
PHYSICAL REVIEW A 83, 063416 (2011)

Multiconfiguration time-dependent Hartree-Fock treatment of electronic and nuclear
dynamics in diatomic molecules
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The multiconfiguration time-dependent Hartree-Fock (MCTDHF) method is formulated for treating the
coupled electronic and nuclear dynamics of diatomic molecules without the Born-Oppenheimer approximation.
The method treats the full dimensionality of the electronic motion, uses no model interactions, and is in principle
capable of an exact nonrelativistic description of diatomics in electromagnetic fields. An expansion of the wave
function in terms of configurations of orbitals whose dependence on internuclear distance is only that provided
by the underlying prolate spheroidal coordinate system is demonstrated to provide the key simplifications of the
working equations that allow their practical solution. Photoionization cross sections are also computed from the
MCTDHF wave function in calculations using short pulses.
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I. INTRODUCTION

New sources of short radiation pulses, in particular high-
harmonic generation [1,2] and free-electron lasers [3], promise
to enable a new generation of pump-probe experiments on
molecules in which the central frequencies of both pulses are
in the ultraviolet or x-ray spectrum. The short time scales
that have recently become practical for these measurements
extend to subfemtosecond pulses with delays between them
on the order of femtoseconds or tens of femtoseconds. This
generation of experiments can also involve probe pulses which
ionize or dissociate the target molecule and thus add the
dimension of the time-resolved measurement of the electron
and molecular fragment energy distributions. To accurately
interpret and describe the results of these experiments, ab
initio methods must be developed to treat highly electronically
excited and strongly nonadiabatic molecular dynamics. Coin-
cidence experiments [4], for instance, demand the capability
to describe multiple ionization and dissociation, and nonlinear
effects [5,6] may entail the excitation of multiple electrons.
In general, most of these phenomena currently remain beyond
the reach of accurate ab initio theoretical descriptions.

However, significant headway has been made. Ap-
proaches employing classical trajectories on coupled Born-
Oppenheimer surfaces [7,8] are well suited for dynamics
on low-lying excited bound electronic states, and have been
applied to molecules as large as DNA bases [9]. With an
approximate treatment of the coupling to the ionization con-
tinuum, such trajectory methods may describe time-resolved
photoelectron signals in pump-probe experiments [8,9]; such
a treatment also permitted the study of the quantum nuclear
dynamics of Auger decay [10].

While these methods have already shown great progress
in describing a range of non-Born-Oppenheimer and excited-
state effects, their utility is greatest for situations in which
ionization may be treated approximately and in which the in-
teracting electronic states may be explicitly identified. Several
other approaches avoid the use of Born-Oppenheimer states
altogether and show promise for treating highly electronically
excited or nonadiabatic electronic and nuclear dynamics
[11,12]. In a similar context, ionization has been included in a

variational treatment that explicitly includes electron-nuclear
correlation [13] and has also been treated with coupled
electronic and semiclassical nuclear wave packets [14].

The multiconfiguration time-dependent Hartree-Fock
(MCTDHF) approach would seem to be a natural and widely
applicable starting point to the electronic part of this problem,
because it is capable in principle of exactly describing the
dynamics of many-electron motion. There is considerable
literature on this subject already, including analysis of the
formulation of MCTDHF and its application to small or model
systems [15–23], and also attacks on the combination of
electronic and nuclear motion [24]. On the basis of this liter-
ature, the fundamental idea can be said to be well established
that a time-dependent linear combination of determinants of
time-dependent orbitals should be flexible enough to describe
the electronic response of a molecule to short intense pulses
in any part of the spectrum.

Similar ideas in a different context have underpinned
the development of the multiconfiguration time-dependent
Hartree (MCTDH) method [25–30], which has had consid-
erable success in treating problems of nuclear dynamics,
including vibronic coupling and reactive scattering. However,
by comparison, the MCTDHF method for electrons has still
not delivered its full potential, particularly in the presence of
ionizing fields or including nuclear motion. The reason appears
to lie in several serious technical barriers to its implementation
and general application:

(1) Electronic and nuclear motions are strongly correlated;
the cusps in the electronic wave function at the positions of
the nuclei must be accurately represented for all geometries,
and the basis set error in the electronic part of the calculation
must not depend strongly on nuclear coordinates.

