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Topological phases for fermionic cold atoms on the Lieb lattice
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We investigate the properties of the Lieb lattice, that is, a face-centered square lattice, subjected to external
gauge fields. We show that an Abelian gauge field leads to a peculiar quantum Hall effect, which is a consequence
of the single Dirac cone and the flat band characterizing the energy spectrum. Then we explore the effects of an
intrinsic spin-orbit term—a non-Abelian gauge field—and demonstrate the occurrence of the quantum spin Hall
effect in this model. Besides, we obtain the relativistic Hamiltonian describing the Lieb lattice at low energy and
derive the Landau levels in the presence of external Abelian and non-Abelian gauge fields. Finally, we describe
concrete schemes for realizing these gauge fields with cold fermionic atoms trapped in an optical Lieb lattice.
In particular, we provide a very efficient method to reproduce the intrinsic (Kane-Mele) spin-orbit term with
assisted-tunneling schemes. Consequently, our model could be implemented in order to produce a variety of
topological states with cold atoms.
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I. INTRODUCTION

During the last decades, topology has influenced many
fields of physics through the renewed description of various
phenomena. In condensed-matter physics, topological invari-
ants, known as Chern numbers, have played an important
role in the description of the integer quantum Hall effect
(IQHE) [1]. Here the quantized Hall conductivity of a two-
dimensional (2D) electron system is expressed as a sum
σH = R−1

K

∑
En<EF

NCh(En) of Chern numbers NCh(En) that
are integers associated with the energy bands En [2,3]. In
the latter expression, RK is von Klitzing’s constant and EF

denotes the Fermi energy assumed to lie inside a gap of the
bulk energy spectrum. Furthermore, it has been proven that
the sum of Chern numbers is expressing the number of gapless
edge states located inside the bulk energy gaps. These edge
states carry the current in the IQHE [4,5].

The breaking of time-reversal symmetry (TRS) due to
external magnetic fields plays a crucial role for the topological
interpretation of the IQHE [6]. Recently the discovery of
the so-called quantum spin Hall effect (QSHE) has lightened
a new path for the investigation of systems where TRS is
preserved [7–12]. The QSHE manifests itself in insulating
systems that show a nontrivial Z2 index [7]. These topological
insulators are characterized by the presence of spin-filtered
edge states in the gaps of the bulk energy spectrum. Because
of TRS invariance, the spin-up and spin-down states move
in opposite directions along the edge of the system. As a
consequence, the total charge current as well as the associated
Chern numbers are zero [12,13]. Yet a spin-Chern number has
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been introduced in order to measure the spin transport [14]
and to distinguish the Z2 class of the system [15].

The interplay between the lattice topology and the QSHE
has been the focus of various recent investigations. In par-
ticular, the QSHE has been studied for the Kagome [16,17],
the Lieb and Perovskite [18], the honeycomb [7,19], the square
[20,21], theT3 [22], the checkerboard [23], the pyrochlore [24],
diamond [25] and the square-octogon [26] lattices.

In this context some lattice models are of particular interest
as they show dispersionless energy bands. These flat bands
correspond to a macroscopic number of degenerate localized
states. Originally flat bands played a fundamental role in
magnetism, as they were shown to accompany the occurrence
of ferromagnetic ground states in multiband Hubbard models
[27–29]. More recently the existence and the robustness of
these special bands have been extensively studied in a vast
family of frustrated hopping models [30,31] and for the case
of electron localization due to magnetic fields and spin-orbit
interactions [32]. Interestingly, singular touchings between flat
and dispersive bands have been shown to be topologically
protected by real-space loops [30]. On the face-centered square
lattice, also known as Lieb lattice, a flat band touches two
linearly dispersing bands, that is, the flat band intersects a
single Dirac point, and the low-energy regime is described
by a quasirelativistic equation for spin-1 fermions [33,34].
Finally, the existence of flat bands with nontrivial topological
order has been demonstrated [64], contradicting the belief that
nondispersive bands were associated with vanishing Chern
numbers [31].

Nowadays, various lattices can be engineered using cold
atoms trapped by electromagnetic fields [34–39]. In particular,
the realization of topological states of matter with cold
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fermionic atoms appears to be a realistic and attractive goal
from the experimental point of view [20,21,40]. A significant
advantage of these experiments is the full control of a wide
range of system parameters as, for example, lattice geometry,
interaction, and disorder. In these experiments engineered
gauge fields allow us to mimic the effects of magnetic
fields [41–43] or spin-orbit interactions (SOIs) [20,21,44–48].
These gauge fields can be generated by spatially varying
laser or magnetic fields that modify particle hopping via
nontrivial Berry’s phases [49–51]. Recent experiments have
implemented light-induced external gauge fields and repro-
duced the physics of charges subjected to electric or magnetic
fields [41,42,52,53]. Moreover, with such a setup one expects
to observe several fundamental phenomena including the
Hofstadter butterfly [43,54], atomic analogs of the quantum
Hall effects [55,56], relativistic physics [57,58], and vortex
structures [41,59,60]. Optical-lattice setups also allow us to
consider a generalization of the ongoing experiments, namely
the implementation of non-Abelian gauge fields [46,61–63].
In particular, non-Abelian gauge fields acting on multilevel
atomic systems could mimic SOI [44–46,48,64], paving the
way to study the spin Hall [65] and quantum spin Hall effects
[17,21]. Very recently a concrete proposal of an optical Lieb
lattice for cold atoms has been presented [37]. In the later work,
Apaja et al. have shown that a fermionic cloud expanding after
the release of the harmonic trap should show clear signatures
of the flat band’s localized states.

