(i) =
2M∑
j=1

W 2
i,j�(−Ej ), (9)

n↓(i) =
2M∑
j=1

W 2
M+i,j�(Ej ), (10)

where �(x) is the step function. The chemical potential µσ is
determined from the equation for the total number of σ -spin
atoms,

Nσ =
∑

i

nσ (i). (11)

To examine single-particle properties around the impurity,
we consider the local density of states (LDOS). To calculate
this, we introduce the single-particle thermal Green’s function
for spin-↑ atoms,

G
p
↑↑(i,i,iωn) = −

∫ β

0
dτeiωτ 〈Tτ {ĉi,↑(τ )ĉ†i,↑(0)}〉, (12)

as well as the Green’s function for spin-↓ holes,

Gh
↓↓(i,i,iωn) = −

∫ β

0
dτeiωτ 〈Tτ {ĉ†i,↓(τ )ĉi,↓(0)}〉. (13)

Here, ωn is the fermion Matsubara frequency and β = 1/T is
the inverse temperature. In the mean-field theory, Eq. (12) is

given by

G
p
↑↑(i,i,iωn) = −

2M∑
j,j ′ = 1

Wi,jWi,j ′

∫ β

0
dτeiωτ 〈Tτ {γ̂j (τ )γ̂ †

j ′(0)}〉

=
2M∑
j=1

W 2
i,j

iωn − Ej

. (14)

Executing the analytic continuation in Eq. (14), we obtain the
LDOS for the spin-↑ component as

ρ
p

i,↑(ω) = − 1

π
Im

[
G

p
↑↑(i,i,iωn → ω + iδ)

]

=
2M∑
j=1

W 2
i,j δ(ω − Ej ). (15)

In the same manner, the LDOS for the spin-↓ component is
obtained from the analytic continuation of Eq. (13), as

ρh
i,↓(ω) = − 1

π
Im[Gh

↓↓(i,i,iωn → ω + iδ)]

=
2M∑
j=1

W 2
M+i,j δ(ω − Ej ). (16)

In the absence of any nonmagnetic impurity and population
imbalance, Eq. (15) reduces to the ordinary superfluid density
of states in the uniform BCS state,

ρ
p
↑(ω) =

∑
p

u2
pδ(ω − Ep) +

∑
p

v2
pδ(ω + Ep), (17)

and Eq. (16) also reduces to the BCS expression,

ρh
↓(ω) =

∑
p

u2
pδ(ω + Ep) +

∑
p

v2
pδ(ω − Ep), (18)

where

u2
p = 1

2

[
1 + ξp

Ep

]
, (19)

v2
p = 1

2

[
1 − ξp

Ep

]
. (20)

In Eqs. (19) and (20), Ep =√
ξ 2

p + �2 is the Bogoliubov
excitation spectrum, where � is the uniform superfluid
order parameter. ξp = εp − µ is the kinetic energy εp =
−2t[cos px + cos py] of the tight-binding model, measured
from the chemical potential µ. As shown in Fig. 2, ρ

p
↑(ω) and

ρh
↓(ω) have BCS coherence peaks at ω � ±1.8t , as well as Van

Hove singularities associated with the two-dimensional square
lattice model at ω � ±3.2t . From Eqs. (17) and (18), one
finds that ρ

p
i,↑(ω) describes spin-↑ particle (hole) excitations

when ω > 0 (ω < 0). ρh
i,↓(ω) describes spin-↓ hole (particle)

excitations when ω > 0 (ω < 0).
We note that the physical meaning of ρ

p
i,↑(ω) and ρh

i,↓(ω)
is slightly altered in the polarized case (µ↑ �= µ↓). In this
case, ignoring phase separation phenomenon, we again obtain
Eqs. (17) and (18), where the energy ω is replaced by ω + h

[where h is given by Eq. (5)]. Thus, in the polarized case, we
need to replace the energy ω by ω + h in the above discussions
about the physical meaning of ρ

p
i,↑(ω) and ρh

i,↓(ω).
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FIG. 2. (Color online) Superfluid density of states in an unpo-
larized uniform BCS superfluid. The solid line and the dashed line
show the spin-↑ component ρ

p
↑(ω) and the spin-↓ component ρh

↓(ω),
respectively. In this figure, we have used the same values for the
superfluid order parameter � and chemical potential µ, �(1,1) and
µσ , as in Fig. 5, respectively.

