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Beyond mean-field dynamics in open Bose-Hubbard chains
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We investigate the effects of phase noise and particle loss on the dynamics of a Bose-Einstein condensate
in an optical lattice. Starting from the many-body master equation, we discuss the applicability of generalized
mean-field approximations in the presence of dissipation as well as methods to simulate quantum effects beyond
mean field by including higher-order correlation functions. It is shown that localized particle dissipation leads to
surprising dynamics, as it can suppress decay and restore the coherence of a Bose-Einstein condensate. These
effects can be applied to engineer coherent structures such as stable discrete breathers and dark solitons.
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I. INTRODUCTION

Decoherence and dissipation, caused by the irreversible
coupling of a quantum system to its environment, represent a
major obstacle for the long-time coherent control of quantum
states. However, in recent years it has been realized that
dissipation can be extremely useful if it can be controlled
accurately. Recent experiments have shown that strong cor-
relations can be induced by two-body losses in ultracold
quantum gases [1,2]. Three-body losses can be tailored to
generate effective three-body interactions [3] and to prepare
strongly correlated states for quantum simulations of color
superfluidity [4], quantum Hall physics [5], or d-wave pairing
[6]. Even more, dissipation can be used as a universal tool in
quantum state preparation [7,8], entanglement generation [9],
and quantum information processing [10]. These concepts of
controlling quantum dynamics and transport are particularly
important for experiments with ultracold atoms in optical
lattices, where it is possible to address the quantum system
with single-site resolution [11,12]. An even higher spatial
resolution has been realized with a focused electron beam,
removing atoms one by one from the lattice [13,14]. The
effects of such a localized particle loss on the dynamics of
a Bose-Einstein condensate (BEC) have been investigated
from a nonlinear dynamics viewpoint in several papers in
recent years, discussing the possibility to induce nonlinear
structures such as bright breathers [15,16], dark solitons [17],
or ratchets [18]. These studies were based on a mean-field
approximation, where the loss was introduced heuristically as
an imaginary potential.

In this paper we go beyond this approximation and
investigate the quantum dynamics of ultracold atoms in a finite
optical lattice with dissipation, which provides a distinguished
model system for the study of open one-dimensional chains.
Our analysis is based on a numerical integration of the
full many-body master equation and generalized mean-field
methods. In Sec. II, we present an explicit derivation of the
mean-field equations of motion, which hold if the many-body
state is close to a BEC, and generalize this approach to take
into account higher order correlation functions [19,20]. If
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particle loss is the only source of dissipation, the mean-field
equations reduce to a non-Hermitian Schrödinger equation
applied previously [16,17]. While such a non-Hermitian
description has been thoroughly studied for single-particle
quantum mechanics [21], the applicability to open many-body
systems is an open issue.

Two important cases are studied in detail: In Sec. III,
we analyze how boundary dissipation induces localization
and purifies a BEC. In Sec. IV, we consider localized loss
from a single lattice site, which creates a vacancy and leads
to a fragmentation of the condensate. Remarkably, strong
dissipation can suppress the decay of the condensate and a
coherent dark soliton can be generated by properly engineering
the dynamics. The techniques presented here can be directly
applied in ongoing experiments [13,14].

II. THE MEAN-FIELD LIMIT AND BEYOND

The coherent dynamics of ultracold atoms in optical lattices
is described by the celebrated Bose-Hubbard Hamiltonian [22]

Ĥ = −J
∑

j

(â†
j+1âj + â

†
j âj+1) + U

2

∑
j

â
†
j â

†
j âj âj , (1)

where âj and â
†
j are the bosonic annihilation and creation

operators in mode j , J denotes the tunneling matrix element
between the wells, and U is the interaction strength. We set
h̄ = 1, thus measuring energy in frequency units. This model
assumes that the lattice is sufficiently deep, such that the
dynamics takes place in the lowest Bloch band only.

In the presence of dissipation, the dynamics is given by a
master equation in Lindblad form [23],

˙̂ρ = −i[Ĥ ,ρ̂] + Lρ̂. (2)

Here, we are especially interested in the effects of localized
particle loss, which can be implemented by an electron
beam [13,14] or by a strongly focused resonant blast laser.
Furthermore, phase noise is always present in experiments,
which degrades the phase coherence between adjacent wells
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and heats the sample [24,25]. These two processes are
described by the Liouvillians [23,26–28]

Llossρ̂ = −1

2

∑
j

γj (â†
j âj ρ̂ + ρ̂â

†
j âj − 2âj ρ̂â

†
j ), (3)

Lphaseρ̂ = −κ

2

∑
j

n̂2
j ρ̂ + ρ̂n̂2

j − 2n̂j ρ̂n̂j , (4)

where γj denotes the loss rate at site j and κ is the strength of
the phase noise.