(2) The evaluation of the two-electron integrals over the
time-dependent orbitals must be numerically efficient, other-
wise it will dominate the computational time required.

(3) The ionization continuum must be properly treated
within the MCTDHF description if it is relevant to the problem
at hand.

(4) The nonlinear, unitary, stiff differential equation involv-
ing orbitals and configuration coefficients must be efficiently
numerically integrated.
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Here we address all these difficulties for the case of diatomic
molecules. The key to overcoming the first three is the use
of the finite-element method (FEM) and discrete variable
representation (DVR) in prolate spheroidal coordinates. The
electronic basis is a set of piecewise interpolating polynomials
with cusps at the nuclei, parametrically dependent upon the
bond distance. Such an atom-centered, parametrized basis has
been used before [13], but the choice of prolate spheroidal
DVR has several important advantages.

(1) Orbitals defined in these coordinates are orthogonal
for all values of the internuclear distance R, and therefore
a single set of orbitals may be used for all nuclear geometries,
radically reducing numerical effort. The prolate spheroidal
DVR basis allows for a sparse representation of the primitive
two-electron integrals and their rapid contraction into orbital
matrix elements, and it leads to rapid convergence of both
bound and continuum wave functions, as we have found
in previous fixed-nuclei calculations on single and double
photoionization of H2 [31–33].

(2) The basis enables rigorous inclusion of the ionization
continuum via exterior complex scaling (ECS) [34]. The
implementation of the ECS formalism with the FEM DVR
approach is well established as a formally sound and com-
putationally efficient treatment of both photoionization and
electron-impact ionization [35], because it imposes correct
outgoing scattering boundary conditions for both single and
double ionization [31–33,36–40].

(3) Finally, inclusion of nuclear motion in the case of
diatomics, without the necessity of the Born-Oppenheimer
approximation, is also greatly simplified by the prolate
spheroidal FEM DVR basis. We employ a good approximation
to the exact nonrelativistic molecular Hamiltonian including
the interaction with the radiation field, omitting only the
Coriolis coupling and mass polarization terms.

Thus, the prolate spheroidal DVR basis is ideally suited
for the study of time-dependent excited-state dynamics of
diatomic molecules. Its matrix elements appear in a nonlinear
differential equation of potentially large dimension, however;
and the integration of this equation is a formidable challenge
in its own right. Several different methods of integrating
the MCTDHF equations have been described, and we have
found an efficient and stable generalization of the method of
Ref. [27].

The choice of a single set of electronic orbitals with
parametric dependence on R that is used in this approach
might appear to be, from the traditional perspective of
the Born-Oppenheimer approximation, an unnatural starting
point, and raises questions regarding the convergence of the
wave function for coupled electronic and nuclear motion with
respect to the numbers of configurations included, which
we must address. However, this choice also offers important
advantages, simplifying the working equations in a critical
way and allowing the slow, nuclear degree of freedom to be
distributed across supercomputer processors.

The outline of this paper is as follows. In Sec. II,
we first review the working formalism for the MCTDHF
approach without nuclear motion. In Sec. III we describe
the formulation of the diatomic problem in prolate spheroidal
coordinates, and the form of the Hamiltonian appropriate to
those coordinates when the underlying electronic basis has a

parametric dependence on internuclear distance. Sections IV
and V describe the inclusion of nuclear motion using a DVR
basis in the nuclear coordinate R in combination with the
MCTDHF treatment of electronic motion. We then discuss
the application of the ECS transformation to treat ionization
within the MCTDHF framework in Sec. VI. The remaining
sections discuss computational details and some preliminary
results for both bound and continuum electronic motion. We
use atomic units throughout.

II. MCTDHF FORMALISM FOR FIXED NUCLEI

The MCTDHF working equations have been formulated
previously [15–17,19,22,23], and we will give here only a
brief description of the working equations in order to establish
the starting point for the inclusion of nuclear motion using this
approach, and to indicate how exterior complex scaling of the
electronic coordinates is implemented in this context to treat
ionization. The MCTDHF approach begins with an expansion
of the electronic wave function in antisymmetrized products
(determinants) of time-dependent spin orbitals

|�(t)〉 =
∑

a

Aa(t)|�na(t)〉, (1)

in which each antisymmetrized product of N spin orbitals is
specified by the vector �na and is defined by

|�na(t)〉 = A
(∣∣φna1 (t)