Motivated by the possibility of engineering an optical
Lieb lattice for cold fermionic atoms, we investigate the
emergence of topological properties for various configurations
of synthesized gauge fields. We first provide an original
analysis of a peculiar IQHE, in the case where a uniform
magnetic field is present in the Lieb lattice. We then explore
the effects of an intrinsic spin-orbit term [7] and show how
it leads to quantum spin Hall states. In this framework we
extend the seminal work of Ref. [18] and derive an effective
Hamiltonian describing the low-energy regime. This Weyl-like
Hamiltonian leads to a three-component quantum equation
that resembles the relativistic equation for spin-1 particles.
Besides, we obtain the Landau levels in the presence of an
external magnetic field and spin-orbit interaction. Finally, we
discuss the optical-lattice realization of this Lieb system and
propose realistic methods for creating Abelian (magnetic)
and non-Abelian (spin-orbit) gauge fields. We show that the
Lieb lattice is particularly suited to reproduce the intrinsic
spin-orbit term introduced by Kane and Mele [7]. The latter,
which involves complex spin-dependent next-nearest-neighbor
hoppings, can be simply decomposed into nearest-neighbor
hopping on a square sublattice. This elegant idea is a non-
Abelian generalization of the method proposed in Ref. [40]
for generating the Abelian Haldane-type gauge field.

II. THE LIEB LATTICE AND TOPOLOGICAL PHASES IN
EXTERNAL FIELDS

We consider the face-centered square (Lieb) lattice which
is shown in Fig. 1. This lattice has a unit cell characterized
by three lattice sites, hereafter referred to as H, A, and B.
Site H has four nearest-neighbors (NN), namely two A and
two B sites. On the contrary the A and B sites have only two
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FIG. 1. (Color online) The face-centered square lattice or Lieb
lattice. The Peierls phases eiθ(m) where θ (m) = π�m are associated
to a uniform magnetic flux per plaquette � and are indicated by
vertical black arrows. We set x = 2m�0 and y = 2n�0.

NN H sites. The bulk properties of the Lieb lattice can be
analyzed within a tight-binding (TB) approximation. In this
limit the Hamiltonian of the system can be written as H0 =
t
∑

〈i,j〉α c
†
iαcjα with spin independent NN hopping amplitude

t . Here c
†
jα(cjα) is the creation (annihilation) operator for a

particle with spin direction α on the lattice site j . In absence
of external fields the problem can be diagonalized exactly and
the spectrum reads

ε0(k) = 0, (1a)

ε±(k) = ±t
√

4 + 2 cos(v1 · k) + 2 cos(v2 · k), (1b)

where k = (kx,ky) and v1/2 are the lattice vectors (cf. Fig. 1).
The bulk energy spectrum is shown in Fig. 2(a). It depicts
two identical, electron-hole symmetric branches ε±. Moreover,
the Lieb lattice presents a unique nondispersive band at the
charge neutrality point (CNP). This band is rooted in the
lattice topology which allows for insulating states with finite
wave function amplitudes on the A and B sites and vanishing
amplitudes on H sites. This property also holds when hopping
to higher-order neighbors is allowed. Note that the three bands
touch at the center of the first Brillouin zone, which we set
for simplicity at � = π/2�0(1,1). The resulting properties of
carriers in proximity of the � point are investigated in Sec. III.

A. Uniform magnetic field and quantum Hall phases

We now study the effects of a uniform magnetic field B =
Bẑ on the spectral and transport properties of the Lieb lattice.
We consider the Landau gauge

A = (0,Bx,0) =
(

0,
π�m

�0
,0

)
, (2)
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FIG. 2. (Color online) Energy spectrum of the Lieb lattice as a
function of the momentum k = (kx,ky). The dashed lines delimit the
first Brillouin zone. (a) Spectrum without external fields. (b) Energy
spectrum in the presence of spin-orbit interaction tSO = 0.1 t .

where � = �−1
0

∫
� B · dS is the number of magnetic flux

quanta �0 per plaquette and x = 2m�0. Hereafter we use the
notation (m,n,ζ ), with ζ = {A,B,H}, to label the lattice sites.
The gauge field A modifies the hopping along the y direction
through x-dependent Peierls phases t → teiθ(m), where the
phase reads

θ (m) =
∫ (m,n+1,B)

(m,n,H)
A · dl =

∫ (m,n,H)

(m,n,B)
A · dl = π�m (3)

(as illustrated in Fig. 1). Here the integrations are performed
along the links connecting the neighboring B and H sites.

Setting � = p/q, where p and q are mutually prime
integers, the system becomes q periodic along the x direction.
By considering periodic boundary conditions, it is possible to
diagonalize the resulting 3q × 3q spectral problem. This leads
to the fractal energy spectrum shown in Fig. 3. As a function
of the flux � the allowed energies depict two Hofstadter
butterflies separated by a flat band at E = 0 [67]. This specific
band is reminiscent of the flat band obtained at zero magnetic
field.

