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Slow-light probe of Fermi pairing through an atom-molecule dark state
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We consider the two-color photoassociation of a quantum degenerate atomic gas into ground-state diatomic
molecules via a molecular dark state. This process can be described in terms of a � level scheme that is formally
analogous to the situation in electromagnetically induced transparency in atomic systems and therefore can result
in slow-light propagation. We show that the group velocity of the light field depends explicitly on whether the
atoms are bosons or fermions, as well as on the existence or absence of a pairing gap in the case of fermions,
so that the measurement of the group velocity realizes a nondestructive diagnosis of the atomic state and the
pairing gap.
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I. INTRODUCTION

Degenerate atomic Fermi gases have attracted much interest
in recent years, well past the confines of traditional atomic,
molecular, and optical (AMO) physics [1]. The existence of
correlated Fermi pairs results in a number of effects that
can be explored particularly well in these systems, due in
particular to the control of two-body interactions provided by
Feshbach resonances. These include detailed studies of the
crossover from Bardeen-Cooper-Schrieffer (BCS) superfluid-
ity to Bose-Einstein condensation (BEC) [1], of crystalline
and supersolid phases [2], as well as spin-charge separation
or spin drag [3], to mention a few examples. However, in
the absence of any obvious change of density profile, the
detection of Fermi pairing is challenging, in sharp contrast
to the familiar BEC transition of bosons. A long-standing
goal remains therefore to develop methods to efficiently detect
the pairing signature of fermionic systems and other related
exotic phases. Approaches toward this goal have focused
on the measurement of atomic density-density correlations
via the resonant or nonresonant optical response of the
fermionic atoms [4], including methods of radio-frequency
spectroscopy [5], photoemission spectroscopy [6], and Raman
spectroscopy [7]. Alternative methods, such as scanning
tunneling microscopy [8] or acoustic attenuation [9], are also
being actively pursued.

In parallel to these developments, rapid experimental
advances have resulted in the coherent formation of ultra-
cold molecules from Bose or Fermi atoms [10]. The stable
formation of diatomic molecules from laser-cooled alkali-
metal atoms has been achieved by using magnetic Feshbach
resonances and optical photoassociation (PA) techniques. By
applying an all-optical PA method, molecules associated with
ultracold atoms can be successfully transferred into their
rovibrational ground state [11].

A key component of the two-color PA method is the
existence of an atom-molecule dark state, as first demonstrated
by Winkler et al. [12]. The underlying quantum interference
and slow-light propagation were also observed for ultracold
sodium atoms by Turner et al. [13], hinting at the pos-
sibility of studying the quantum control of light through
cold reactions [10–14], quantum state transfer from light to

molecules [14,15], as well as high-precision diagnostics of
Fermi gases via PA spectroscopy [7].

In this paper we show that the slow-light propagation
associated with the existence of such a dark state also provides
a relatively simple nondestructive probe of Fermi pairing,
without the need for additional excitations (atom-to-atom,
atom-ion-to-molecule, or molecule-to-molecule) or for laser
imaging of the populations of transferred particles. This
proposed method finds additional motivation in previous
work [16] that showed that the statistical properties of the
molecular field formed from ultracold atoms depends strongly
on the statistical properties of these atoms. In particular, it
was found that for short times, the number of molecules
created scales as the square N2 of the number of atoms in
the case of an atomic Bose-Einstein condensate, but as N for
a normal Fermi gas at zero temperature, a manifestation of
the independence of all atomic pairs in that case. For a paired
Fermi gas, the situation is intermediate between these two
extremes: the molecules are formed at a higher rate than for a
normal Fermi gas, and the maximum number of molecules is
larger, approaching the BEC situation for strong pairing.

The main result of the present analysis is that a related
situation does occur when considering the dark-state prop-
agation of a photoassociating light field: in contrast to the
case where photoassociation originates from a condensate of
bosonic atoms, and where the inverse group velocity v−1

g of
the light field is known to scale as N2, we find that for a
normal Fermi gas at T = 0 it scales as N . A paired Fermi
system represents an intermediate situation, as was the case
in Ref. [16]. It follows that the group velocity is a direct
measure of the pairing gap �. This simple all-optical method
is also expected to prove useful in probing, e.g., polaron-to-
molecule transitions and atom-molecule vortex states [17] by
photoassociating a spin-imbalanced or a rotating Fermi gas.
We remark that this proposal involves the use of tunable atom-
molecule interactions and as such is fundamentally different
from approaches based on single-atom excitations [4,18].

