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Interaction of half-quantized vortices in two-component Bose-Einstein condensates
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We study the asymptotic interaction between two half-quantized vortices in two-component Bose-Einstein
condensates. When two vortices in different components are placed at distance 2R, the leading order of the
force between them is found to be (ln R/ξ − 1/2)/R3, in contrast to 1/R between vortices placed in the
same component. We derive it analytically using the Abrikosov ansatz and the profile functions of the vortices,
confirmed numerically with the Gross-Pitaevskii model. We also find that the short-range cutoff of the intervortex
potential linearly depends on the healing length.
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I. INTRODUCTION

Multicomponent condensations appear in many systems
in condensed matter physics and quantum chromodynamics
(QCD), from multicomponent or spinor Bose-Einstein con-
densates (BECs), superfluid 3He, and multigap superconduc-
tors to chiral phase transition or color superconductors in
QCD at high temperature and/or high density. Especially,
multicomponent and spinor BECs admit a rich variety of
topological excitations: domain walls [1], Abelian [2] and
non-Abelian [3] vortices, monopoles [4], 2D Skyrmions [5],
3D Skyrmions [6,7], vortons [8], knots [9], and D-brane
solitons [10]. See Refs. [2,11,12] for reviews. Among these
topological excitations, quantized vortices in multicomponent
BECs are the most important subject, because they are closely
related to the problems not only in other condensed matter
systems such as superconductors, superfluids, magnetism, and
liquid crystal, but also in electroweak theory [13], QCD, and
grand unified theories in high-energy physics, neutron stars,
and cosmic strings in cosmology [14,15].

Interactions between quantized vortices are important
information to determine the equilibrium configuration and
dynamics of many vortices. It is known that, in a single-
component BEC, the asymptotic interaction energy per unit
length of two parallel vortex lines separated by a distance R is
proportional to ln(L/R), where L is the size of the system [16].
Thus, the intervortex force has 1/R dependence. Vortices in a
BEC resemble with global vortices in relativistic field theories
[17–20]. A relation between them was studied in Ref. [20],
where it was suggested that spinning global vortices on a
Lorentz violating background behave as superfluid vortices.
Global vortices are regarded as global cosmic strings or
axion strings in cosmology and the intervortex force between
two global vortices was shown to be 1/R [18], coinciding
with the one in vortices in a scalar BEC, scalar superfluid,
and the XY model. Global vortices also appear in QCD—in
chiral-phase transition of QCD at high temperature or high
density [21,22] or color superconductor of extremely high
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density QCD [23,24]. Intervortex force at large distance R

was derived analytically at the leading order as 1/R for color
superconductor [24] and cos α/R with a relative orientation α

of two vortices in the internal space for chiral-phase transition
[22]; see Ref. [25] for a review.

However, the analytic formula of the vortex-vortex in-
teractions in multicomponent BECs are still missing. Two-
component BECs are the simplest example of the multicompo-
nent condensates and have also attracted much interest to study
the novel phenomena not found in a single component BEC.
Recent experiments provide a good ground of study on the
vortex-vortex interaction in two-component BECs by tuning
s-wave scattering length via a Feshbach resonance [26–28].
The minimally quantized vortex in two-component BECs has
the winding number one half of a singly quantized vortex
in scalar BECs, and thus is often called a half-quantized
vortex. Its mass circulation is fractionally quantized when
mass densities of two condensates are different. Such a
quantized vortex in two-component BECs has a composite
structure, where a vortex core in one component is filled
by the density of the other component. This vortex structure
was created experimentally through coherent interconversion
between two components [29]. Interactions between the
vortices in the different components are nontrivial because
the two components interact only through the density, so
that the vortex winding around one component does not
directly experience the circulation of the other vortex winding
around the other component. This fact results in an indirect
interaction, where the filling component of each vortex core is
affected by the circulation created by the vortex in the same
component, dragging the vortex in which it is filled. Although
the interactive dynamics of two vortices in two-component
BECs was studied numerically by Öhberg and Santos [30], the
analytical form of the interaction force was not discussed.

In this paper, we consider the asymptotic interaction
between two vortices in two-component BECs. We consider
the vortex-vortex interaction for two cases: (i) two vortices
are placed in the different components and (ii) those in the
same component. For the case (i), the leading order of the
intervortex force between them at distance 2R is found to be
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(ln R/ξ − 1/2)/R3 with the short-range cutoff ξ , in contrast to
the one 1/R for the case (ii) and vortices in a single-component
BEC. We derive it analytically using the Abrikosov ansatz and
the asymptotic profile functions of the vortices. We then con-
firm it numerically. We also find that the short-range cutoff ξ of
the intervortex potential linearly depends on the healing length.