To derive the mean-field approximation, we start from
the single-particle reduced density matrix (SPDM) σjk =
〈â†

j âk〉 = tr(â†
j âkρ̂) [19,20,29]. The equations of motion for

σjk are obtained from the master equation (2),

i
d

dt
σj,k = tr(â†

j âk[Ĥ ,ρ̂] + iâ
†
j âkLρ̂)

= − J (σj,k+1 + σj,k−1 − σj+1,k − σj−1,k)

+U (σkkσjk + �jkkk − σjjσjk − �jjjk)

− i
γj + γk

2
σj,k − iκ(1 − δj,k)σj,k, (5)

where we have defined the covariances

�jk�m = 〈â†
j âkâ

†
�âm〉 − 〈â†

j âk〉〈â†
�âm〉. (6)

In the mean-field limit N → ∞ with g = UN fixed, one can
neglect the variances �jk�m in Eq. (5) in order to obtain a
closed set of evolution equations. This is appropriate for a
pure BEC, because the variances scale only linearly with the
particle number N , while the products σjkσ�m scale as N2.
If phase noise can be neglected, i.e., κ = 0, the equations
of motion (5) are equivalent to the non-Hermitian discrete
nonlinear Schrödinger equation

i
d

dt
ψk = −J (ψk+1 + ψk−1) + U |ψk|2ψk − i

γk

2
ψk (7)

by the identification σj,k = ψ∗
j ψk . This provides a proper

derivation of the non-Hermitian Schrödinger equation, which
has previously been applied heuristically [15–17].

The mean-field approximation assumes a pure BEC and is
strictly valid only in the limit N → ∞. To describe many-
body effects such as quantum correlations and the depletion
of the condensate for large, but finite particle numbers, we
generalize the Bogoliubov back-reaction (BBR) method [19]
to the dissipative case, taking into account the covariances
(6) explicitly. We start with the coherent part of the master
equation, which yields the following evolution equations for
the four-point functions:

i
d

dt
〈â†

j âmâ
†
kân〉

= tr(â†
j âmâ

†
kân[Ĥ ,ρ̂])

= (εm + εn − εj − εk)〈â†
j âmâ

†
kân〉

− J 〈â†
j âmâ

†
kân+1 + â

†
j âmâ

†
kân−1 + â

†
j âm+1â

†
kân

+ â
†
j âm−1â

†
kân − â

†
j+1âmâ

†
kân − â

†
j−1âmâ

†
kân

− â
†
j âmâ

†
k+1ân − â

†
j âmâ

†
k−1ân〉 + U 〈â†

j âmn̂mâ
†
kân

+ â
†
j âmâ

†
kânn̂n − n̂j â

†
j âmâ

†
kân − â

†
j âmn̂kâ

†
kân〉. (8)

Again, the interaction Hamiltonian leads to higher-order
correlation functions. To obtain a closed set of evolution
equations, these functions are truncated according to [20]

〈â†
j âmâ

†
kânâ

†
r âs〉 ≈ 〈â†

j âmâ
†
kân〉〈â†

r âs〉
+ 〈â†

j âmâ†
r âs〉〈â†

kân〉 + 〈â†
kânâ

†
r âs〉〈â†

j âm〉
− 2〈â†

j âm〉〈â†
kân〉〈â†

r âs〉. (9)

For a BEC, the six-point function scales as N3, while the
error introduced by this approximation increases only linearly
with N . The relative error induced by the truncation thus
vanishes as 1/N2 with increasing particle number. Close to
a pure condensate, the BBR method thus provides a better
description of the many-body dynamics than the simple
mean-field approximation, since it includes the dynamics
of higher-order methods at least approximately. Using this
truncation, the coherent part of the dynamics is given by

i
d

dt
�jmkn

= −J [�j,m,k,n+1 + �j,m,k,n−1 + �j,m+1,k,n + �j,m−1,k,n

−�j,m,k+1,n − �j,m,k−1,n − �j+1,m,k,n − �j−1,m,k,n]