We also note that Eqs. (15) and (16) indicate that W 2
i,j

and W 2
M+i,j , respectively, describe the probability densities of

spin-↑ and spin-↓ components of the j th eigenstate at the ith
site. When we write the wave function of the j th eigenstate
in the form �j (i) = (�p

j (i),�h
j (i)), where each component is

related to W 2
i,j and W 2

M+i,j as∣∣�p

j (i)
∣∣2 = Wi,j ,

∣∣�h
j (i)

∣∣2 = WM+i,j , (21)

the wave function is normalized as (note that Ŵ is an
orthogonal matrix)

M∑
i=1

[∣∣�p

j (i)
∣∣2 + ∣∣�h

j (i)
∣∣2] =

2M∑
i=1

W 2
i,j = 1. (22)

From the physical meaning of ρ
p
i,↑(ω) and ρh

i,↓(ω), one may
interpret �

p
j (ω) and �h

j (i) as the spin-↑ particle and spin-
↓ hole components, respectively, when the eigenenergy ω

is larger than −h. When ω < −h, �
p
j (ω) and �h

j (i) have
the physical meaning of spin-↑ hole and spin-↓ particle
components, respectively. We will use these interpretations
in Sec. IV, when we examine the physical properties of bound
states.

Before ending this section, we summarize the details of
our numerical calculations. We consider a 41 × 41 square
lattice, and impose the periodic boundary condition. For
the magnitude of the on-site pairing interaction U , we take
U/t = 6. To avoid band effects originating from the nested
Fermi surface near the half-filling, we consider the low
density region, by setting N↑ = N↓ = 300 in the absence
of a population imbalance (which gives the particle density
per lattice site [N↑ + N↓]/M = 0.357 	 1). Starting from
this unpolarized case, we gradually increase the number of
spin-↑ atoms to explore the possibility of a localization of
excess atoms around the nonmagnetic impurity at (Rx0,Ry0) =
(21,21). For the impurity potential, we take V0/t = 0.25 and
� = 1 in the units of the lattice constant. The resulting impurity
potential V (i = (Rx,Ry)) is shown in Fig. 3.

Under these conditions, we numerically diagonalize H̃MF

to obtain Ŵ in Eq. (6), for a given set of (�(i), n↑(i),

 10  20  30  40
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 20
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 0
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 0.3

 0.4

 0.5

V(i) / t

Rx
Ry

V(i) / t

FIG. 3. (Color online) Model nonmagnetic impurity potential
V (i) used in this paper. We take (R0x,R0y) = (21,21), V0/t = 0.25,
and � = 1.

n↓(i), µ↑, µ↓). We update these by using Eqs. (8)–(11) until
self-consistency is achieved. We then calculate the superfluid
properties around the impurity, such as the LDOSs in Eqs. (15)
and (16), as well as the wave functions of low-lying excited
states in Eq. (21).

III. FORMATION OF MAGNETIC IMPURITY AND
PAIR-BREAKING EFFECT

Figure 4 shows the superfluid properties around the
nonmagnetic impurity in the polarized case (N↑ = 301 >

N↓ = 300). For comparison, we also show the results in the
unpolarized case in Fig. 5 (N↑ = N↓ = 300). As expected,
Figs. 4(a)–4(c) show that the nonmagnetic impurity is mag-
netized in the sense that an excess spin-↑ atom is localized
around it. Then, the last term in Eq. (3) works as a magnetic
impurity potential. Indeed, Fig. 4(d) shows that the superfluid
order parameter �(i) is damaged around the impurity, as in
the case of the ordinary magnetic impurity effect in metallic
superconductivity [1,4].