The fractal energy spectrum of lattices subjected to uniform
magnetic fields are intimately related to the IQHE [69,70].
When the Fermi energy EF is located in a spectral gap, the
Hall transverse conductivity of the system is quantized. This
relation is supported by a Diophantine equation [71] which
expresses the quantized Hall conductivity in terms of the
magnetic flux and the position of the gap: In the rth gap
the Hall conductivity is given by σxy = (e2/h)tr , where the
integers (tr ,sr ) satisfy

r = ptr + qsr . (4)

In general, the solutions (tr ,sr ) are not unique and additional
criteria are needed in order to find quantized values of the
Hall conductivity [71]. The integer tr also has a topological

Φ

E
(Φ

)

FIG. 3. (Color online) Spectrum E = E(�) and phase diagram
for � = p/q with q < 47. The eigenvalues are dark blue dots forming
two successive butterflies. Gaps are filled with cold (warm) colors
according to the related positive (negative) values of the quantized
conductivity σxy . The white gaps located around E = 0 correspond
to σxy = 0. Note that the flat band at E = 0 is robust within the whole
range 0 < � < 1.

interpretation, since it represents the sum of Chern numbers
characterizing the bands below the Fermi energy EF:

tr = −
∑

Eλ<EF

NCh(Eλ). (5)

In order to investigate the quantum Hall phases in the Lieb
lattice, we have numerically evaluated the Chern numbers
NCh(Eλ) using the method of Ref. [72]. We have verified
that the integer tr satisfies the Diophantine equation with
the specific condition |tr | � q/2 [71]. The full phase diagram
describing the integer quantum Hall effect for the Lieb lattice is
drawn in Fig. 3. It represents the infinitely many quantum Hall
phases characterized by the quantized transport coefficient
σxy = (e2/h)tr inside the spectral gaps. The different positive
(negative) values of the Hall conductivity are designated by
cold (warm) colors.

To identify the Hall plateaus stemming from the uniform
magnetic field, we represent the Hall conductivity σxy(EF)
as a function of the Fermi energy in the low-flux regime
� � 1 (cf. Fig. 4). In this regime the quantized conductivity
evolves monotonically but suddenly changes sign around the
van Hove singularities (VHS) [73] located at E = ±2 t (see
the alternation of cold and warm colors in Figs. 3 and 4).
Note that the gaps surrounding the topological flat band at
E = 0 correspond to normal band insulators with vanishing
conductivity σxy = 0 for all values of the flux �. This is a
consequence of the flat band’s vanishing Chern number [31].
Most importantly, we observe that the Hall sequence presented
in Fig. 4 shows steps of �σxy = (e2/h). It is interesting to
compare the latter result with the Hall sequences obtained for
the T3 and honeycomb lattices [22,73] which are characterized
by steps of �σxy = 2(e2/h) between the VHS. This major
difference [74] is due to the fact that the Lieb lattice is
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FIG. 4. (Color online) Hall conductivity σxy(EF) as a function of
the Fermi energy for � = 1/11. Cold (warm) colors correspond to
positive (negative) values of the quantized conductivity, while the
central plateau at σxy = 0 is represented in magenta.

characterized by a single relativistic cone, whereas the T3 and
honeycomb lattices display two cones.

B. Spin-orbit interaction and quantum spin Hall phases

In this section we study the effects of spin-orbit interactions
(SOIs) on the properties of the Lieb lattice. Specifically, we
introduce an intrinsic SOI term in the TB Hamiltonian, in
analogy with the model of Kane and Mele for graphene [6–
8,18,22,75]. This term is modeled via a spin-dependent next-
nearest-neighbor (NNN) hopping term

HSO = itSO

∑
αβ

∑
〈〈k,l〉〉

c
†
k,α(di × dj ) · σ αβ cl,β . (6)

The σ αβ are matrix elements of the Pauli-matrices σ with
respect to the final and initial spin states α and β and di

and dj are the two displacement vectors of the NNN hopping
process connecting sites k and l. Since in 2D lattices hopping is
naturally restricted to in-plane processes, the SOI is effectively
proportional to σz. Because of the unequal connectivity of A or
B and H sites, the term (6) effectively induces hopping between
A and B sites only, that is, other NNN-hopping processes
cancel. The spectrum is obtained by exact diagonalization [18]
and reads

ε
(SO)
0 (k) = 0, (7a)

ε
(SO)
± (k) = 2{ t2[cos2(v1 · k) + cos2(v2 · k)]

+ 4t2
SO sin2(v1 · k) sin2(v2 · k)} 1

2 . (7b)

The bulk energy spectrum is shown in Fig. 2(b) for tSO =
0.1 t . Due to its topological origin the nondispersive band at
E = 0 is not affected by SOI. However, this term opens two
bulk energy gaps �gap = 4 tSO between the nondispersive and
the electron and hole branches, respectively.

The SOI has dramatic consequences on the transport
properties of the Lieb lattice: as shown by Weeks and Franz,
the gap �gap allows for a topological insulating phase [18].

|ψ↑(x, y)|2

un
it

s 
of

units of units of

FIG. 5. (Color online) (a) Energy spectrum E = E(ky) in the
cylinder geometry with tSO = 0.2t . The bulk gap is traversed by
gapless edge states (i.e., helical states). The flat band at E = 0 is
highlighted by a green horizontal line. (b) Edge-states amplitude
|ψ↑(x,y)|2 for the open Lieb lattice with 39 × 39 sites, straight
edges, and tSO = 0.5t . This localized eigenstate satisfies Hψλ(x,y) =
Eλψλ(x,y) and corresponds to the energy Eλ = 0.5t which lies within
the gap.

The latter is characterized by a robust spin transport along the
edges of the system. This quantum spin Hall phase, induced by
the intrinsic (Kane-Mele-type) spin-orbit term (6), can thus be
directly visualized when studying a finite piece of the lattice,
that is, by considering its edges.