The paper is organized as follows. Section II describes
our model and calculates the slow-light group velocity of a
quantized optical field that propagates in a normal Fermi gas
and helps photoassociating atoms into molecules via a dark-
state intermediate level. Section III evaluates the effect of a
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Fermi pairing gap on that velocity and shows that it depends
strongly on the magnitude of the gap. Finally Sec. IV is a
conclusion and outlook.

II. NORMAL FERMI GAS

We first consider the two-color photoassociation of a
homogeneous, normal degenerate Fermi gas with no pairing.
The entrance channel atoms, the intermediate state |m〉, and
the closed-channel bosonic molecules are characterized by the
annihilation operators ĉkσ , m̂k+k′ and â, respectively, where k
and k′ are wave numbers and σ labels the fermionic spin.
We assume that the PA between atomic pairs and excited
molecules in state |m〉 is driven by an optical field that is
treated quantum mechanically at that point, and the field that
drives the molecules to their ground state |g〉 is classical, with
Rabi frequency �(t) (see Fig. 1).

At the simplest level, the Hamiltonian of this system can be
expressed as (h̄ = 1)

Ĥ =
∑
k,σ

εk

2
ĉ
†
kσ ĉkσ + g

∑
k,k′

(Êm̂
†
k+k′ ĉk↑ĉk′↓ + H.c.)

+
∑
k,k′

[δm̂†
k+k′m̂k+k′ + �(âm̂

†
k+k′ + H.c.)], (1)

where g is the atom-molecule coupling constant, δ is the
detuning between the frequency of the quantized photoas-
sociation field and the frequency difference between the
atomic fermions and the molecular state |m〉 (we neglect the
dispersion in fermionic energies εk for simplicity), and �(t)
is the Rabi frequency of the classical field, taken to be real
without lack of generality. The s-wave collisions between
fermionic atoms, between molecules, and between atoms and
molecules are ignored for a dilute gas. We note that a quantized
description of the photoassociating field is not required in the
calculation of its group velocity, but as further discussed later,
it demonstrates the potential to achieve control of the statistics
of the closed-channel molecules.

δ

ε(z, t)

|m >

|g >

Ω

ˆ̂

pairing

molecule

molecule
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FIG. 1. (Color online) Schematic of two-color PA in an ultracold
degenerate Fermi gas with or without Cooper pairing. The �

configuration illustrated here highlights the close formal analogy to
the familiar situation of atomic EIT [18], but any narrow intermediate
molecular level will work as well in the weak probe limit.

We restrict ourselves for simplicity to the association of
atom pairs with opposite momenta (k = −k′) and opposite
spin, in which case the intermediate molecules can be
also described in terms a single-mode bosonic field when
concentrating on short-time dynamics; see, e.g., Refs. [16,19].
With these simplifying assumptions, this system is formally
analogous to the situation of electromagnetically induced
transparency (EIT) in atomic � systems and can be expected
to result in slow-light propagation.

We describe the propagation of the light fields in the atomic
ensemble in an effective one-dimensional theory, following
the approach familiar from nonlinear optics and fiber optics.
We emphasize that this does not imply that we consider a
one-dimensional atomic sample. Rather, the effective one-
dimensional propagation of the light field results from an
integral over the transverse dimensions of the sample; see, e.g.,
Ref. [20]. This approach is appropriate provided the Rayleigh
length of the light fields is large compared to the length of the
atomic sample, and that focusing and defocusing effects can
be neglected.

The quantized optical field Ê(z,t) of carrier frequency ν is
then given by

Ê(z,t) =
√

h̄ν

2ε0L
Ê(z,t) exp[iν(z/c − t)],

where L is the quantization length. It satisfies the commutation
relation

[Ê(z,t),Ê†(z′,t)] = ν

ε0
δ(z − z′).