In the unpolarized case shown in Fig. 5, such a strong
depairing effect is not obtained. The slight decrease of �(i)
around the impurity is only seen in Fig. 5(b), reflecting the
slight suppression of the particle density nσ (i) shown in
Fig. 5(a). This confirms that the remarkable suppression of
�(i) in Fig. 4(d) is attributed to, not the original impurity
potential V (i), but the localized spin-↑ atom. The role of the
weak nonmagnetic impurity potential V (i) is only to slightly
decrease the superfluid order parameter around it, so as to
capture the excess atom.

When we increase the number of excess spin-↑ atoms, they
cluster around the impurity, so that local magnetization sz(i)
around the impurity increases, as shown in Figs. 6(a)–6(c) [39].
In addition, in the case of two excess atoms shown in Fig. 6(b),
when we added one more impurity to the system, we obtain
two magnetic impurities, as shown in Fig. 6(d), where each
impurity is accompanied by one excess spin-↑ atom. Thus,
using these one can tune the magnitude of the magnetization
of each impurity, as well as the concentration of magnetic
impurities.

Here, we comment on the similarity between the mag-
netization of the nonmagnetic impurity in Fig. 4 and the
phase separation observed in polarized Fermi gases [40,41].
In the latter phenomenon, the system spatially separates into
an unpolarized superfluid region and a polarized normal
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FIG. 4. (Color online) Calculated superfluid state around the non-
magnetic impurity at (Rx,Ry) = (21,21). We take the population im-
balance as N↑ = 301 > N↓ = 300, which gives the spin-dependent
chemical potentials µ↑ = −2.26t and µ↓ = −5.20t . Panels (a) and
(b) show the particle densities of spin-↑ atoms and spin-↓ atoms,
respectively. (c) Magnetization sz(i) = n↑(i) − n↓(i). (d) Superfluid
order parameter �(i). In Fig. 7, we show detailed spatial variations
of these quantities around the impurity potential.

region [40–47]. The latter normal region further separates
into a partially polarized region and the outer rim of the
majority component [36,48]. A similar exclusion of the spin-↓
component to the outer rim of the polarized Fermi gas can
be seen in the present magnetic impurity problem. Indeed,
Fig. 7(a) shows that while the density profile n↑(i) of spin-↑

FIG. 5. (Color online) Superfluid state around the nonmagnetic
impurity at (Rx,Ry) = (21,21), in the unpolarized case (N↑ =
N↓ = 300). In this case, we obtain µ↑ = µ↓ = −3.73t . (a) nσ (i)
(σ =↑ , ↓). (b) �(i). We note that sz(i) = 0 in the unpolarized case.

atoms is not so different from that in the unpolarized case
[except for the enhancement at the impurity site (Ry = 21)
due to the localization of the excess spin-↑ atom], spin-↓
atoms are found to be pushed out from the region around the
impurity (Ry � 21).

FIG. 6. (Color online) Intensity of the local magnetization sz(i)
around the impurity at the center of the system. We take N↓ = 300.
In panel (d), there is an impurity at (Rx,Ry) = (11,21) and at (31,21).
The spatial structure of each impurity potential is the same as Eq. (2).
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FIG. 7. (Color online) (a) Particle density nσ (i) (σ = ↑ , ↓) at
Rx = 21, as a function of Ry . We take N↑ = 301 and N↓ = 300. In
this figure, nσ (i,N↑ = N↓) is the particle density in the unpolarized
case (N↑ = N↓ = 300). (b) Spatial variation of the superfluid order
parameter �(i) at Rx = 21. �(i,N↑ = N↓) is the result in the absence
of a population imbalance (N↑ = N↓ = 300).

IV. LOCALIZED EXCITED STATES AROUND THE
MAGNETIZED IMPURITY

Figure 8 shows the local density of states (LDOS) ρi,↑(ω)
around the impurity. In the unpolarized case [panel (a)],
the impurity remains nonmagnetic, so that single-particle
excitations are almost unaffected by impurity scatterings.
The LDOS far away from the impurity (solid line in
Fig. 9) agrees with the ordinary BCS density of states
ρ

p
↑(ω) shown in Fig. 2. Even near the impurity, the overall

structure of the LDOS is unchanged (see the dashed line
in Fig. 9), except for a slightly smaller excitation gap,
reflecting the suppression of �(i) around the impurity seen in
Fig. 5(b).