This paper is organized as follows. Section II is devoted to
deriving the analytic form of the asymptotic intervortex force.
In Sec. III, we confirm the analytic results obtained in Sec. II
by numerical calculations of the Gross-Pitaevskii equation.
Summary and discussions are in Sec. IV. In the Appendix, we
describe some details of the calculation of integrals in Sec. II C.

II. STATIC INTERVORTEX FORCES

A. The model

We start with an energy functional for two-component BEC
system,

E(�1,�2) = K(�1,�2) + V (�1,�2), (1)

K =
∫

d3x
∑
i=1,2

(
− h̄2

2mi

�∗
i ∇2�i

)
, (2)

V =
∫

d3x

[∑
i=1,2

gi

2
|�i |4 + g12|�1|2|�2|2

]
, (3)

where �i is a condensate wave function of the i-th component
(i = 1,2) with mass mi . The coupling constants g1,g2, and g12

stand for the atom-atom interactions; the �1 and �2 compo-
nents repel or attract for g12 > 0 or g12 < 0, respectively. The
coupled Gross-Pitaevskii (GP) equations are obtained by the
variational principle ih̄∂t�i = δE/δ�∗

i as

ih̄∂t�1 =
(

−h̄2∇2

2m1
+ g1|�1|2 + g12|�2|2

)
�1, (4)

ih̄∂t�2 =
(

−h̄2∇2

2m2
+ g2|�2|2 + g12|�1|2

)
�2. (5)

The stationary coupled GP equation is given by considering
a time-dependence �i(x,t) = e−iµi t/h̄�i(x) with the chemical
potential µi :[

− h̄2∇2

2m1
− µ1 + g1|�1(x)|2 + g12|�2(x)|2

]
�1(x) = 0,

(6)[
− h̄2∇2

2m2
− µ2 + g2|�2(x)|2 + g12|�1(x)|2

]
�2(x) = 0.

(7)

The potential energy V with the quadratic terms −µ1|�1|2 −
µ2|�2|2 induced by the chemical potential is a quadratic
function of X ≡ |�1|2 � 0 and Y ≡ |�2|2 � 0:

V (X,Y ) = g1

2
X2 + g2

2
Y 2 + g12XY − µ1X − µ2Y. (8)

Let g1,g2 be positive, then the potential V has a minimum
when

� ≡ VXXVYY − V 2
XY = g1g2 − g2

12 > 0,
(9)

µ1g2 − µ2g12 � 0, µ2g1 − µ1g12 � 0.

The amplitudes of the ground state are then given by

|�1| =
√

µ1g2 − µ2g12

g1g2 − g2
12

≡ v1,

(10)

|�2| =
√

µ2g1 − µ1g12

g1g2 − g2
12

≡ v2.

In the following, we consider the situation in which the above
inequalities are satisfied. Since there are two condensates, two
U (1) symmetries are spontaneously broken. Accordingly, the
order parameter space is

T 2 � U (1)1 × U (1)2 � U (1)mass × U (1)spin

Z2
. (11)

Here, each U (1)i (i = 1,2) corresponds to the phase rotation
of �1 or �2, while U (1)mass and U (1)spin correspond to the
overall and relative phase rotations, defined by

U (1)mass : �1 → �1e
iα, �2 → �2e

iα,
(12)

U (1)spin : �1 → �1e
iβ, �2 → �2e

−iβ ,

whose currents are mass and pseudo-spin currents, respec-
tively. Both the condensates �1,�2 are unchanged under the
Z2 action (α = β = π ) inside U (1)mass × U (1)spin in Eq. (12),
and therefore, this Z2 has to be removed as the denominator
of Eq. (11).

In what follows, we call the phase cycles for �1 and �2 the
(1,0) and (0,1) cycles, respectively.

B. Vortex configuration

Since the first homotopy group of order parameter space is

π1(T 2) = Z ⊕ Z, (13)

it allows two kinds of winding numbers. We refer a vortex
winding around (1,0)[(0,1)] cycle once as a (1,0) vortex
[(0,1) vortex], which is the most fundamental vortex. When
one travels around a (1,0)[(0,1)] vortex, the phase of �1(�2)
rotates by 2π with the phase of the other component kept
constant. On the other hand, in terms of U (1)mass and U (1)spin

in Eq. (12), U (1)mass is rotated by π and U (1)spin is rotated
by +π (−π ) with circling around a (1,0)[(0,1)] vortex. Since
they have a half winding of U (1)mass, they are often called
half-quantized vortices.