A standard method consists of diagonalizing the TB Hamil-
tonian with periodic boundary conditions imposed along one of
the spatial directions. This abstract cylinder contains two edges
and already allows us to demonstrate the existence of helical
edge states induced by the SOI. The corresponding energy
spectrum [cf. Fig. 5(a)] depicts several edge-state channels:
for each energy value within the bulk energy gap there
exists a single time-reversed (or Kramers) pair of eigenstates
localized on each edge of the lattice. The conservation of TRS
prevents the mixing of these couple of states by small external
perturbations and scattering from disorder [7,8].

The helical edge states characterizing the QSH phase are
topologically protected against external perturbations. Their
property can be quantified by looking at the Z2-index ν [7].
This topological invariant characterizes the eigenstates defined
in the bulk. It is defined on a 2-torus, in direct analogy with
the Chern numbers introduced in the quantum Hall effect.
Following Ref. [18], we have calculated this Z2-index ν using
the inversion symmetry of the lattice [25]. We obtain that
SOI opens a spectral gap characterized by the index ν = 1,
therefore classifying the Lieb lattice as a quantum spin Hall
insulator.

In the absence of spin-mixing perturbations, the Z2 index is
related to the spin Chern number nσ [14,15] through the simple
relation ν = nσ mod 2, where nσ = (N↑ − N↓)/2 and N↑,↓
represent the Chern numbers associated with the individual
spins. Using the numerical method of Ref. [72], we have
obtained nσ = 1 in agreement with the above result.

It is interesting to extend the analysis above by considering
the more realistic open geometry, that is, a finite piece of
Lieb lattice, thus characterized by a unique edge. We have
solved the TB problem for a Lieb lattice of 39 × 39 sites with
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realistic straight edges. This yields a discrete energy spectrum
extending in the range E ∈ [−2.8t,2.8t]. In the vicinity of
the CNP, within a range corresponding to �gap = 4 tSO, the
eigenvalues correspond to eigenstates that are localized at
the edge of the system. This result is illustrated in Fig. 5(b),
where the amplitude |ψ↑(x,y)|2 is drawn for a particular edge
state at E = 0.5t . Note that this coincides with |ψ↓(x,y)|2.
Using this geometry one can verify the helical property of
these edge states by computing their associated current, which
for spins σ is expressed as

jσ
x (m,n) = −i�0[ψ∗

σ (m + 1,n)Ux ψσ (m,n)

+
√

2ψ∗
σ (m + 1,n + 1)Dψσ (m,n) − H.c.], (8)

jσ
y (m,n) = −i�0[ψ∗

σ (m,n + 1)Uy ψσ (m,n)

+
√

2ψ∗
σ (m + 1,n + 1)Dψσ (m,n) − H.c.]. (9)

Here ψσ (m,n) = (ψσ (m,n,H),ψσ (m,n,A),ψσ (m,n,B)) and

Ux =

⎛
⎜⎝

0 0 0

tI2 0 −itSOσ

0 0 0

⎞
⎟⎠ , (10a)

Uy =

⎛
⎜⎝

0 0 tI2

0 0 −itSOσ

0 0 0

,

⎞
⎟⎠ (10b)

D =

⎛
⎜⎝

0 0 0

0 0 itSOσ

0 0 0

.

⎞
⎟⎠ (10c)

We have verified that the currents j↑(m,n) and j↓(m,n)
associated to the edge states yield two vector fields circulating
along the edge in opposite directions.

III. LOW-ENERGY FERMIONS: THE
QUASIRELATIVISTIC REGIME

In this section we focus on the properties of the Lieb lattice
for noninteracting fermions at low energy, that is, close to
the CNP. We perform a long-wavelength approximation to
the Schrödinger equation underlying the TB Hamiltonian. It
consists of expressing the spatial part of the wave function as
the product of a fast-varying part times a slow-varying part.
Within this approximation the wave function can be written
as

�α(Rα) ∝ eik·RαFα(Rα), (11)

where α ∈ {A,B,H} and Rα is the lattice site coordinate. We
substitute this wave function into the Schrödinger equation
and expand the slow-varying part as

Fα(Rα′ ± dj ) � Fα(Rα′ ) ± dj · ∇rFα(r)|r=Rα′ + O(|d|2).

Collecting all terms we are left with

H̃ = vF� · p, (12)

where vF = 2�0t is the Fermi velocity and p = (px,py,0) =
−ih̄(∂x,∂y,0). Here the pseudospin matrices are defined as

�x =
⎛
⎝0 1 0

1 0 0
0 0 0

⎞
⎠ , �y =

⎛
⎝0 0 0

0 0 1
0 1 0

⎞
⎠ ,

�z =
⎛
⎝0 0 −i

0 0 0
i 0 0

⎞
⎠ . (13)

These matrices fulfill the algebra of the angular momentum
[�i,�j ] = iεijk�k and form a three-dimensional representa-
tion of SU(2). However, contrary to the Pauli matrices, they
do not form a Clifford algebra, that is, {�i,�j } = 2δi,jI3.
Therefore, while Eq. (12) describes electrons with a linear
energy spectrum, it does not represent a Dirac Hamiltonian.
By introducing a rotation operator around the z axis defined
by Dz(φ) = exp(−i�zφ), a generic state |α〉 is transformed
into itself by Dz(2π )|α〉 → |α〉, implying that the pseudospin
� describes an integer spin S = 1.