The situation is quite different in the presence of a
population imbalance. In this case, Fig. 8(b) shows that, in
addition to the simple energy shift by the effective magnetic
field h = [µ↑ − µ↓]/2 = −1.47t , the LDOS is remarkably
modified around the impurity. Since the bulk BCS coherence
peaks are at ω = −3.32t and 0.38t [see the dashed line in
Fig. 10(a)], the four peaks inside the BCS gap (−3.32t �
ω � 0.38t) around the impurity seen in Fig. 8(b) are found to
describe low-lying excited states induced by the magnetized
impurity. Since these peaks disappear as one goes away
from the impurity, they are bound states localized around the
impurity.

These bound states also appear in the spin-↓ component of
the LDOS ρh

i,↓(ω), as shown in Fig. 10(b). The fact that all of
the peak positions inside the BCS excitation gap (−3.32t �
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FIG. 8. (Color online) Superfluid local density of states (LDOS)
ρ

p
i,↑(ω) around the impurity. In this figure, results at Ry = 21 show the

LDOS at the impurity site. (a) Unpolarized case (N↑ = N↓ = 300).
(b) Polarized case (N↑ = 301 > N↓ = 300), where one excess spin-↑
atom is localized around the impurity. In calculating the LDOS, we
have added a small imaginary part δ = 0.05t to the eigenenergies in
order to smear out unphysical fine structures around the coherence
peaks, arising from the discrete energy levels in the finite system.
We briefly note that the influence of the discrete levels still remains
as sharp peaks around the van Hove singularity. We also use this
prescription in Figs. 9 and 10.
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ω
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ω / t
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FIG. 9. (Color online) Local density of states ρ
p
i,↑(ω) in the un-

polarized case (N↑ = N↓ = 300). Apart from the fine peak structure
seen around the van Hove singularity (which is due to the discrete
levels in the finite system), the LDOS far away from the impurity
(solid line) agrees with the uniform BCS density of states ρ

p
↑(ω) in

Fig. 2.
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FIG. 10. (Color online) Local density of states in the polarized
case (N↑ = 301 > N↓ = 300). (a) ρ

p
i,↑(ω). (b) ρh

i,↓(ω). The BCS
coherence peaks exist at ω = −3.32t and 0.38t far away from the
impurity. [See the dashed lines in panels (a) and (b).]

ω � 0.38t) are the same in panels (a) and (b) means that
they are composite excitations consisting of particle and hole
components. To confirm this in a clear manner, for example, we
show the wave functions �j (i) = (�p

j (i),�h
j (i)) of the bound

states (3) and (4) in Fig. 11.
With regard to the composite character of the localized

excited states, we note that the creation operator γ
†
p,↑ of the

Bogoliubov excitation in the ordinary uniform BCS state is
given by the sum of particle and hole creation operators
as

γ
†
p,↑ = upc

†
p,↑ + vpc−p,↓, (23)

where c
†
p,↑ and c−p,↓ are the creation operators of spin-↑

particles and spin-↓ holes, respectively. That is, this basic
property of ordinary single-particle Bogoliubov excitations is
found to also hold in the bound states.

As discussed in Sec. II, ρ
p
i,↑(ω) and ρh

i,↓(ω), respectively,
describe spin-↑ particle (hole) and spin-↓ hole (particle)
excitations when ω > −h (ω < −h). Using this, we find
that the bound states (1) and (2) in Fig. 10, existing below
−h = −1.47t , are composed of spin-↓ particle and spin-↑
hole excitations. Since the energies of the bound states (3)
and (4) are larger than −h = −1.47t , they are found to be
composite excitations of a spin-↑ particle and spin-↓ hole.