+U [�mmknσjm − �jjknσjm + �jmnnσkn − �jmkkσkn

+�jmkn(σmm + σnn − σkk − σjj )]. (10)

Particle loss and dissipation affect the dynamics of the four-
point functions as follows:

d

dt
〈â†

j âmâ
†
kân〉 = tr[â†

j âmâ
†
kânLρ̂]

= −γj + γm + γk + γn

2
〈â†

j âmâ
†
kân〉 + δmkγm〈â†

j ân〉
− κ(2 + δmn + δjk − δjm − δjn − δkm − δkn)

×〈â†
j âmâ

†
kân〉.

In terms of the variances this yields

d

dt
�jmkn = −γj + γm + γk + γn

2
�jmkn + δmkγmσjn

− κ(δmn + δjk − δjn − 2δkm)(�jmkn + σjmσkn)

− κ(2 − δjm − δkn)�jmkn. (11)

The BBR method is especially useful if the many-body state
is close to, but not exactly equal to a pure BEC. In particular, it
accurately predicts the onset of the depletion of the condensate
mode. The number of atoms in this mode is given by the leading
eigenvalue λ0 of the SPDM σj,k , where the trace of σj,k gives
the total number of atoms, ntot. The ratio λ0/ntot is referred to
as the condensate fraction [19,30].

The BBR approach has been extensively tested for closed
systems in [20]. Therefore, we only briefly comment on the
performance of this method in the presence of dissipation.
Figure 1 shows two examples of the dynamics of a BEC in
a leaky double-well trap, comparing the BBR approximation
(solid blue line) and numerically exact results (thick red line).
The initial state is assumed to be a pure BEC with equal
population and a phase difference of π between the two modes.
In the case of strong dissipation, the BBR approximation
predicts the correct evolution of the population imbalance
〈n̂2 − n̂1〉 with astonishing precision. In contrast, significant
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FIG. 1. (Color online) Numerical test of the BBR method for
a leaky double-well trap with loss in the second well. (a) and (b)
Dynamics of the population imbalance 〈n̂2 − n̂1〉 for two different
values of the loss rate, comparing the BBR approximation (solid blue
line) to numerically exact results (thick red line). (c) Condensate
fraction λ0/ntot as a function of time and the loss rate γ2. (d) Trace
distance (12) between the exact rescaled SPDM σ (t)/n(t) and
the respective BBR approximation. In all cases the initial state is
assumed to be a pure BEC with equal population and a phase
difference of π between the two modes. The remaining parameters
are J = 10 s−1, κ = 0, U = 0.5 s−1, and n(0) = 200 atoms.

differences are observed for weak losses. This means that the
presence of particle loss actually improves the performance
of the BBR method, as the dissipation drives the many-body
quantum state towards a pure BEC [36]. This is confirmed by
the numerical results for the condensate fraction λ0/ntot plotted
in Fig. 1(c). A significant depletion of the condensate is only
observed for small values of the loss rate γ2. For a further
quantitative analysis of the accuracy, we compare exact and
BBR results for the rescaled SPDM σ (t)/ntot(t). Figure 1(d)
shows the trace distance of the exact matrix and the matrix
obtained by the BBR method,

d := 1
2 tr(|σBBR/nBBR − σex/nex|), (12)

as a function of time for different values of γ2. For sufficiently
large dissipation, one observes that the distance approximately
vanishes for all times. In this regime the quantum dynamics is
faithfully reproduced by the BBR approximation.

III. BOUNDARY DISSIPATION

We first analyze the effects of boundary dissipation with a
focus on small systems for which numerically exact solutions
of the many-particle dynamics are still possible, for instance
by the quantum jump method [23,31]. A comparison to
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FIG. 2. (Color online) Dynamics of a BEC in a triple-well trap
with boundary dissipation: (a) atomic density 〈n̂j (t)〉, (b) total particle
number, and (c) the condensate fraction λ0/ntot for J = 5 s−1, γ =
20 s−1, κ = 0, U = 30 s−1, and n(0) = 60 atoms. (d) Total particle
number after a fixed propagation time tfinal = 0.2 s as a function of the
interaction strength U . Mean-field (− · −) and BBR (—) results are
compared to numerically exact simulations with the quantum jump
method averaging over 200 trajectories (thick red line).

numerically exact results for these examples provides another
test of performance of the BBR approach.