Within the slowly-varying-amplitude approximation, the prop-
agation equation of the field envelope Ê(z,t) is given by(

∂

∂t
+ c

∂

∂z

)
Ê(z,t) = igL

∑
k

ĉ
†
−k↓(z,t)ĉ†k↑(z,t)m̂(z,t). (2)

In the following we consider the regime of weak excitations,
where the atomic population remains essentially undepleted.
The initial state of the atom-molecule system is taken as

|ψ(0)〉 = |F 〉 ⊗ |0〉m ⊗ |0〉a,
where |0〉m and |0〉g denote the vacuum state for the molecules,

|F 〉 =
∏
k

ĉ
†
−k↓ĉ

†
k↑|0〉,

and the product is taken up to the Fermi surface, a step
appropriate for temperatures much below the Fermi tempera-
ture [16]. Introducing the pseudo-spin operators

ŝ+
k = (ŝ−

k )† = ĉ
†
−k↓ĉ

†
k↑,

(3)
ŝz

k = 1
2 (ĉ†k↑ĉk↑ + ĉ

†
−k↓ĉ−k↓ − 1),

which satisfy the commutation relations

[ŝ+
k ,ŝ−

k′ ] = 2δkk′ ŝz
k,

[
ŝz

k,ŝ
±
k′
] = ±δkk′ ŝ±

k , (4)

and the collective operators

Ŝ± =
∑

k

ŝ±
k , Ŝz =

∑
k

ŝz
k = N

2
− â†â − m̂†m̂,

(5)
Ŝ2 = Ŝ+Ŝ− + Ŝz(Ŝz − 1),
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with the conserved total number of atomic pairs and molecules

N =
∑

k

(ĉ†k↑ĉk↑ + ĉ
†
−k↓ĉ−k↓)/2 + (â†â + m̂†m̂)

= (Ŝz + N/2) + (â†â + m̂†m̂), (6)

yields for the Hamiltonian ĤN the simplified form

Ĥ =
∑

k

εkŝ
z
k + δm̂†m̂ + (gÊm̂†Ŝ− + �m̂†â + H.c.). (7)

The resulting Heisenberg equations of motion are, by approx-
imating all εk’s by the Fermi energy εF ,

i
dŜz

dt
= gÊ †m̂Ŝ+ − gÊm̂†Ŝ−, i

dŜ−
dt

= εF Ŝ− − 2gÊ †m̂Ŝz,

i
dŜ+
dt

= −εF Ŝ− + 2gÊm̂†Ŝz, i
dm̂

dt
= gÊ Ŝ− + δm̂ + �â,

i
dâ

dt
= �m̂, i

dÊ
dt

= gm̂Ŝ−. (8)

In the following we consider the resonant situation δ = 0. In
the limit of weak excitations considered here we can also set
dm̂/dt → 0. We then have, in the lowest nonvanishing order
in the excited molecular state [14,21],

â = −(g/�)Ê Ŝ−, m̂ = −i(g/�)Ŝ−
∂

∂t

( Ê
�

)
. (9)

The propagation of the field Ê(z,t) is then governed by the
equation (

∂

∂t
+ c

∂

∂z

)
Ê(z,t) = −g2LN

�

∂

∂t

( Ê
�

)
, (10)

where we have used

Ŝ2|F 〉 = S(S + 1)|F 〉 = N

2

(
N

2
+ 1

)
|F 〉, (11)

and the fact that in the weak excitation approximation we have

〈Ŝ+Ŝ−〉 = ( − n2
a + naN − na

) + N ∼ N. (12)

Equation (10) can be recast as(
∂

∂t
+ c

1 + βf

∂

∂z

)
Ê(z,t) = βf

1 + βf

(
1

�

∂�

∂t

)
Ê . (13)

where

βf ≡ g2LN

�2
. (14)

That is, the group velocity of the field Ê(z,t) is

vg = c

1 + βf

= c cos2 θ, (15)

with

θ = tan−1(g
√

LN/�). (16)

As mentioned in the Introduction, the scaling of βf with N

should be contrasted with the situation for a pure condensate
of bosonic atoms, in which case it is predicted that [14]

βf → βb = g2LN2

�2
= Nβf . (17)

As was the case in the analysis of molecule formation
of Ref. [16], this difference is due to the fact that for a
Bose-Einstein condensate the photoassociation is a collective
atomic effect, while in a normal Fermi gas the atom pairs act
independently from each other.