A. Spin-orbit interaction

Within the long wavelength approximation we can also
express the intrinsic SOI introduced in the previous section.
This term reads

H̃SO = �SO�z ⊗ σz, (14)

where �SO is the effective spin-orbit coupling strength and σz

is a Pauli matrix. The energy spectrum can be computed in this
regime and reads

ε̃
(SO)
0 = 0, (15a)

ε̃
(SO)
± = ±

√
v2

F|k|2 + �2
SO. (15b)

This is twofold degenerate, with degeneracy corresponding
to spin-up and spin-down.

B. Landau levels in a uniform magnetic field

The long-wavelength approximation also allows us to
compute the Landau levels that arise in the presence of the
uniform magnetic field. The system Hamiltonian reads

H̃B = vF � ·
(

p − e

c
A
)

, (16)

where A is the vector potential associated with the magnetic
field B = (∇ × A) perpendicular to the lattice plane.

We solve the Schrödinger equation in the Landau gauge
with A = (−By,0,0). Furthermore, we make the Ansatz
� = ψ(y) exp(ikx). Introducing a k-dependent shift in the
y coordinate

√
Bξ = By + k we are left to solve a system of

coupled linear differential equations

ξψH(ξ ) = ε̃ψA(ξ ), (17a)

ξψA(ξ ) − iψ ′
B(ξ ) = ε̃ψH(ξ ), (17b)

−iψ ′
H(ξ ) = ε̃ψB(ξ ) (17c)
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for the three components of ψ(ξ ). Here ε = E/(h̄vF

√
B) is the

rescaled eigenenergy. The Landau levels at nonzero energy are
given by

ψ±,n(ξ ) =
⎛
⎝ (

√
nφn−1 + √

n + 1φn+1)/
√

2
±√

2n + 1φn

−i(
√

nφn−1 − √
n + 1φn+1)/

√
2

⎞
⎠ (18)

with corresponding eigenvalues ε̃±,n = ±√
2n + 1 and n

integer. Here the φn for n � 0 are the eigenfunctions of the
one-dimensional harmonic oscillator,

φn(ξ ) = 1√
2nπ1/2n!

hn(ξ )e−ξ 2/2, (19)

where hn denotes the Hermite polynomial of order n, while we
define φ−1 ≡ 0. In addition to the eigenfunctions (18) there are
two different types of solutions at energy ε̃0,n = 0. The first of
these is related to the flat band at zero magnetic field (1a) and
reads

ψ0,n(ξ ) = 1√
2

⎛
⎝

√
n + 1φn−1 − √

nφn+1

0
−i(

√
n + 1φn−1 + √

nφn+1)

⎞
⎠ , (20)

where n > 0. The second type of zero-energy Landau level is
given by

ψ
(0)
0 (ξ ) = 1√

2

⎛
⎝ φ0

0
iφ0

⎞
⎠ . (21)

Note that ψ
(0)
0 (ξ ) is not a generalization of (20) to the case

n = 0.

C. Spectrum with magnetic field and spin-orbit interaction

Now we turn to the effects of finite SOI on the Landau
levels obtained above. The energies ε̃α,σ,n (with α = {0,±}
and σ = {↑ , ↓}) of the Landau levels are the three solutions
of √

n

ε̃α,σ,n − σ�SO
+

√
n + 1

ε̃α,σ,n + σ�SO
= ε̃α,σ,n. (22)

The corresponding wave functions read

ψα,σ,n =
√

n

ε̃α,σ,n − σ�SO
φn−1

⎛
⎝ 1

0
−i

⎞
⎠ + φn

⎛
⎝ 0√

2
0

⎞
⎠

+
√

n + 1

ε̃α,σ,n + σ�SO
φn+1

⎛
⎝ 1

0
i

⎞
⎠ . (23)

In the case of weak SOI, that is, �SO � 1, the Landau levels
are given by

ε̃±,σ,n = ±√
2n + 1 − σ�SO

4n + 2
+ O

(
�2

SO

)
(24)

ε0,σ,n = σ�SO

2n + 1
+ O

(
�2

SO

)
. (25)

Consequently, the main effect of finite SOI is to lift the spin
degeneracy with a level separation that decreases with growing
Landau level index n. Moreover, the former highly degenerate

x (a.u.)

y 
 (

a.
u.

)

|E| (a.u.)

|E| (a.u.)
)b()a(

1 1.5 2 2.5 3 3.5

2

2

FIG. 6. (Color online) (a) Distribution of the laser field intensity
for generating a Lieb lattice. (b) Two cuts through (a) corresponding
to the B and H sites (red line) and A sites (blue dotted line).

zero energy levels [cf. Eqs. (20) and (21)] are now split into a
family of flat bands at energies ε0,σ,n.

IV. OPTICAL LATTICE REALIZATION

Reproducing the Lieb lattice with cold atoms trapped in
optical lattices is a realistic and attracting goal [37], as it
would pave the way for the exploration of flat band physics in
a highly controllable environment. Experimentally the Lieb
lattice can be realized as an optical lattice created by six
counterpropagating pairs of laser beams. Four pairs are aligned
along the x and y directions, two with wavelength λ = �0 and
two with wavelength λ = �0/2. Finally, it requires two other
laser pairs with a direction of ±45◦ with respect to the x axis. A
detailed procedure leading to this choice of laser configuration
has been discussed in Refs. [34,37]. The potential profile is
given by the field

VOL(x,y) = V0[sin2(kx) + sin2(ky)]

+V1[sin2(2kx) + sin2(2ky)]

+V2

[
cos2

(
k
x + y

2

)
+ cos2

(
k
x − y

2

)]
, (26)

with V0 = V1 = 2V2 and k = π/λ, which is depicted in Fig. 6.
It is apparent that the hopping probability between A and
B sites is exponentially small compared to the hopping
probability between neighboring H and A and B pairs.