We consider the decay of an initially pure, homoge-
neous BEC in a triple-well trap with boundary dissipation.
Figures 2(a) and 2(b) show the evolution of the atomic density
and the total particle number for strong interatomic interactions
U = 30 s−1. One observes a fast decay of the atoms at
the outer sites, while the population at the central site is
remarkably stable. This is confirmed by the evolution of the
total particle number, which rapidly drops to about one-third
of its initial value, where it saturates for a long time. This is a
consequence of the dynamical formation of a discrete breather
at the central site, which is an important generic feature of
nonlinear lattices. Generally, discrete breathers, also called
discrete solitons, are spatially localized, time-periodic, stable
excitations in perfectly periodic discrete systems [32–35].
They arise intrinsically from the combination of nonlinearity
and the discreteness of the system. In the presence of boundary
dissipation, these excitations become attractively stable such
that the quantum state of the atoms will converge to a pure
BEC with a breatherlike density for a wide class of initial
states. Once a discrete breather is formed, it remains stable
also if the dissipation is switched off. The crucial role of
strong interactions is illustrated in Fig. 2(d), where the residual
atom number after tfinal = 0.2 s of propagation is plotted as
a function of the interaction strength. The particle number
increases for large values of U to ntot(tfinal) ≈ 20 due to the
breather formation.

For strong interactions a simple mean-field approximation
fails. It strongly underestimates the residual particle number
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as it predicts that discrete breathers are formed only for
stronger losses. In contrast, the BBR results agree well with
the many-particle simulation, even for large values of U .
We thus conclude that quantum fluctuations facilitate the
formation of repulsively bound structures. Furthermore, a
mean-field approach cannot account for genuine many-body
features of the dynamics. Figure 2(c) shows the evolution
of the condensate fraction λ0/ntot, where λ0 is the leading
eigenvalue of the SPDM [30]. In the beginning, interactions
lead to a rapid depletion of the condensate. On a longer time
scale, however, dissipation restores the coherence and drives
the atoms to a pure BEC localized at the central lattice site [36].
The BBR approach faithfully reproduces the depletion and
repurification, but additionally predicts unphysical temporal
revivals. This example thus demonstrates the strength but also
the limitations of this method.

The decay dynamics of the discrete breather state is further
analyzed in Fig. 3. The total atom number ntot(t) decreases
rapidly until the discrete breather is formed at t ≈ 0.2 s.
Afterwards the decay is much slower and clearly nonexponen-
tial. In both regimes, one can calculate the evolution of ntot(t)
approximately, starting from the relation ṅtot = −γ (n1 + n3).
Initially, all sites are filled homogeneously, n1 = n3 = ntot/3,
such that the total particle number decays as

ntot(t) ≈ ntot(0)e−2γ /3t . (13)

When the discrete breather is formed, the population
of the outer wells is given by n1 = n3 = J 2/(U 2ntot)
in first-order perturbation theory. The atom number then
decays as

ntot(t) ≈
√

n2
db − 4γ J 2t/U 2, (14)

where ndb is the number of atoms bound in the discrete
breather state. Both approximations are compared to the BBR
simulation results in Fig. 3, assuming a breather with ndb = 16
atoms. One observes excellent agreement in both regimes, i.e.,
an exponential decay for very short times (t � 0.1 s) and an
algebraic decay when the discrete breather is formed. The
transition between the linear and nonlinear decay takes place
at t ≈ 0.2 s. A deviation from the algebraic decay (14) for the
discrete breather is observed only for very long times when
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FIG. 3. (Color online) Decay of a discrete breather state for
J = 5 s−1, γ = 20 s−1, κ = 0, and U = 15 s−1. Numerical results
calculated with the BBR method (—) are compared to the analytic
estimates (13) and (14), respectively (− − −).

the atom number is very small, such that the simple perturba-
tive estimate for n1,3 is no longer valid.

IV. LOCALIZED LOSS

Recent experiments with ultracold atoms have demon-
strated enormous progress in spatial addressability using
specialized optical imaging systems [11,12] or a focused
electron beam [13,14]. In particular, the latter experiment
allows one to manipulate a Bose-Einstein condensate in an
optical lattice dissipatively with single-site resolution. In
the following, we study the quantum dynamics in a finite
lattice of 11 sites with closed boundary conditions and loss
occurring from the central site only, which leads to remarkably
different decay as in the case of boundary dissipation studied
above.