〉 × · · · × ∣∣φnaN
(t)

〉)
. (2)

We use spin restricted orbitals which are product functions
of the space and spin coordinates �qi = {�ri,�i} of a single
electron,

〈�q|φn(t)〉 = φαn
(�r)�msn

(�), (3)

where � is a spinor with spin projection ms = ±1 : � 1
2

= α

and �− 1
2

= β. Alternatively, in second quantization we can
write

|φn(t)〉 = a†
αnmsn

(t)|0〉 (4)

in terms of the creation operator a† for spin orbitals. The
space part of each spin orbital is expanded in a set of
time-independent DVR basis functions, fj , which we will
specify in Sec. III below,

φα(�r,t) =
∑

j

cα
j (t)fj (�r), (5)

so each spatial orbital is associated with a time-dependent
coefficient vector �cα(t); the vector of all �cα is denoted �c.

The MCTDHF equations are based on the application of
the Dirac-Frenkel variational principle for the time-dependent
Schrödinger equation to the trial function in Eq. (1),

〈δ�(t)|Ĥ − i
∂

∂t
|�(t)〉 −

∑
α�β

λαβ(〈δφα|φβ〉 − δαβ) = 0, (6)

where we include the constraint that the orbitals remain or-
thonormal, 〈φα|φβ〉 − δαβ = 0, along with the corresponding
Lagrange multipliers λαβ . The variations in Eq. (6) are
variations in the coefficients A�n and �cα .

In this work we employ a full configuration-interaction (CI)
representation of the wave function in Eq. (1), although further
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application of the method could entail restricted CI wave
functions, such as the “complete active space” approach, which
are standard in modern quantum chemistry. An important point
is that in the full CI case addressed here the solution of Eq. (6)
yields λαβ = 0. The wave function is invariant with respect to
rotations among the orbitals, which may be compensated for
by rotations among the A coefficients. The solution of Eq. (6)
is therefore not uniquely defined, and unique time propagation
requires an additional constraint besides orthogonality of the
orbitals. The simplest constraint is to set the time-derivative
matrix g in the orbital basis to zero,

gαβ = 〈φα|i ∂

∂t
|φβ〉 = 0. (7)

For the orbitals, one obtains the equation of motion

i
∂

∂t
�cα = (1 − P)

∑
β

[
h(1)δαβ +

∑
γ

ρ−1
αγ W̃γβ

]
�cβ, (8)

where the projector P is the matrix representation of the
projection operator, P̂ = ∑

α |φα(t)〉〈φα(t)|, onto the space
spanned by the orbitals at time t ,

Pj,j ′ =
∑

α

cα
j (t)cα∗

j ′ (t), (9)

so that 1 − P projects this equation onto the space orthogonal
to that spanned by the orbitals. Our convention is that boldface
symbols are matrices in either the orbital (�c) or configuration
( �A) basis, and O�v stands for matrix multiplication. In Eq. (8),
ραγ is the reduced one-electron density matrix for the wave
function in Eq. (1),

ραβ =
∑
abms

A∗
aAb〈�na|a†

αmsaβms|�nb〉 , (10)

and h(1) is the matrix of one-body operators in the Hamiltonian
with respect to the underlying time-independent basis in
Eq. (5). All quantities in Eq. (8) are time-dependent except
for the identity and h(1) matrices (in the absence of an external
time-dependent field). The reduced two-electron operator W̃
is defined [15,16] in terms of the reduced two-particle density
matrix, �γsαl and the electron repulsion, Wsl , expressed as its
matrix representation in r1 in the underlying time-independent
basis,

W̃γβ = 1

R

∑
sl

�γ sαlWsl(t), (11)

Wsl(t) =
∫

φ∗
s (�r2,t)

R

|�r1 − �r2|φl(�r2,t)d�r2. (12)

In Eq. (12) the electron repulsion operator appears as
R/|�r1 − �r2| because its matrix elements then have no R

dependence in the underlying prolate spheroidal DVR, and
therefore also in the orbital basis. That fact significantly
simplifies the implementation of the MCTDHF equations in
these coordinates.