Vortices winding around both components by 2π are
denoted by (1,1) and have unit winding in U (1)mass. They are
called integer vortices, if the core is not separated into (1,0)
and (0,1) vortices. More generally, we refer to a configuration
that winds (1,0) cycle m times and (0,1) cycle n times as an
(m,n) vortex, whose wave function is denoted as �

(m,n)
i for the

i-th component.
The vortex configuration can be obtained by solving Eqs. (6)

and (7). Let us make an ansatz for an axially symmetric (1,0)-
vortex configuration:

�
(1,0)
1 = v1 eiθf(1,0)(r), �

(1,0)
2 = v2 h(1,0)(r), (14)

where r and θ are the polar coordinates. The profile functions
f(1,0) and h(1,0) are determined by substituting (14) into (6) and
(7), as
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− h̄2

2m1

(
f ′′

(1,0) + f ′
(1,0)

r
− f(1,0)

r2

)
+ µ1g1g2

(
f 2

(1,0) − 1
) − µ1g

2
12

(
h2

(1,0) − 1
) − µ2g1g12

(
f 2

(1,0) − h2
(1,0)

)
g1g2 − g2

12

f(1,0) = 0, (15)

− h̄2

2m2

(
h′′

(1,0) + h′
(1,0)

r

)
+ µ2g1g2

(
h2

(1,0) − 1
) − µ2g

2
12

(
f 2

(1,0) − 1
) − µ1g2g12

(
h2

(1,0) − f 2
(1,0)

)
g1g2 − g2

12

h(1,0) = 0, (16)

with the prime denoting a differentiation with respect to r . We
solve these equations with the boundary conditions

(f(1,0),h(1,0)) → (1,1) as r → ∞, (17)

(f(1,0),h
′
(1,0)) → (0,0) as r → 0. (18)

From these equations, asymptotic behaviors of the profile
functions f(1,0) and h(1,0) at large distance can be obtained
as

f(1,0)(r) = 1 − 1

m1η
+
1 r2

+ O(r−4), (19)

h(1,0)(r) = 1 + 1

m1η
−
1 r2

+ O(r−4), (20)

where we have introduced the effective mass parameters

η+
1 ≡ 4(µ1g2 − µ2g12)

g2h̄
2 , η−

1 ≡ 4(µ2g1 − µ1g12)

g12h̄
2 . (21)

The stability condition Eq. (9) of the ground state ensures that
η+

1 > 0, while η−
1 changes its sign with g12.

Similarly, we make an ansatz for the (0,1) vortex:

�
(0,1)
1 = v1h(0,1)(r), �

(0,1)
2 = v2e

iθf(0,1)(r). (22)

The equations for f(0,1),h(0,1) can be obtained by just replacing
the indices as 1 ↔ 2 and (1,0) ↔ (0,1) in Eqs. (15) and (16).
Then the asymptotic behaviors are

f(0,1)(r) = 1 − 1

m2η
+
2 r2

+ O(r−4), (23)

h(0,1)(r) = 1 + 1

m2η
−
2 r2

+ O(r−4), (24)

with

η+
2 ≡ 4(µ2g1 − µ1g12)

g1h̄
2 , η−

2 ≡ 4(µ1g2 − µ2g12)

g12h̄
2 . (25)

Again, η+
2 is always positive while sign of η−

2 depends on g12.
As vortices in a scalar BEC, the tension (energy per unit

length) of (1,0) and (0,1) vortices logarithmically diverges as

T(1,0) � πh̄2v2
1

m1
ln

L

ξ
, T(0,1) � πh̄2v2

2

m2
ln

L

ξ
, (26)

respectively, with L and ξ being a long and short distance
cutoff, respectively. This divergent behavior comes from the
kinetic term in the GP energy functional Eq. (3).

Some numerical solutions of the single-vortex configura-
tions are shown in Fig. 1. A universal feature of configuration is
that h(1,0) (the profile function of unwinding field) at the vortex
center is concave for g12 < 0 and convex for the g12 > 0 [31].
This can be understood from the atom-atom interaction g12; in

the presence of the vortex profile for �1 as a background, �2

feels the potential g12|�1|2 and it tends to be trapped in the
vortex center for the repulsive interaction g12 > 0 and to be
exclusive from the vortex center for the attractive interaction
g12 < 0.