As already indicated, the form of vg is independent of
whether the field Ê(z,t) is treated classically or quantum
mechanically (see the related experiment of Ref. [13]). The
quantized description used here is primarily to facilitate a
direct comparison with the bosonic atom-molecule system of
Ref. [14]. Note, however, that Eq. (9) shows that the statistical
properties of the closed-channel molecules are determined by
the states of both the optical field and the Fermi atoms, hinting
at the possibility of quantum control of the closed-channel
molecules, e.g., by applying a squeezed PA field [14].

The next section expands these considerations to the case
of a paired Fermi gas, which is then expected to represent an
intermediate situation between these two extremes. We show
that this is indeed the case, and as a result, measuring the
group velocity of the photoassociating field provides a direct
measure of the pairing gap.

III. PAIRING AND GROUP VELOCITY

To account for the impact of Cooper pairing on the group
velocity vg we include attractive pairing interactions into
Eq. (1) in the usual fashion via the Hamiltonian [16,19]

ĤBCS = Ĥ − U
∑
k,k′

ŝ+
k ŝ−

k′ . (18)

The BCS ground state is found as usual by minimizing
〈ĤBCS − µN̂〉, where µ is the chemical potential, using the
ansatz

|BCS〉 =
∏
k

(uk + vkŝ
+
k )|0〉, (19)

with the result(
u2

k

v2
k

)
= 1

2

(
1 ∓ ξk√

ξ 2
k + |�|2

)
. (20)

Here ηk = √
ξ 2

k + |�|2 is the mean-field quasiparticle energy,
ξk = εk − µ is the kinetic energy of the atoms measured from
the Fermi surface, and

� = U
∑

k

ukvk = U

2

∑
k

�√
ξ 2

k + |�|2
(21)

is the gap parameter.
The interaction Hamiltonian (18) does not modify the

equations of motion for the operators m̂, â, and Ê . In the
present context, its main effect in the weak excitation limit is
to replace 〈Ŝ+Ŝ−〉 by

〈Ŝ+Ŝ−〉 =
∑

k

v2
k +

∑
k �=k′

ukvkuk′vk′  N +
(

�

U

)2

. (22)

Within the weak-coupling limit of BCS theory, εk and ξk
are approximately independent of the wave vector k, εk → εF
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log   (N)
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FIG. 2. (Color online) Dimensionless relative time delay Td

(scaled by L/vg) as a function of the dimensionless pairing gap �/ξ

and the total number of atomic pairs and molecules N .

and ξk → ξ , where εF is the Fermi energy [22]. In that case
the group velocity becomes

vg,� = c

1 + β�

, (23)

where

βf → β� = βf

(
1 + N�2

4ξ 2 + 4�2

)
, (24)

indicating that it now depends on both N and the pairing
gap �.

This is illustrated in Fig. 2, which shows the time delay

Td = L

vg,�

− L

vg

= Lβ�

c
(25)

experienced by a short photoassociating light pulse as a
function of N and the pairing gap �, relative to the delay
in the absence of gap. For large values of �, we have
vg,� ∼ N−2, approaching the case of a bosonic atom-molecule
dark-state medium [14], as would be intuitively expected.
The gap-dependent enhancement factor that is determined
precisely by the ratio of the molecule population Na(�) and
Na in the presence or absence of a pairing gap,

ζ = 1 + N�2

4(ξ 2 + �2)
= Na,�

Na

, (26)

see Fig. 3. That is, the variation in group velocity originates
directly from the PA-induced atom-molecule superpositions in
the � level scheme of Fig. 1.

Note that it is the relative number of molecules (i.e. the ratio
of the cases with and without BCS pairing) that is plotted in
Fig. 3. That ratio approaches unit for very small pairing gaps,
as should be expected. The absolute number of molecules,
however, is proportional to (g/�)2 ∼ 10−4 for typical values
g ∼ 10 kHz, � ∼ 1 MHz, and thus remains quite small in
comparison with the total number of atoms. This is again
similar to the situation in purely atomic systems, where the
weak excitation approximation was shown to be valid in the
regime of weak probe fields [18].
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FIG. 3. (Color online) Relative molecule population ζ−1 = Na/

Na(�) as a function of the dimensionless pairing gap �/ξ for several
values of N . The outer-most curve corresponds to N = 102 and the
inner-most to N = 105.