A. Simulation of the U(1) synthetic gauge field and
quantum Hall phases

Recently synthetic U(1) magnetic fields for cold neutral
atoms have been proposed [43,50,63] and experimentally
realized [53]. In such setups atoms reproduce the dynamics
of charged particles subjected to a uniform magnetic field and
can effectively show quantum Hall phases. Several methods
can be used in order to simulate the Hofstadter model [54]
with these systems. These methods are generally based on
the fact that the Peierls phases can be engineered by external
optical [43,63] or magnetic [21] fields. These electromagnetic
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fields can indeed induce hopping between neighboring lattice
sites when the latter host atoms in different internal states,
say |g〉 and |e〉. More precisely, the external fields trigger
(Raman) couplings between these internal states, resulting in
a NN-hopping amplitude

tg,ee
iθ(xg) ∝

∫
w∗(x − xe)�g,ew(x − xg)d3x, (27)

where the Rabi frequency �g,e typically includes space-
dependent phase factors and where we suppose the states |g〉
and |e〉 to be trapped in neighboring sites [43,63]. Here the
Peierls phase exp[iθ (xg)] is directly related to the coupling
laser’s wave vector.

The gauge field (2), which leads to the Peierls phase (3),
can be readily engineered in an optical lattice experiment by
exploiting these methods [43,63]. From Fig. 1 it is clear that
the x-dependent assisted hopping involves nearest neighbors
and occurs along the y direction only, that is, between B and H
sites. In this sense the phases θ (m) = π�m can be realized on
the optical Lieb lattice by extending the methods envisaged for
the standard square lattice (cf. Refs. [43,50,63]). In the Lieb
lattice case one should trap two internal states alternatively
along the y direction: the B sites (H sites) should host an
atom in the internal state |g〉 (|e〉). Coupling these states with
external fields should then induce hoppings of the form (27),
resulting in the space-dependent Peierls phase (3). Note that
for generating a magnetic flux � per plaquette, a double phase
θ� = 2θ = 2π�m is required for the square lattice compared
to the Lieb lattice.

In the previous sections we have discussed the existence of
quantum Hall phases in a fermionic Lieb lattice subjected to
a uniform magnetic field. In order to produce these phases
in a cold-atom experiment, one should engineer a U(1)
gauge field for fermionic atoms. As already discussed in
Ref. [21], most of the schemes generating gauge fields for
bosons would lead to high spontaneous emission rates for
fermionic atoms. Therefore realizing (integer) quantum Hall
states would require alternative methods [63,76,77]. Such a
proposal was introduced in Ref. [21] and uses radio-frequency
magnetic fields produced by a set of current-carrying wires.
The latter are periodically spaced on an atom chip and drive
transitions between several internal states of 6Li fermionic
atoms. These effective “Raman transitions” lead to assisted
hopping (27) and can be tuned in order to produce the desired
Peierls phases. In order to engineer the U(1) gauge field (2),
one can simplify the method initially proposed in Ref. [21]
[which leads to the creation of SU(2) gauge fields] and
consider transitions between two internal states of 6Li, for
example, |g1〉 = |F =1/2, mF =1/2〉 and |e1〉 = |3/2,1/2〉.
We stress that this practical scheme can be directly generalized
to the Lieb lattice in order to generate the phases θ (m) =
π�m accompanying the hopping between neighboring
H and B sites.

B. Simulation of the SU(2) gauge field with neutral atoms

Here we describe a practical scheme to simulate the
intrinsic SOI term in a fermionic Lieb lattice. This coupling
is equivalent to a SU(2) gauge field and could therefore
be engineered in a multicomponent atomic system through

1 2

3

FIG. 7. (Color online) The Lieb lattice with the intrinsic spin-
orbit coupling. This coupling is equivalent to a non-Abelian gauge
field A leading to spin-dependent Peierls phases (as indicated by red
arrows).

state-dependent Peierls phases (cf. Fig. 7). Our proposal
is based on the observation that the spin-dependent NNN
hoppings are equivalent to NN hoppings defined on the
square sublattice formed by the A and B sites only [40]
[cf. Fig. 8(a)]. Consequently, generating the SOI reduces
to the simple problem of engineering the Peierls phases
eiπ/2σz on a rotated square lattice, which we now label
using the notations m̃ and ñ [cf. Fig. 8(b)]. Obviously the
subtlety relies in the orientation of these phases: the phases
are positive for a particle hopping, respectively, clockwise
and anticlockwise in neighboring plaquettes [cf. Fig. 8(a)].
Note that this configuration reminds the structure produced
by a staggered magnetic field with fluxes ±� for each spin
component [cf. Fig. 8(b)]. We note that in order to reproduce
such a staggered field one can simply exploit the fact that the
hopping induced by Raman transitions between the internal
states g and e is such that (teiθ(xg ))e,g = (teiθ(xg ))∗g,e [63].