C. Intervortex forces

It is expected that the interactions between (1,0) and (0,1)
vortices are determined by the coupling g12-term. When g12 is
zero, they are decoupled in Eqs. (4) and (5), so (1,0) and (0,1)
vortices do not interact. Here, we calculate the asymptotic
interactions between well-separated (1,0) and (0,1) vortices
using their asymptotic profile functions obtained in the last
subsection. Let us place the (1,0) and (0,1) vortices at (x,y) =
(R,0) and (x,y) = (−R,0), respectively, as in Fig. 2. We
use the polar coordinates (r,θ ) with the origin (x,y) = (0,0).
We further express [r(1,0),θ(1,0)] and [r(0,1),θ(0,1)] as the polar
coordinates with the origins at the (1,0) and (0,1) vortex
centers (R,0) and (−R,0), respectively. Then the following
relations hold among three polar coordinates:

r2
i = (r cos θ ∓ R)2 + r2 sin2 θ,

tan θi = r sin θ

r cos θ ∓ R
, (27)

with i = (1,0),(0,1), the minus sign for i = (1,0), and the
plus sign for i = (0,1). With these coordinates, the (1,0)- and
(0,1)-vortex configurations (�(1,0)

1 ,�
(1,0)
2 ) and (�(0,1)

1 ,�
(0,1)
2 )

can be expressed as

�
(1,0)
1 = v1e

iθ(1,0)f(1,0)[r(1,0)],
(28)

�
(1,0)
2 = v2h(1,0)[r(1,0)],

�
(0,1)
1 = v1h(0,1)[r(0,1)],

(29)
�

(0,1)
2 = v2e

iθ(0,1)f(0,1)[r(0,1)].

Let us now calculate the interaction between (1,0) vortex and
(0,1) vortex. We first make the standard Abrikosov ansatz,

�
(1,1)
1 (r,θ ) = v−1

1 �
(1,0)
1 �

(0,1)
1

� v1

[
1 − 1

m1η
+
1 r2

(1,0)

+ 1

m2η
−
2 r2

(0,1)

]

× eiθ(1,0) + O(r−4), (30)

�
(1,1)
2 (r,θ ) = v−1

2 �
(1,0)
2 �

(0,1)
2

� v2

[
1 − 1

m2η
+
2 r2

(0,1)

+ 1

m1η
−
1 r2

(1,0)

]

× eiθ(0,1) + O(r−4), (31)
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FIG. 1. (Color online) Single vortex configurations [|�1|2 (solid
line) and |�2|2 (broken line)] on a cross section. The field �1

winds once so that |�1| goes to zero at the vortex center while �2

does not touch zero anywhere, but it can have nonzero amplitude
at the vortex center. The parameters are (h̄,g1,g2,µ1,µ2,m1,m2) =
(1,1,1,1,1,1,1) and (a) g12 = −0.3, (b) g12 = 0, and (c) g12 = 0.3.

for the total configuration. Then the interaction potential is
obtained by subtracting two individual vortex energies from
the total energy as

U(1,1) =
∫

d2x (δK + δV ) , (32)

θ θαθβ

R−R

rα

rβ

r

O

(x, y)

(1, 0)-vortex(0, 1)-vortex

FIG. 2. Configuration of (1,0) vortex and (0,1) vortex.

where it has two contributions: one from the kinetic
energy δK = K(�(1,1)

1 ,�
(1,1)
2 )−K(�(1,0)

1 ,�
(1,0)
2 )−K(�(0,1)

1 ,

�
(0,1)
2 ) and the other from the potential energy

δV = V (�(1,1)
1 ,�

(1,1)
2 ) − V (�(1,0)

1 ,�
(1,0)
2 )−V (�(0,1)

1 ,�
(0,1)
2 )+

V (v1,v2).
By using the asymptotic properties given in Eqs. (19), (20),

(23), (24), (30), and (31), we find

δK = v2
1h̄

2

m1m2η
−
2 r2

(0,1)

[∇θ(1,0)]
2

(33)

+ v2
2h̄

2

m1m2η
−
1 r2

(1,0)

[∇θ(0,1)]
2 + O(r−6)

= g12h̄
4

2m1m2
(
g1g2 − g2

12

)
r2

(1,0)r
2
(0,1)

+ O(r−6),

where we have used [∇θ(1,0)]2 = r−2
(1,0), [∇θ(0,1)]2 = r−2

(0,1) and
have taken terms up to O(r−4). It is important to see that the
leading terms of the order O(r−2) have been canceled out in
the subtraction. Therefore, the dominant contribution to the
interaction potential is of the order O(r−4). Similarly, we find
the terms of the order O(r−4) in the potential energy

δV = − g12h̄
4

4m1m2
(
g1g2 − g2

12

)
r2

(1,0)r
2
(0,1)

+ O(r−6). (34)