IV. CONCLUSION

In conclusion, we have shown that the two-color pho-
toassociation of fermionic atoms into bosonic molecules via
a dark-state transition results in a group velocity of the
photoassociating field that can be slowed significantly, in
complete analogy with the situation of EIT in � three-level
atomic systems. The scaling of the group velocity vg with
particle number depends not only on whether the atoms
are bosonic or fermionic, with an associated N2 versus N

dependence, but also on the possible pairing of the fermionic
atoms resulting from attractive two-body interactions. As
such, the propagation delay of the photoassociating light
pulse Ê(z,t) provides a direct measurement of the pairing gap
�. This nondestructive in situ diagnostic technique supports
and extends the idea of using Raman spectroscopy [7] to
extract the pairing parameters, but differs from proposals based
solely on the use of atomic transitions [18]. We note that the
different features in slow-light propagation for both bosonic
and fermionic atoms were also studied previously for purely
atomic transitions (without any photoassociation) [23].

To estimate the pairing-induced optical time delay of the
propagating pulse, we consider the typical values g ∼ 10 kHz,
� ∼ 1 MHz, N = 106, L = 1 mm, and γm ∼ 16 MHz,
γa ∼ 600 Hz [7]. These values give for the bosonic sample
a group velocity of vg ∼ 3 km s−1, that is, a significant
slowing down of the light pulse. For a normal Fermi gas,
the significantly less favorable scaling of vg with N instead of
N2 gives vg ∼ 0.9c for the same parameters. The extremely
small change in propagation time compared to the vacuum
case will be challenging to measure. Even for a relatively
long sample of 1 mm, the difference in propagation times
will be of the order of 0.3 × 10−12 s, a delay that might,
however, be observable by an interferometric technique. For
paired fermionic atoms, finally, we find vg ∼ 300 km s−1 for
�/ξ = 0.2, and vg ∼ 15 km s−1 for �/ξ = 2, a change of
three to four orders of magnitude compared to the case of a
normal Fermi gas. Such a change should be easily observable.
Note that shorter samples lead to a reduction in delay time
Td that scales as L2, as readily seen from Eqs. (14) and (25),
rapidly leading to significant reductions in time delay and
increasingly challenging experiments.

Our discussion ignores the decay of molecular states.
However, it can be readily shown that after including these
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decay terms, the group velocity of the signal is still in the form
of Eq. (15), but with the substitution � →

√
�2 + γmγa [14].

In practice, the PA pulse duration τ should satisfy τ �
γ −1

a ∼ 1.67 ms, a condition that can be fulfilled in current
experiments [7,24–26].

Future work will improve the sample description by
incorporating its transverse effects in the propagation of
light fields, finite temperature effects, and a more detailed
description of the two-body physics. In this context it will also
be interesting to consider cavity-induced transparency with a
degenerate Fermi gas [27]. A significantly more challenging
problem will involve the situation of strong pair fluctuations at

the BEC-BCS crossover region [28,29]. Finally, we note that
the use of nonclassical associating light fields will also allow
one to consider the correlations of the transmitted field and/or
a possible molecule-photon entanglement as probes of Fermi
pairing or possibly of other exotic phases.
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[23] Ö. E. Müstecaplioglu and L. You, Phys. Rev. A 64, 013604
(2001).

[24] R. Zhao, Y. O. Dudin, S. D. Jenkins, C. J. Campbell, D. N.
Matsukevich, T. A. B. Kennedy, and A. Kuzmich, Nature Phys.
5, 100 (2009).

[25] B. Zhao, Y. A. Chen, X. H. Bao, T. Strassel, C. S. Chuu, X. M.
Jin, J. Schmiedmayer, Z. S. Yuan, S. Chen, and J. W. Pan, Nature
Phys. 5, 95 (2009).

[26] N. S. Ginsberg, S. R. Garner, and L. V. Hau, Nature (London)
445, 623 (2007).