The time derivative of the orbital coefficients being spec-
ified, one then obtains the equations of motion for the A
coefficients:

i
∂

∂t
�A = H �A, Ha,a′ = 〈�na|H |�na′ 〉, (13)

where H is the matrix of the Hamiltonian in the configuration
basis, consistent with Eq. (7).

For Hermitian Hamiltonians, the MCTDHF equations con-
serve the norm and the expectation value of the energy [26]. We
next turn to the specification of the underlying basis in Eq. (5)
in prolate spheroidal coordinates and the implementation of
ECS in that basis for the treatment of ionization during the
propagation of Eqs. (13) and (8).

III. FIXED-NUCLEI HAMILTONIAN AND
WAVE FUNCTION

A. Hamiltonian

Prolate spheroidal coordinates were used in early quantum
chemical calculations on diatomic molecules, because analytic
basis sets, such as Slater-type orbitals, in those coordinates
could exactly satisfy the cusp conditions on the two nuclei,
and because their scaling properties with internuclear distance
offered additional computational advantages [41,42]. We
use them here for some of the same reasons, but also
because the implementation of the FEM DVR approach in
these coordinates dramatically simplifies the calculation of
the two-electron integrals.

If the nuclei of our diatomic molecule are at �RA and
�RB , we can define prolate spheroidal coordinates (ξ,η,ϕ) for

each electron in the usual way by rotating a two-dimensional
elliptical coordinate system (ξ,η) about the focal axis of the
ellipse,

ξ = |�r − �RA| + |�r − �RB |
R

(1 � ξ � ∞),
(14)

η = |�r − �RA| − |�r − �RB |
R

(−1 � η � 1),

and the remaining coordinate ϕ (0 � ϕ � 2π ) is the azimuthal
angle. The one-body operators in our Hamiltonian in these
coordinates are specified by the Laplacian,

∇2 = 4

R2(ξ 2 − η2)

[
∂

∂ξi

(ξ 2 − 1)
∂

∂ξ
+ ∂

∂η
(1 − η2)

∂

∂η

+
(

1

(ξ 2 − 1)
+ 1

(1 − η2)

)
∂2

∂ϕ2

]
, (15)

and the electron-nuclear attraction

− ZA

|�r − �RA| − ZB

|�r − �RB | = −2(ZA + ZB)ξ + 2(ZA − ZB)η

R(ξ 2 − η2)
,

(16)

while the one-electron volume element is

dV = (R/2)3(ξ 2 − η2)dξdηdϕ. (17)

Thus, for an N-electron problem, a factor of R3N appears in the
volume element for integration over the electronic coordinates.
We eliminate that factor in a fixed-nuclei calculation by solving
for R3N/2 times the electronic wave function. In Sec. V when
we consider nuclear motion we will solve for R3N/2+1 times
the total wave function to further simplify the form of the
nuclear kinetic energy operator.
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B. Wave function

We make use of an FEM DVR basis in both ξ and η for
each electron, and our primitive basis functions are products
of those DVR functions with a factor describing the φ motion
with a particular angular momentum projection, M, along the
molecular axis. As we have noted in previous studies [32,33]
on H2, the specification of the FEM DVR basis depends on
whether M is even or odd, in order to properly represent the
analytic dependence of the wave function as ξ or η approach
the singularity at ±1. Since we are constructing a DVR in each
finite element, we use Gauss-Radau quadrature on the element
in ξ beginning at ξ = 1, and Gauss-Lobatto quadrature for the
others. We use Gauss-Legendre quadrature to define the DVR
in η. So we define the basic DVR interpolating functions in
terms of the quadrature points and weights by (with x = η

or ξ )

χi(x) = 1√
wi

N∏
j 	=i

x − xj

xi − xj

×
⎧⎨⎩

1 even M√
x2−1
x2

i −1
odd M

. (18)

We define the one-electron primitive FEM DVR functions
according to

fM
ia =

√
8

ξ 2
a − η2

i

χi(η)χa(ξ )
eiMϕ

√
2π

. (19)

Note that if we use the underlying quadrature to calculate the
overlaps, because for fixed nuclei we solve for R3N/2 times the
wave function, these functions are orthonormal with respect to
the volume element 1