A remarkable feature of the quantum dynamics is illustrated
in Fig. 4, showing the results of a BBR simulation for an
initially pure homogeneous BEC. For a modest loss rate
γ = 20 s−1, atoms tunnel to the central site where they are
dissipated with a rate γ , such that the BEC decays almost ho-
mogeneously. On the contrary, stronger losses (γ = 100 s−1)
lead to the formation of a stable vacancy. The central site
is rapidly depleted, but the atoms in the remaining wells are
mostly unaffected. Thus one faces the paradoxical situation
that an increase of the loss rate can suppress the decay of the
BEC. Two effects contribute to this counterintuitive behavior:
(i) The absorbing potential suppresses tunneling to the leaky
lattice site. This effect is present also in the linear case and
can be explained by an analogy to wave optics [1]: A large
mismatch of the index of refraction leads to an almost complete
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FIG. 4. (Color online) Formation of vacancies by localized loss
at the central lattice site. [(a),(b)] Evolution of the atomic density
〈n̂j (t)〉 (color scale as in Fig. 2). [(c),(d)] Final value of the total
particle number after a fixed propagation time tfinal as a function
of the loss rate γ , without (solid lines) and with strong phase noise
(dashed lines, κ = 50 s−1). The remaining parameters are J = 5 s−1,
U = 0.2 s−1, and n(0) = 1000 particles [(a)–(c)] and U = 2 s−1 and
n(0) = 50 particles (d). The dynamics has been simulated with the
BBR (thin blue lines) and the quantum jump method (thick red lines).
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reflection of a wave from a surface. This is true for an imaginary
index describing an absorption as well as for a real index. (ii)
A dark breather stabilizes the vacancy and prevents the flow of
atoms to the central site. This nonlinear structure also remains
stable if the dissipation is reduced or switched off afterward
(cf. [33–35] for a discussion of the stability of breathers).

The suppressed decay of the BEC is further illustrated in
Figs. 4(c) and 4(d), where the residual atom number after
a fixed propagation time is plotted as a function of the loss
rate γ . The coherent output of the system, i.e., the number
of lost atoms, assumes a maximum for a finite loss rate
γc. This maximum is reminiscent of the quantum stochastic
resonance discussed in [36]. In the following we will estimate
the value of γc by determining a lower bound for γ for the
dynamical breather formation. As a single (both bright and
dark) breather exhibits a pronounced population imbalance
between the central site and the neighboring sites, we estimate
γc by matching the time scales of dissipation τD = 2/γ and
tunneling τJ , i.e., τD = τJ . For smaller values of γ , atoms can
tunnel away from the leaky lattice site again before they are
lost, while for larger values of γ a population imbalance can
form. From Eq. (7) we read τJ = 1/(2J ), where the factor
1/2 accounts for atoms tunneling from two sites to the leaky
site. Hence, the critical loss rate is estimated as γc = 4J .
We find good agreement of our qualitative estimate for γc

[dotted vertical lines in Figs. 4(c) and 4(d)] with the dip in the
total particle number. An important quantity for the breather
formation and stability is the effective nonlinearity of the
system λ = Untot(t)/2J , which, due to particle loss, is time
dependent. Strikingly, though λ depends on the interaction
strength U [which is different in Figs. 4(c) and 4(d)], the fairly
good estimate γc is independent of U .

Figure 4(d) shows the respective results for a triple-well
trap with loss from the central site. A comparison of the
BBR approximation to a numerically exact many-particle
simulation shows good agreement for all values of γ .
Phase noise suppresses decay as it effectively decouples the
lattice sites. Thus, only the atoms initially loaded at the leaky
lattice site decay as e−γ t , while the other atoms remain at their
initial positions. With increasing loss rate γ , the number of
atoms lost from the trap approaches ≈n(0)/M , with M being
the number of lattice sites, as shown in Figs. 4(c) and 4(d).