Plugging these into Eq. (32), we get

U(1,1)(R) = g12h̄
4

4m1m2
(
g1g2 − g2

12

) ∫
d2x

1

r2
(1,0)r

2
(0,1)

� g12h̄
4π

4m1m2
(
g1g2 − g2

12

) ln R
ξ

R2
, (35)

where ξ stands for a short distance cut-off, and we have used
R � ξ . The detailed calculation of Eq. (35) is described in
the Appendix. Here, the terms independent of R have been
ignored. The factor 1/R2 is a striking feature that is absent in
the scalar BEC or scalar superfluids. Note that the chemical
potentials µ1 and µ2 do not appear in the final result (35).
The asymptotic force between the two vortices is obtained by
differentiating the potential by their distance 2R, as F(1,1)(R) =
− dU(1,1)

2dR
,

F(1,1)(R) = πh̄4g12

4m1m2
(
g1g2 − g2

12

) 1

R3

(
ln

R

ξ
− 1

2

)
. (36)

We have found that the interaction is attractive for g12 < 0,
repulsive for g12 > 0, and vanishes for g12 = 0.

063603-4



INTERACTION OF HALF-QUANTIZED VORTICES IN . . . PHYSICAL REVIEW A 83, 063603 (2011)

Note that the asymptotic interaction is independent of the
sign of the vortex winding number e±iθ , because the interaction
between the two condensates is mediated only through their
amplitudes as g12|�1|2|�2|2. In fact, the interaction potential
U(1,−1) between (1,0) and (0, − 1) vortices are exactly the
same as U(1,1). It is easy to verify that the following relation
holds

U(1,1) = U(1,−1) = U(−1,1) = U(−1,−1). (37)

This is because θ(1,0) and θ(0,1) are decoupled in the Abrikosov
ansatz in Eqs. (30) and (31).

The potential (35) should be compared with the potential
U(1±1,0) between (1,0) and (±1,0) vortices. To see it, we make
the ordinary Abrikosov ansatz

�
(1±1,0)
1 � v1e

i(θ(1,0)±θ(0,1)), �
(1±1,0)
2 � v2. (38)

Note here that we have taken terms of the order unity. A
leading order contribution to the interaction comes from the
kinetic term of �1, which is of order O(r−2). On the other hand,
the kinetic energy of �2 and the potential energy contributions
start from the order O(r−4), so we omit them. The interaction
potential is then given by

U(1±1,0) = ±v2
1h̄

2

m1

∫
d2x �∇θ(1,0) · �∇θ(0,1)

= ± (µ1g2 − µ2g12)h̄2π(
g1g2 − g2

12

)
m1

ln
R2 + L2

4R2
, (39)

where L is an infrared cut-off parameter; see the Appendix for
details. Unlike the case of the leading term in the potential (35)
between (1,0) and (0,1) vortices, the potential U(1±1,0) depends
on the chemical potential. We also note that it depends on the
infrared cutoff L but not on the ultraviolet cutoff ξ .

The intervortex force F(1±1,0) = − dU(1±1,0)

2dR
is then

F(1±1,0) = ± (µ1g2 − µ2g12)h̄2π(
g1g2 − g2

12

)
m1

(
1

R
− R

R2 + L2

)

→ ± (µ1g2 − µ2g12)h̄2π(
g1g2 − g2

12

)
m1

1

R
, (40)

where → denotes the large volume limit L → ∞. This
1/R force is well known for vortices in the scalar BEC,
scalar superfluids, and the XY model, and global vortices in
relativistic field theories [16,18]. The correction term for finite
volume L can be found in the second term in the brace in
the first line. This term might not be so familiar but has been
obtained previously in [22] for global non-Abelian vortices in
QCD.

In the same way, the interaction potential between (0,1) and
(0, ± 1) vortices are given by

U(0,1±1)(R) = ± (µ2g1 − µ1g12)h̄2π(
g1g2 − g2

12

)
m2

ln
R2 + L2

4R2
. (41)

III. NUMERICAL ANALYSIS

Let us numerically verify the interaction potential analyti-
cally obtained in Eq. (35). For simplicity, we consider a special
case m1 = m2 = m, g1 = g2 = g, and µ1 = µ2 = µ. Then the

asymptotic behaviors of the profile functions in Eqs. (19) and
(20) are rewritten as follows,

fi + hi = 2 − 1

m2+r2
+ O(r−4), (42)

fi − hi = − 1

m2−r2
+ O(r−4), (43)

for i = (1,0) and (0,1), where the mass parameters m+ and
m− are defined by

m2
+ ≡ 4mµ

h̄2 , m2
− ≡ 4mµ

h̄2

g − g12

g + g12
. (44)