To see the mechanism of bound-state formation, it is helpful
to examine the model Hamiltonian in Eq. (3) within the
theory of the magnetic impurity effect developed in the field
of superconductivity [1,2,4–6], where the spatial variation
of the superconducting order parameter is usually ignored.
In addition to this simplification, when we also ignore the
unimportant nonmagnetic potential Ṽ (i) and approximate
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FIG. 11. (Color online) Calculated intensity of the wave functions of bound states. The upper and lower panels show the spin-↑ particle
and spin-↓ hole components, respectively. Panels (a) and (b) show the bound state (3) in Fig. 10. Panels (c) and (d) show the bound state (4).
We note that the right panels show one of the two degenerate bound states existing at the peak (4) in Fig. 10. For the other bound state, see
Fig. 12(b2).
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the magnetic impurity scattering as a δ-functional potential,
Eq. (3) reduces to, in momentum space,

H =
∑
p,σ

[ξp − hσ ]c†p,σ cp,σ − �
∑

p

[c†p,↑c
†
−p,↓ + H.c.]

+ U

2
sz

∑
p,p′,σ

σ c†p,σ cp,σ . (24)

Here, sz is the number of excess spin-↑ atoms localized around
the impurity. When sz can take both positive and negative
values depending on the direction of impurity spin, Eq. (24)
is just the ordinary Hamiltonian describing classical spin in a
superconductor [1,4]. Although the pseudospin in the present
case always points in the +z direction (when N↑ > N↓), this
difference is not crucial for the bound-state problem. Indeed,
Eq. (24) gives the same bound-state solutions as those obtained
in the ordinary magnetic impurity problem [4],

ω = −h ± �
1 − [πρ(0)szU/2]2

1 + [πρ(0)szU/2]2
, (25)

where we have approximated the normal-state density of states
to the value ρ(0) at the Fermi level, for simplicity. [For the
derivation of Eq. (25), see the Appendix.] While four peaks
exist inside the BCS gap in Fig. 10, Eq. (25) only gives two
bound states. This means that the spatial variation of the order
parameter ignored in Eq. (24) is crucial for the formation of
the bound states in the present case.

The superfluid order parameter �(i) is known to be similar
to the ordinary potential [49,50]. Thus, the well structure of
�(i) shown in Fig. 4(d) makes us expect that the bound states
seen in Fig. 10 are trapped by this circular potential well [51].
Indeed, when we examine the bound states with ω > −h, while
the wave function of the lowest state (3) in Fig. 10 is almost
isotropic and nondegenerate [see Fig. 12(a)], the second lowest
states (4) have p-wave symmetry and are doubly degenerate,
as shown in Figs. 12(b1) and 12(b2), which is consistent with
the well-known result that the angular dependencies of bound
states in a circular potential well are given by cos(nθ + α)
or sin(nθ + α) (n = 0,1,2, . . .). In Figs. 12(b1) and 12(b2),
one finds α = π/4, reflecting the breakdown of rotational
symmetry by the background square lattice.

We also obtain localized states with higher angular mo-
menta, such as the d-wave (n = 2) and f -wave (n = 3) states,
as shown in the lower four panels of Fig. 12 (although they
do not appears as peaks in Fig. 10 [52]). Since their energies
are close to the threshold energy ω = 0.38t of the continuum
spectrum, their wave functions spatially spread out, compared
with the s-wave bound state in panel (a). Figure 12 indicates
that the magnetized impurity would be also useful for the study
of a quantum dot in a superfluid Fermi gas.

To show that the well structure of �(i) around the impurity
is crucial for bound-state formation in a simple manner, we
briefly consider a one-dimensional continuum system and
solve a bound-state problem in a pair-potential well �(x),

�(x) =
{
� (0 � x � L),

0 (x < 0,L < x).
(26)
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FIG. 12. (Color online) Intensity |�p
j (i)|2 of the bound-state wave

function with ω > −h. Panel (a) shows the wave function of the
bound state (3) in Fig. 10. The peak (4) in Fig. 10 consists of doubly
degenerate p-wave states given by panels (b1) and (b2). We also
show other bound states with higher energies in panels (c) and (d)
(although they do not appear as peaks in Fig. 10 [52]). The reason
why the degeneracy is lifted in panels (c1) and (c2) is the broken
rotational symmetry of the background square lattice.