[27] C. P. Search and P. Meystre, Phys. Rev. Lett. 93, 140405
(2004).

[28] Q. J. Chen and K. Levin, Phys. Rev. Lett. 102, 190402 (2009).
[29] H. Hu, X. J. Liu, P. D. Drummond, and H. Dong, Phys. Rev.

Lett. 104, 240407 (2010).

063605-5

http://dx.doi.org/10.1103/RevModPhys.80.1215
http://dx.doi.org/10.1103/RevModPhys.80.1215
http://dx.doi.org/10.1016/j.physrep.2005.02.005
http://dx.doi.org/10.1103/PhysRevLett.99.130407
http://dx.doi.org/10.1103/PhysRevLett.99.190409
http://dx.doi.org/10.1103/PhysRevLett.104.220403
http://dx.doi.org/10.1103/PhysRevLett.104.220403
http://dx.doi.org/10.1103/PhysRevLett.85.487
http://dx.doi.org/10.1103/PhysRevLett.99.090403
http://dx.doi.org/10.1103/PhysRevLett.99.090403
http://dx.doi.org/10.1103/PhysRevLett.101.180406
http://dx.doi.org/10.1103/PhysRevLett.101.180406
http://dx.doi.org/10.1126/science.1100818
http://dx.doi.org/10.1126/science.1100782
http://dx.doi.org/10.1126/science.1100782
http://dx.doi.org/10.1038/nature07172
http://dx.doi.org/10.1038/nature07172
http://dx.doi.org/10.1103/PhysRevLett.101.150410
http://dx.doi.org/10.1103/PhysRevLett.101.150410
http://dx.doi.org/10.1103/PhysRevLett.95.020404
http://dx.doi.org/10.1103/PhysRevLett.73.041607(R)
http://dx.doi.org/10.1103/PhysRevA.76.063602
http://dx.doi.org/10.1103/PhysRevA.76.063602
http://dx.doi.org/10.1103/PhysRevLett.98.110407
http://dx.doi.org/10.1088/1367-2630/11/5/055049
http://dx.doi.org/10.1088/1367-2630/11/5/055049
http://dx.doi.org/10.1103/PhysRevLett.105.203001
http://dx.doi.org/10.1103/PhysRevLett.105.203001
http://dx.doi.org/10.1103/PhysRevLett.95.063202
http://dx.doi.org/10.1103/PhysRevA.72.041801
http://dx.doi.org/10.1103/PhysRevA.80.025601
http://dx.doi.org/10.1103/PhysRevA.80.025601
http://dx.doi.org/10.1103/PhysRevLett.94.093001
http://dx.doi.org/10.1103/PhysRevA.80.053605
http://dx.doi.org/10.1103/PhysRevA.80.053605
http://dx.doi.org/10.1103/PhysRevA.73.053612
http://dx.doi.org/10.1103/PhysRevLett.93.033602
http://dx.doi.org/10.1103/PhysRevA.80.033606
http://dx.doi.org/10.1103/PhysRevA.80.033606
http://dx.doi.org/10.1103/PhysRevLett.87.120406
http://dx.doi.org/10.1103/PhysRevLett.84.5094
http://dx.doi.org/10.1103/PhysRevLett.84.5094
http://dx.doi.org/10.1103/PhysRevLett.89.130402
http://dx.doi.org/10.1103/PhysRevA.72.053616
http://dx.doi.org/10.1103/PhysRevA.72.053616
http://dx.doi.org/10.1103/PhysRevA.64.013604
http://dx.doi.org/10.1103/PhysRevA.64.013604
http://dx.doi.org/10.1038/nphys1152
http://dx.doi.org/10.1038/nphys1152
http://dx.doi.org/10.1038/nphys1153
http://dx.doi.org/10.1038/nphys1153
http://dx.doi.org/10.1038/nature05493
http://dx.doi.org/10.1038/nature05493
http://dx.doi.org/10.1103/PhysRevLett.93.140405
http://dx.doi.org/10.1103/PhysRevLett.93.140405
http://dx.doi.org/10.1103/PhysRevLett.102.190402
http://dx.doi.org/10.1103/PhysRevLett.104.240407
http://dx.doi.org/10.1103/PhysRevLett.104.240407