Let us now describe a feasible and concrete scheme to
synthesize the SOI term (6) in a cold-atom experiment. Our
proposal requires four states e1,2 and g1,2 and external fields
producing Raman transitions in both the x̃ and ỹ directions
[cf. Figs. 8(a)–8(d)]. Such states can be chosen as being four
internal states |F,mF 〉 of 6Li, for example, |g1〉 =|1/2,1/2〉,
|g2〉 =|3/2, − 1/2〉, |e1〉 =|3/2,1/2〉, and |e2〉 =|1/2, − 1/2〉
[21]. First, one needs to trap these states in state-dependent
lattices [21,61,63] along the x̃ and ỹ directions [cf. Figs. 8(c)
and 8(d)]. Then external fields should drive Raman transitions
between these states, with the corresponding Rabi frequencies

�x̃
g1,e1

= �x̃
1, �x̃

g2,e2
= �x̃

2,
(28)

�ỹ
e1,g1

= �
ỹ

1, �ỹ
e2,g2

= �
ỹ

2,

as indicated by arrows in Figs. 8(c) and 8(d). At this point
we emphasize that the Rabi frequencies are controlled by the
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FIG. 8. (Color online) (a) The Lieb lattice with the intrinsic spin-
orbit coupling. The Peierls phases (red arrows) are defined on the
square sublattice formed by the A and B sites. (b) Laser assisted
hoppings (arrows), associated couplings, and synthetic fluxes felt by
the up-spin component. Four states e1,2 and g1,2 are trapped in state-
dependent potentials and are represented by filled or empty orange or
red disks (cf. figures below). (c) and (d) State-dependent potentials
and couplings along the x̃ and ỹ directions. Here the potentials V (x̃),
V (ỹ) have different strength in order to control the hopping along the
x̃ and ỹ directions individually.

coupling fields and that they are chosen to be different for
transitions driven along the x̃ and ỹ directions [i.e., requiring
state-dependent potentials V (x̃), V (ỹ) with different strength].
Note that these Rabi frequencies typically contain phase
factors depending on the coupling lasers wave vectors [43].
Moreover, the Rabi frequencies associated with the opposite
transitions are simply given by �

µ̃
ej ,gj

= (�µ̃
gj ,ej

)∗, where
µ̃ = x̃,ỹ. Therefore the hopping amplitudes along a given
direction are accompanied by Peierls phases with alternating
signs [63]. This is similar to a staggered magnetic field for each
spin component, with fluxes ±� [as illustrated in Fig. 8(b)] .

Now the SOI term (6) requires a specific configuration
of these Rabi frequencies. The associated SU(2) gauge field
is proportional to σz, which is simply achieved by imposing
the constraint �

µ̃

1 = (�µ̃

2 )∗ (i.e., the coupling lasers should
be characterized by opposite wave vectors). Besides, the
desired gauge field is associated to constant Peierls phases
[that is, exp(±iπ/2)], which further requires that the Rabi
frequencies do not depend on the variables x̃,ỹ and also obey
the relation �x̃

1,2 = �
ỹ

1,2 [or equally �x̃
gj ,ej

= (�ỹ
gj ,ej

)∗, using
the definitions (28)].

We stress that this concrete scheme leads to the SOI studied
in the previous sections and that it should open a QSH gap in
an atomic setup. In order to observe the QSH phases induced

by such a synthetic SOI in a cold-atom experiment, these
nontrivial Peierls phases need to be engineered in a fermionic
lattice. Again one can consider the atom-chip proposal of
Ref. [21]: different sets of wires, aligned along x̃ and ỹ,
should trap the states ej and gj alternatively in both directions
[as illustrated in Figs. 8(c) and 8(d)]. Additional “Raman
wires” should then trigger RF transitions and couple the
states, producing the induced hopping and associated phases
described above. Another possibility would be to apply the
superlattice methods of Refs. [63,76,77] to the Lieb lattice.
Once the gauge field is synthesized, this setup needs to be
superimposed with a state-independent Lieb lattice yielding
the desired total Hamiltonian H = H0 + HSO.

Finally, we note that the scheme presented in this section
could be simplified in order to reproduce the Abelian Haldane
model on the Lieb lattice [6,17]. In this case only two internal
states g and e would be needed, instead of four. A realization
of the Haldane model on the Lieb lattice would lead to integer
quantum Hall states [17].

C. DETECTION

The TB Hamiltonian and its long-wavelength approxi-
mation are valid for a Lieb lattice populated by single-
component fermionic atoms, for example, 40K or 6Li. In this
case the atomic collisions are negligible at low temperature
[36]. From the experimental point of view, time-of-flight
imaging via light absorption [78] can be used in order to
detect the presence of massless fermions. The harmonic trap
potential V (r) = mω2r2/2 confining the fermionic cold-atom
gas is ramped down slowly enough for the atoms to stay
adiabatically in the lowest band while their quasimomentum
is approximatively conserved. Under these conditions free
fermions expand with ballistic motion and, from the measured
absorption images, it is possible [79,80] to reconstruct the
initial reciprocal-space density profile of the trapped gas.
Then the local density approximation (LDA) is typically well
satisfied and the local chemical potential can be assumed
to vary with the radial coordinate as µ(r) = µ0 − V (r),
where µ0 is the chemical potential at the center of the trap.
For a system of cold atoms at temperature T , the atomic
density in the bulk is uniquely determined by the chemical
potential

ρ(µ) = 1

S0

∑
α

∫
f (k,α,µ) dk . (29)