Solving the Bogoliubov–de Gennes equations under the
Andreev approximation [50], we obtain the equation for the
bound-state energy E as√

�2 − (E + hS)2

(E + hS)
= tan

(√
m

2εF
(E + hN )L

)
, (27)

where m is the atomic mass and εF is the Fermi energy
measured from the bottom of the energy band. hS and
hN describe the effective magnetic fields in the superfluid
region (x < 0, L < x) and the normal-state region (0 �
x � L), respectively. Although we do not explained the
detailed derivation of Eq. (27) here, we briefly note that
this equation is valid when E + hS and E + hN are both
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FIG. 13. (Color online) Intensity of local magnetization sz(i) in a
trapped superfluid Fermi gas with a population imbalance. Panels (a)
and (b) show the case of the harmonic trap V

(2)
trap(i) of Eq. (28).

The population imbalance is chosen as (a) (N↑,N↓) = (150,70) and
(b) (N↑,N↓) = (150,80). Panel (c) shows the case of the quartic
trap V

(4)
trap of Eq. (29) with (N↑,N↓) = (150,80). Panel (d) shows

the case of the box-type trap V box
trap (i) of Eq. (30), where we set

(N↑,N↓) = (251,250) and λ = 2. In all the cases, we take V 0
trap = 5t .

For the impurity potential at the center of the system, we take
V0/t = 2 and � = 1.

positive, which corresponds to the region ω > −h in Fig. 10.
Solving the bound-state equation (27) for the parameter set
(m,�,εF,L,hS,hN ) evaluated in the case of Fig. 10 [53],
we obtain the lowest bound-state energy for ω > −h as
E � −0.45t , which is consistent with the energy ω = −0.445t

at peak (3) in Fig. 10. Although this is a very simple and rough
evaluation, the agreement supports the importance of the well
structure of �(i) in the formation of the bound states seen in
Fig. 10.

V. EFFECTS OF TRAP POTENTIAL AND FINITE
TEMPERATURE

So far, we have ignored the effects of a trap, as well as
finite temperatures, for simplicity. In this section, we briefly
examine how they affect the localization of excess atoms.

Figure 13(a) shows the intensity of local magnetization sz(i)
in the case when the gas is trapped in the harmonic potential:

V
(2)

trap(i = (Rx,Ry)) = V 0
trap

[ (
Rx − Rx0

Rmax − Rx0

)2

+
(

Ry − Ry0

Rmax − Ry0

)2 ]
. (28)

Here, (Rx0,Ry0) = (21,21) is the center of the lattice and
Rmax = 41 is the number of lattice sites in the x and
y directions. In this panel, the finite intensity of sz(i) can be
seen around the impurity at (Rx,Ry) = (21,21), which means
that the magnetic-impurity formation discussed in the previous
sections also occurs in a trap.
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 0.2

 0  0.05  0.1  0.15  0.2  0.25

s z
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T / t

 0
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 1
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 0  0.5  1  1.5

∆
/ t

T / t

FIG. 14. (Color online) Local magnetization at the impurity site
sz[i = (21,21)], as a function of temperature. We take N↑ = 301 and
N↓ = 300. The inset shows the calculated superfluid order parameter
� as a function of temperature in the mean-field theory. In calculating
� in the inset, we set N↑ = N↓ = 300 and ignored the impurity
potential.

However, when the population imbalance is lowered, all
the excess atoms are localized around the edge of the trap, so
that the impurity remains nonmagnetic, as shown in Fig. 13(b).
Thus, the population imbalance must be large to some extent
to obtain the magnetic impurity.