Previous reasoning suggests using dissipation as a tool to
coherently engineer the quantum state of a BEC in an optical
lattice. Mean-field theory predicts that dissipation can be used
to efficiently create a coherent dark soliton [17], but cannot
assert the coherence of the final state as discussed above.
The results of a BBR and a quantum jump simulation of the
many-body dynamics shown in Fig. 5 reveal the limitations
of the phase coherence of a soliton generated by local
dissipation. The upper panels [(a) and (b)] show the rescaled
eigenvalues λm/ntot of the SPDM [30]. One observes that there
are two macroscopic eigenvalues approaching 1/2, while all
remaining eigenvalues vanish approximately. This proves that
the dissipation generates a fragmented BEC consisting of two
incoherent parts rather than a single BEC with a solitonic
wave function. The BBR simulations correctly describe the
fragmentation of the condensate, but predict temporal revivals
of the coherence which must be considered as artifacts of
the approximation. Experimentally, one can test the coherence
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FIG. 5. (Color online) Coherence of a vacancy generated by
loss from the central site: [(a),(b)] atomic density, [(c),(d)] scaled
eigenvalues λm/ntot of the SPDM, and [(e),(f)] phase coherence g(1)

between the two BEC fragments. Parameters are the same as in Fig. 4
with γ = 100 s−1 and κ = 0. Results of a quantum jump simulation
are plotted as thick red lines and BBR results as thin blue lines.

by the interference of the two fragments in a time-of-flight
measurement. Figures 5(e) and 5(f) show the coherence

g(1)(�,m) = 〈â†
�âm + a

†
mâ�〉√〈n̂�〉〈n̂m〉 (15)

between the wells � and m. One clearly observes the
breakdown of phase coherence between the two condensate
fragments.

In order to overcome the loss of coherence, one can,
however, engineer the many-body dynamics. Figure 6 illus-
trates the generation of dark solitons comparing three different
strategies. If the dissipation is switched off after the generation
of a vacancy at t = 0.1 s, the condensate remains pure for
long times. However, the vacancy is not stable but decays
into two dark solitons traveling outwards [17], where they are
reflected at the boundaries. The effects of a phase imprinting,
which is an established experimental method [37], are shown
in Fig. 6(b). A local potential is applied to the lower half
of the lattice for t < 0.1 s, imprinting a phase difference of
π . Again coherence is preserved but the generated solitons
travel outward. A coherent and stable dark soliton can be
engineered by combining both methods, as shown in Fig. 6(c).
The generated dark soliton stays at its initial position and
remains coherent over a long time.

V. CONCLUSION

We have discussed the influence of localized particle
dissipation on the dynamics of a finite one-dimensional
Bose-Hubbard chain, which describes a Bose-Einstein
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FIG. 6. (Color online) Generation of dark solitons using loss
imprinting at a rate γ = 100 s−1 at the central site [(a),(c)] and phase
imprinting in the lower half of the lattice [(b),(c)], both for times
t < 0.1 s only. Shown are the atomic density (left, color scale as in
Fig. 2) and the scaled eigenvalues of the SPDM (right) calculated with
the BBR method. Parameters are J = 5 s−1, U = 0.1 s−1, κ = 0,
and n(0) = 1000 particles.

condensate in a deep optical lattice [13,14]. Starting from the
many-body master equation, we have derived the mean-field
approximation and the dissipative Bogoliubov back-reaction
method, which allows a consistent calculation of the depletion
of the condensate.

Two important special cases have been studied in de-
tail. Particle loss at the boundary leads to localization and
the formation of coherent discrete breathers. Surprisingly,

dissipation together with interactions can repurify a BEC. A
striking effect of localized loss is that strong dissipation can
effectively suppress decay and induce stable vacancies. The
decay shows a pronounced maximum for intermediate values
of the loss rate, when the time scales of the dissipation and the
tunneling are matched. Combined with an external potential,
these effects can be used to generate stable coherent dark
solitons. These examples show that engineering the dissipation
is a promising approach for controlling the dynamics in
complex quantum many-body systems.

Ultracold atoms provide a distinguished model system for
the dynamics of interacting quantum systems, such that the
effects discussed in the present paper may be observed in
different systems, too. In particular, quantum transport of
single excitations driven by local dissipation has recently been
studied in a variety of physical systems ranging from spin
chains [38] to light-harvesting biomolecules [39]. On the other
hand, it has also been shown on the mean-field level that non-
linear excitations such as discrete breathers play an important
role for quantum transport in these systems (cf. [33,34,40],
and references therein). Thus it is of general interest to further
explore the regime which interpolates between the nonlinear
mean-field dynamics and the many-body quantum dynamics
in the spirit of the work presented here.
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