The inverse numbers of m+ and m− give the healing lengths
associated with the mass component fi + hi and the spin
component fi − hi , respectively. The intervortex potential
Eq. (35) is then expressed as

U(1,1)(R) = π

2
v2 m2

+ − m2
−

m2+m2−

1

R2
ln

R

ξ
, (45)

where v2 = h̄2µ/m(g + g12) is defined in Eq. (10).
To obtain the intervortex potential numerically, we use a

sort of the imaginary time propagation of the GP equation as[
− h̄2

2m
∇2 − µ + g|�1(x)|2 + g12|�2(x)|2

]
�1(x,τ )

= −D1(x)∂τ�1(x,τ ), (46)

[
− h̄2

2m
∇2 − µ + g|�2(x)|2 + g12|�1(x)|2

]
�2(x,τ )

= −D2(x)∂τ�2(x,τ ), (47)

where τ is the imaginary time and D1 and D2 are positive
coefficients. While Di is set to be a constant in the usual
imaginary time propagation, we consider the coefficient Di =
Di(x) with space-coordinate dependence. An advantage of
using Di(x) is that one can effectively fix the position of
vortex (the zeros of �i) during the numerical calculation, if
one choose Di(x) appropriately. In order to attain this, we
choose a function Di(x) = A∇2 ln

(|x − ai |2 + ε2
) + c, where

ai stands for the i-th vortex position and A and c are positive
constants. The value of A is taken as an extremely large value to
fix the profile of the wave function only near the vortex cores.
Also, ε should be sufficiently small. We chose A = 80000,
ε = 0.01, and c = 0.1 in our numerical computation. We
take the Abrikosov ansatz given in Eqs. (30) and (31) as
the initial condition at τ = 0 and minimize the energy under
the imaginary time evolution. After the solutions converge
sufficiently, we calculate the interaction energy Eq. (32).

Throughout our numerical computation below, we will
set m/h̄2 = 1 and v2 = 1. Then we regard m+ and m− as
independent parameters of the GP equations and perform
the numerical calculation by varying them. Remember that
m+ < m− corresponds to g12 < 0 (attractive force), whereas
m+ > m− corresponds to g12 > 0 (repulsive force). No net
interaction exists accidentally when m+ = m−.

The result is shown in Fig. 3. We compare the inter-
vortex potential obtained numerically and the one obtained
analytically. As can be seen, the analytic results reproduce
the numerical results quite well. We have only one fitting
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FIG. 3. Plots of the intervortex potential U(1,1)(R) for m− =
(0.5,0.6,0.7,0.8,0.9,1,1.2,1.4,1.6,1.8,2) from top to bottom, with
m+ = 1. Solid lines are asymptotic intervortex forces (Abrikosov
ansatz), which are analytically obtained in Eq. (35).

parameter 2ξ , which is the the short-range cut-off. The values
2ξ for various choice of m− for fixed m+ = 1 are shown in
Fig. 4. We find the linear dependence of the short-range cut-off
ξ on the healing length 1/m−.

IV. SUMMARY AND DISCUSSION

We have studied the asymptotic interaction between half-
quantized vortices, i.e., (1,0) and (0, ± 1), winding around
�1 and �2, respectively, in the two-component BEC. Since
the two components interact only through the density, the
(1,0) vortex does not directly experience the circulation of
the (0, ± 1) vortex, so that the result does not depend on the
signature of the winding number. The leading order of the
force between them is found to be ∼ [ln(R/ξ ) − 1/2]/R3, in
contrast to the one between the same kind of vortices ∼1/R,
which is also well known as the force between vortices in
scalar BEC, scalar superfluid, and the XY model and global
vortices in relativistic field theories. We have first derived it
analytically using the Abrikosov ansatz and the asymptotic
profile functions of (1,0) and (0,1) vortices. We have then
confirmed it numerically with using the extended imaginary
time method for the GP equations. We have found that the
short-range cut-off parameter ξ of the vortex interaction
linearly depends on the healing length 1/m−.

0.8 1.0 1.2 1.4 1.6 1.8 2.0

1

m

0.4

0.5

0.6

0.7

0.8

0.9

2ξ

FIG. 4. (Color online) The dependence of the healing length 2ξ

on 1/m− with fixed m+ = 1.