Since the excess atoms should avoid the spatial region
where the potential is very large, the magnetization of the
impurity is expected to occur more easily when the trap poten-
tial around the edge of the gas is steeper than the harmonic trap
in Eq. (28). Indeed, in the case of Fig. 13(b), when we replace
the harmonic potential V

(2)
trap(i) by a quartic one [54–56],

V
(4)

trap(i) = V 0
trap

[(
Rx − Rx0

Rmax − Rx0

)4

+
(

Ry − Ry0

Rmax − Ry0

)4
]

, (29)

the localization of excess atoms is realized, as shown in
Fig. 13(c). As a more extreme case, when we use the box-type
trap [57],

V box
trap (i) = V 0

trap

[
e−( Rx−1

λ
)2 + e−( Rx−Rmax

λ
)2 + e−(

Ry−1
λ

)2

+ e−(
Ry−Rmax

λ
)2]

, (30)

excess atoms can be localized around the impurity even in the
case of a small population imbalance, as shown in Fig. 13(d).

Next we examine the effects of finite temperatures within
the mean-field theory [58]. Figure 14 shows the local magne-
tization sz(i) at the impurity site, as a function of temperature.
We find that the magnetization of the impurity remains finite
even at finite temperatures. However, as shown in the inset,
the present value of the pairing interaction U = 6t gives the
mean-field superfluid phase transition temperature Tc/t � 1
in the absence of a population imbalance. Thus, the sudden
decrease of sz[i = (21,21)] at T/t � 0.08 means that the
temperature must be far below Tc to realize magnetized
impurities.

In Fig. 14, we see the hysteresis of magnetization, which
is characteristic of the first-order phase transition. Regarding
the present magnetization phenomenon as a kind of phase
separation, we find that this hysteresis behavior is consistent
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with the phase diagram of a polarized Fermi gas [59,60], where
the first-order transition from the phase-separating gas to the
superfluid phase occurs far below Tc in the case of a small
population imbalance.

VI. SUMMARY

To summarize, we have investigated how to realize mag-
netic impurities in a superfluid Fermi gas. In a two-dimensional
attractive Fermi-Hubbard model, we have calculated the
spatial variations of the superfluid order parameter, particle
density, as well as polarization, around a nonmagnetic impurity
within the framework of the mean-field theory at T = 0.

In the presence of a population imbalance (N↑ > N↓),
we showed that the nonmagnetic impurity is magnetized in
the sense that excess spin-↑ atoms are localized around it.
This magnetized impurity behaves like an Ising-type magnetic
scatterer, so that the superfluid order parameter is destroyed
around it. This pair-breaking effect is similar to the magnetic
impurity effect discussed in the superconductivity literature.

Another similarity between the present pseudomagnetic
impurity and a real magnetic impurity in a metallic supercon-
ductor is that both impurities induce low-lying excited states
below the BCS excitation gap. However, while bound-state
formation by the latter magnetic impurity is usually discussed
when ignoring the spatial variation of the superconducting
order parameter, we showed that the local suppression of the
superfluid order parameter around the impurity is important
in the former case. Namely, bound states are trapped inside
a circular potential well formed by the superfluid order
parameter. Because of this, the wave function of each bound
state behaves like cos(nθ + α) or sin(nθ + α) (n = 0,1,2, . . .)
as a function of the angle θ . Thus, this magnetized impurity
may also be viewed as a circular quantum dot in a superfluid
Fermi gas.

In this paper, we have considered immobile impurities. In
this regard, mobile impurities have been recently discussed
in polarized normal Fermi gases [48,61,62], where Fermi
polarons have been observed [35,36]. Mobile impurities have
been also investigated in normal [63–65] and superconducting
states [66,67] of (unpolarized) metals, where the so-called
quantum diffusion phenomenon [68] and effects of the BCS
gap on the mobility of impurities [69] have been observed,
respectively. Thus, an interesting future problem would be how
the mobility of an impurity, the formation of a Fermi polaron,
and the quantum diffusion phenomenon affect the formation
of the magnetic impurity discussed in this paper.