Here S0 is the area of the first Brillouin zone of the Lieb lattice,
and f (k,α,µ) = ( exp{[Eα(k) − µ]/kBT } + 1)−1 is the Fermi
distribution function, where Eα(k) is the energy spectrum of
the Lieb lattice [cf. Eq. (1)]. Figure 9(a) shows the atomic
density ρ for the bulk as a function of the chemical potential
µ. The contribution from the highly degenerate flat band (1a)
manifests itself at µ = 0 as a sharp jump in the atomic density.
This feature is specific to lattices presenting flat bands [39].
For small finite µ we note that ρ evolves proportional to µ2,
which reflects the linear dispersion of massless fermions near
the band center as well as particle-hole symmetry. On the
contrary, for values of µ close to the maximum or minimum of
the energy band, that is, far away from the band center (where
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FIG. 9. (Color online) (a) Atomic density as a function of the
chemical potential. (b) Density of states as a function of the chemical
potential. The full line corresponds to �SO = 0.25t and the dashed
line to �SO = 0.

the long wavelength approximation can no longer be applied),
ρ varies proportional to µ. When we consider a finite value
of the SOI, a finite gap appears in the energy spectrum. This
coincides with the horizontal segments in Fig. 9(a). Moreover,
we can observe that the atomic density in proximity of the
SOI gap is not anymore a quadratic function of the chemical
potential but is behaving linearly. This is a signature of the
mass term introduced by the finite SOI. In Fig. 9(b) we report
the density of states (DOS) for two values of �SO. Note the
gap opening for �SO = 0 and the existence of two robust van
Hove singularities at µ = ±2. For a given confining potential
V (r), the density profile ρ(r) can be obtained from Fig. 9(a)
through the LDA. Therefore the SOI plateaus and van Hove
singularities could be directly observed through in situ density
measurements [63].

Let us stress the great similarity between the density and
DOS obtained here for the Lieb lattice and those reported
in Ref. [39] concerning the T3 lattice. However, these two
lattices differ in their topological order since the SOI opens a
trivial insulating gap in the T3 lattice [22]. This fundamental
difference can be emphasized by computing the density profile
ρ(µ) for the realistic finite-size system: in this case, gapless
edge states contribute to the Lieb lattice atomic density and
slightly tilt the SO plateaus. Note that this important effect,
which is the direct signature of the topological phase, could
only be observed for sufficiently small lattices (in which case
the number of edge states is not totally negligible compared to
the number of bulk states).

Finally, the methods for detecting topological properties,
such as quantized Hall conductivity [79] and chiral edge
states [20,21,40,81] have been discussed recently and could
be easily generalized to our Lieb lattice setup. In this context
an important issue is the stabilization of the edge states in
the presence of a confining potential: these current-carrying
states should be stabilized by sharp boundaries [20] or by
designed interfaces induced by hopping anisotropy [21]. We
finally note that robust quantization properties such as quantum
Hall and quantum spin Hall phases rely on the existence of bulk
energy gaps in the single-particle energy spectrum and further

requires that the Fermi energy lies exactly inside such gaps
(i.e., �EF ∼ 0.1t).

V. SUMMARY

We have investigated the fermionic properties of a face-
centered square (Lieb) lattice. This peculiar system is charac-
terized by the presence of a single Dirac cone at the center of
the first Brillouin zone and a flat energy band at half-filling. In
particular we focused on the modification of this exquisite
energy spectrum in the presence of an external magnetic
field and a next-nearest-neighbor spin-orbit interaction. In the
former case we have shown the opening of multiple gaps
due to the occurrence of Landau levels which leads to the
formation of two Hofstadter butterflies separated by the robust
flat band at zero energy. We have characterized the topological
nature of these gaps by investigating the IQHE. Inside the
two Hofstadter butterflies, the Hall conductivity is quantized
and each gap is characterized either by positive or negative
values. Importantly, we find that the energy gaps separating
the two butterflies have a trivial topological nature as they are
characterized by zero Hall conductivity. This fact is a direct
consequence of the flat band’s trivial order. In the case of
the spin-orbit interaction we have shown the opening of two
symmetric gaps around the flat band. These are characterized
by a nontrivial Z2 topological phase leading to the quantum
spin Hall effect. We have demonstrated the existence of helical
edge states for an abstract cylindrical system, as well as for
the more realistic finite lattice.

We have further investigated the Lieb lattice presenting a
long-wavelength approximation for the system Hamiltonian
around the single Dirac cone. We have shown that the
Hamiltonian can be expressed in a relativistic form, similarly
to the honeycomb lattice case, which is characterized by
a set of pseudospin matrices of size 3 × 3. These matrices
fulfill the commutation relation of an angular momentum and
describe a spin-1 particle. Within the same approximation
we have demonstrated that the spin-orbit interaction simply
results in a mass term within the quasirelativistic Hamiltonian.
Furthermore, we have inspected the properties of the Landau
levels. In addition to the dispersion relation ruled by the
square root of the Landau level index (as in the case of
the honeycomb lattice) we have shown that there are two
competing Landau levels at zero energy which are related to the
lattice topology and to the symmetry class of the Hamiltonian
operator.

This system and its associated properties could be en-
gineered using fermionic cold atoms placed in an optical
lattice resembling the Lieb lattice topology. We have pro-
posed a method for implementing Abelian and non-Abelian
synthetic gauge fields in order to simulate the presence of an
external magnetic field and a next-nearest-neighbor spin-orbit
interaction term. We have further shown that these synthetic
fields trigger the opening of energy gaps while preserving the
robust flat band at half-filling, properties which can be directly
deduced from atomic density measurements. In particular, we
emphasized that the Lieb lattice is very well suited to reproduce
the intrinsic spin-orbit term introduced in Ref. [7], which in
this case can be simply decomposed into nearest-neighbor
hoppings on a square sublattice.
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