The intervortex force will manifest itself in the vortex
motion when a pair of (1,0) and (0, ± 1) vortices is prepared
in a trapped BEC. Due to the different R-dependence of the
intervortex force, the vortex dynamics will be modified from
those of the (1,1) or (1, − 1) vortex pairs in the same com-
ponent, where two vortices orbit around each other for (1,1)
and move in parallel for (1, − 1). The details of this dynamic
are currently under study. A recent experimental observation
of the real-time vortex dynamics [32] will stimulate this kind
of study. Our results also suggest a bound state of (1,0) and
(0, ± 1) vortices for g12 < 0. While a set of (1,0) and (0,1)
is expected to form a stable integer (mass) vortex (1,1), it
is a nontrivial question if (1,0) and (0, − 1) vortices form a
bound state, which should be called a (pseudo-) spin vortex.
Also, one expects no stable bound states for g12 > 0. Although
there should be instabilities for large separation at least, it does
not exclude a possibility of a metastable bound state at short
distance. To address these questions, we need to know a short
range interaction or stability analysis of the bound states, which
remains as a future problem.

Our method should be extended to spinor BECs, which
also remains as an interesting future problem. On the other
hand, multicomponent systems in relativistic field theories are
common in QCD, such as the linear sigma model for the
chiral-phase transition and the Landau-Ginzburg model for
color superconductors at high baryon density [23]. In these
models, order parameters are matrices as in superfluid 3He
rather than vectors, and consequently there exist non-Abelian
vortices [33]: non-Abelian global vortices in the chiral-phase
transition [21] and non-Abelian semi-superfluid vortices in
color superconductors at high baryon density [23]. Intervortex
forces have been calculated at leading order for non-Abelian
global vortices [22] and non-Abelian semi-superfluid vortices
[24]; see Ref. [25] for a review. Calculation in the present
paper will give the next leading order [ln(R/ξ ) − 1/2]/R3

to them. Especially the force cos α/R between non-Abelian
global vortices at the leading order vanishes for a particular
choice (α = ±π ) of internal orientations of vortices [22],
and therefore the next leading order term proportional to

ξ

ξ

R−R

δ

I3

I1

I2

FIG. 5. The integral region to calculate Eq. (A2)
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[ln(R/ξ ) − 1/2]/R3 becomes a dominant contribution. An
extension of our results to these cases should be important
to consider a possibility of vortex lattice phases in heavy-ion
collisions or in a neutron star core, as in two-component
BEC [2,34–36].
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APPENDIX: DERIVATION OF Eqs. (35) AND (39)

In Eq. (35), we have to evaluate the integral

I =
∫

d2x
1

r2
(1,0)r

2
(0,1)

=
∫

d2x
1

A0
, (A1)

A0 ≡ r4 + R4 − 2r2R2 cos 2θ. (A2)

To this end we will use a formula∫ 2π

0
dθ

1

A + B cos 2θ
= 2π√

A2 − B2
, (A3)

for A > |B|. To evaluate Eq. (A2), we divide the integral region
as shown in Fig. 5. In addition to I1 and I2, we take into
account the contributions I3 from the strip of width 2ξ . Since
the integrand diverges at (x,y) = (±R,0), we introduce an
ultraviolet cut-off ξ . Then, we will remove the small region
that includes the points of vortex positions. Hence, the total
integral is written as

Icut-off = I1 + I2 + 2I3. (A4)

For R � ξ , the integrals I1 and I2 are calculated as

I1 =
∫ R−ξ

0

2πrdr

R4 − r4
� π

2R2

[
ln

R

ξ
+ O

(
ξ

R

)]
, (A5)

I2 =
∫ ∞

R+ξ

2πrdr

R4 − r4
� π

2R2

[
ln

R

ξ
+ O

(
ξ

R

)]
, (A6)

where we have used Eq. (A3). The remaining integral

I3 =
∫ R+ξ

R−ξ

dr

∫ π−δ

δ

dθ
r

A0
, (A7)

with ξ/R � 1 and δ � 1 is evaluated as follows. Note that
cos 2θ � cos 2δ = 1 − 2δ2 + · · · < 1 − δ2 and A0 > (r2 −
R2)2 + 2r2R2δ2 � 2r2R2δ2. Thus, we have the following
inequality

0 � I3 � π − 2δ

2R2δ2
ln

R + ξ

R − ξ
� π

R2δ2

ξ

R
. (A8)

Thus, for any δ, one can choose sufficiently small ξ , so that I3

becomes negligibly small.
In summary, we get

Icut-off = π

R2

[
ln

R

ξ
+ O

(
ξ

R

)]
. (A9)

Next, we calculate the integration in Eq. (39),

J =
∫

d2x �∇θ(1,0) · �∇θ(0,1) =
∫

d2x
r2 − R2

r2
(1,0)r

2
(0,1)

=
∫

drdθ
r(r2 − R2)

r4 + R4 − 2r2R2 cos 2θ
. (A10)