Since competition between magnetism and superconduc-
tivity is one of the most fundamental problems in condensed-
matter physics, our results would be useful for the study of this
important topic by using superfluid Fermi gases. In this regard,
we briefly note that the magnetic impurity discussed in this
paper is classical spin, because it does not have an exchange
term (which is symbolically written as s+σ− + s+σ−, where
s± = sx ± isy and σ± = σx ± iσy represent an impurity spin
and the spin of a Fermi atom, respectively). As a result, the
Kondo effect is absent. Thus, whilst examining competition
between the Kondo singlet and Cooper-pair singlet in cold
Fermi gases, an interesting challenge would be to find out how

to realize a quantum magnetic impurity with an exchange term
in this system.

ACKNOWLEDGMENTS

This work was supported by Grants-in-Aid for Scientific
research from MEXT, Japan (Grants No. 20500044 and
No. 22540412).

APPENDIX: DERIVATION OF THE BOUND-STATE
ENERGIES IN EQ. (25)

To discuss the magnetic impurity problem in a Fermi
superfluid, it is convenient to introduce the 4 × 4 matrix
thermal Green’s function,

Ĝ(p,p′,iωn) = −
∫ β

0
dτeiωτ 〈Tτ {�̂p(τ )�̂†

p′(0)}〉, (A1)

where �̂
†
p = (c†p,↑,c

†
p,↓,c−p,↓,c−p,↑) is the four-component

Nambu field [2,4]. In the absence of a magnetic impurity,
Eq. (A1) has the form Ĝ(p,p′,iωn) = δp,p′Ĝ0(p,iωn), where

Ĝ0(p,iωn) = 1

(iωn + h) − ξpρ3 + �ρ1τ3
. (A2)

Here, ρi and τi (i = 1,2,3) are Pauli matrices, acting on
particle-hole space and spin space, respectively.

The full Green’s function in Eq. (A1) is obtained by
including all magnetic impurity scatterings, which gives [4]

Ĝ(p,p′,iωn) = δp,p′Ĝ0(p.iωn)

+ Ĝ0(p,iωn)t̂(iωn)Ĝ0(p′,iωn). (A3)

Here, the t-matrix t̂(iωn) involves the effects of magnetic
impurity scatterings as

t̂(iωn) = U

2
szτ3 +

(
U

2
sz

)2

τ3F̂ (iωn)

+
(

U

2
sz

)3

τ3F̂ (iωn)2 + · · ·

=
U
2 szτ3

1 − U
2 szF̂ (iωn)

, (A4)

where F̂ (iωn) = ∑
k Ĝ0(k,iωn)τ3. We briefly note that, in the

case of the ordinary magnetic impurity problem where the
impurity spin is sz = ±s, we need to take the average over
the direction of impurity spin as 〈s2n

z 〉 = s2n and 〈s2n+1
z 〉 = 0

(n = 0,1,2, . . .). In this case, t̂(iωn) is given by [4]

t̂(iωn) =
(

U
2 s

)2
τ3F̂ (iωn)

1 − (
U
2 s

)2
F̂ (iωn)2

. (A5)

As usual, the factor F̂ (iωn) in Eq. (A4) can be conve-
niently evaluated by replacing the momentum summation
by energy integration. Assuming the particle-hole symmetry
of the fermion band and approximating the normal-state
density of states by the value ρ(0) at the Fermi level, one
obtains [2,4]

F (iωn) = −πρ(0)
(iωn + h)τ3 + �ρ1√

�2 − (iωn + h)2
. (A6)
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Bound states are obtained as poles of the analytic continued
t-matrix, t̂(iωn → ω + iδ). Using this, we obtain the equation
for the bound-state energies as

0 = det

[
1 + U

2
πszρ(0)

(ω + h)τ3 + �ρ1√
�2 − (ω + h)2

]
, (A7)

which gives Eq. (25). We briefly note that the bound-state
equation in the case of Eq. (A5) is given by

0 = det

[
1 ± U

2
πsρ(0)

(ω + h)τ3 + �ρ1√
�2 − (ω + h)2

]
, (A8)

which also gives Eq. (25).
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