By using Eq. (A3), one can first perform the integration in θ

and then integrate with respect to r as

J =
∫ ∞

0
dr

2πr(r2 − R2)√
(r4 − R4)2

= lim
L→∞

[
−

∫ R

0

2πrdr

r2 + R2
+

∫ L

R

2πrdr

r2 + R2

]

= lim
L→∞

π ln
L2 + R2

4R2
. (A11)
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[30] P. Öhberg and L. Santos, Phys. Rev. A 66, 013616 (2002).
[31] This behavior is the same for global non-Abelian vortices

appearing in the chiral-phase transition of QCD; see the second
reference in [ [21]]. Similar holds for semi-superfluid non-
Abelian vortices in color superconductors of QCD at high
density; see the second reference in [23].

[32] D. V. Freilich, D. M. Bianchi, A. M. Kaufman, T. K. Langin,
and D. S. Hall, Science 329, 1182 (2010).

[33] The terminology “non-Abelian vortices” here denotes vortices
in symmetry breaking of G to H with a non-Abelian group H

and π1(G/H ) �= 0.
[34] V. Schweikhard, I. Coddington, P. Engels, S. Tung, and

E. A. Cornell, Phys. Rev. Lett. 93, 210403 (2004).
[35] E. J. Mueller and T. L. Ho, Phys. Rev. Lett. 88, 180403

(2002).
[36] K. Kasamatsu, M. Tsubota, and M. Ueda, Phys. Rev. Lett. 91,

150406 (2003).

063603-8

http://dx.doi.org/10.1088/0034-4885/58/5/001
http://dx.doi.org/10.1088/0034-4885/58/5/001
http://dx.doi.org/10.1103/PhysRevLett.48.1867
http://dx.doi.org/10.1016/0550-3213(87)90290-2
http://dx.doi.org/10.1016/0550-3213(92)90115-R
http://dx.doi.org/10.1103/PhysRevLett.63.2021
http://dx.doi.org/10.1103/PhysRevLett.63.2021
http://dx.doi.org/10.1103/PhysRevD.40.4033
http://dx.doi.org/10.1016/0550-3213(90)90637-S
http://dx.doi.org/10.1016/0550-3213(90)90637-S
http://dx.doi.org/10.1103/PhysRevD.66.034018
http://dx.doi.org/10.1103/PhysRevD.66.034018
http://dx.doi.org/10.1016/j.physletb.2007.10.055
http://dx.doi.org/10.1016/j.nuclphysb.2009.06.013
http://dx.doi.org/10.1016/j.physletb.2008.11.049
http://dx.doi.org/10.1016/j.physletb.2008.11.049
http://dx.doi.org/10.1103/PhysRevD.73.074009
http://dx.doi.org/10.1103/PhysRevD.73.074009
http://dx.doi.org/10.1103/PhysRevD.80.125007
http://dx.doi.org/10.1103/PhysRevD.80.125011
http://dx.doi.org/10.1103/PhysRevLett.104.161601
http://dx.doi.org/10.1103/PhysRevLett.104.161601
http://dx.doi.org/10.1103/PhysRevD.83.085005
http://dx.doi.org/10.1103/PhysRevD.83.085018
http://dx.doi.org/10.1103/PhysRevD.81.105003
http://dx.doi.org/10.1103/PhysRevB.83.134518
http://dx.doi.org/10.1103/PhysRevB.83.134518
http://dx.doi.org/10.1103/PhysRevD.78.045002
http://dx.doi.org/10.1103/PhysRevD.78.045002
http://dx.doi.org/10.1143/PTPS.174.254
http://dx.doi.org/10.1143/PTPS.174.254
http://dx.doi.org/10.1103/PhysRevLett.100.210402
http://dx.doi.org/10.1103/PhysRevLett.100.210402
http://dx.doi.org/10.1103/PhysRevLett.101.040402
http://dx.doi.org/10.1103/PhysRevLett.101.040402
http://dx.doi.org/10.1103/PhysRevA.82.033609
http://dx.doi.org/10.1103/PhysRevLett.83.2498
http://dx.doi.org/10.1103/PhysRevLett.83.2498
http://dx.doi.org/10.1103/PhysRevA.66.013616
http://dx.doi.org/10.1126/science.1191224
http://dx.doi.org/10.1103/PhysRevLett.93.210403
http://dx.doi.org/10.1103/PhysRevLett.88.180403
http://dx.doi.org/10.1103/PhysRevLett.88.180403
http://dx.doi.org/10.1103/PhysRevLett.91.150406
http://dx.doi.org/10.1103/PhysRevLett.91.150406