8 (ξ 2 − η2)dξdηdϕ.
We have discussed the simplifications of the integrals of

1/r12 in a similar basis before [33], in which we used spherical
harmonics in the variables η and ϕ instead of the DVR in η

we are using here. In this basis the simplifications are even
more powerful. By making use of the Neumann expansion of
1/r12 in prolate spheroidal coordinates, and solving Poisson’s
equation in ξ in the FEM DVR basis followed by using the
Gauss quadrature in η we arrive ultimately at expressions for
the two-electron integrals of the general form

〈
f

M1
ia (�r1)fM2

jb (�r2)
∣∣ 1

r12

∣∣fM3
i ′a′ (�r1)fM4

j ′b′ (�r2)
〉

= δi,i ′δj,j ′δa,a′δb,b′Fm
i,j,a,b, (20)

where in addition we have the requirement that
m = M3 − M1 = M2 − M4. We give the explicit formula
for these and other matrix elements in Appendices A and B.
We can see therefore that the two-electron integrals in the
FEM DVR basis are diagonal in the indices corresponding to
both ξ and η. This is an immense simplification over the use
of analytic basis functions, like Gaussians, and dramatically
reduces the effort in transforming the two-electron integrals
from the FEM DVR basis to the time-dependent orbital basis,
and thereby simplifies and speeds up both the construction of
the two-electron portion of the reduced Hamiltonian in Eq. (12)
and its operation in Eq. (8).

IV. HAMILTONIAN AND WAVE FUNCTION FOR
NUCLEAR MOTION

A. Hamiltonian

When we include nuclear motion, we must account for
the fact that this FEM DVR basis is R dependent through
the dependence of the electronic coordinates on internuclear
distance. The DVR quadrature points that define the basis
in Eq. (19) move with R. As has been discussed before—for
example, by Esry and Sadeghpour [43]—in a basis of functions
of prolate spheroidal coordinates, the derivatives with respect
to R in the Hamiltonian must be calculated holding the
Cartesian coordinates, x, y, and z of the electrons fixed instead
of holding ξ , η, and φ fixed. The relation between those
derivatives is(

∂

∂R

)
xyz

=
(

∂

∂R

)
ξηφ

−
N∑

i=1

1

R
Ŷi, (21)

where the sum is over electrons, and the operator Ŷ is

Ŷ = 1

ξ 2 − η2

(
(ξ + αη)(ξ 2 − 1)

∂

∂ξ

+ (η + αξ )(1 − η2)
∂

∂η

)
, (22)

with α = (MA − MB)/(MA + MB) being the mass asymmetry
parameter. We must use these relations when constructing the
second derivative term, (∂2/∂R2)x,y,z, in the nuclear kinetic
energy. When including nuclear motion, we calculate R3N/2+1

times the wave function, and so the radial part of the nuclear
kinetic energy operator then becomes

KR = − 1

2µR

{(
∂2

∂R2

)
ξηφ

+ 1

R2

(∑
i

Ŷi + 3N

2

)2

−
(∑

i

Ŷi + 3N

2

)[
2

R

(
∂

∂R

)
ξηφ

− 1

R2

] }
. (23)

For more than one electron, we do not employ an exact
treatment, which might be accomplished in polyspherical
coordinates [44,45], for example, but instead employ a
straightforward adaptation of the one-electron Hamiltonian
[43] that omits several minor terms unimportant for a host
of nonadiabatic dynamics relevant to attosecond physics. In
particular, our electron position vectors are represented in
prolate spheroidal coordinates relative to the center of mass
of the nuclei. We therefore omit terms relating to mass
polarization, i.e., for N electrons, the deviation of the center
of mass of the nuclei from the center of mass of the nuclei
and any N − 1 subset of the N electrons. We are unaware of
any experiment in which the effect of such mass polarization
terms has been demonstrated.

We additionally omit Coriolis coupling and write the
Hamiltonian for the rotational quantum number J as

H = KR + 1

2µRR2

[
J (J + 1) − 2J 2

z + l̂2
]

− 1

2µe

∑
i

∇2
i + V. (24)
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The reduced masses are defined as µR = mAmB/(mA + mB)
where A and B are the two nuclei, and (in atomic units) µe

for an N-electron system is µe = (mA + mB + N − 1)/(mA +
mB + N ). Jz is the projection of the electronic angular
momentum on the internuclear axis and equals the sum over
the lz eigenvalues of the individual electrons,

∑N
i=1 Mi . The

operator l̂2 is the square of the electronic angular momentum
operator. The potential V includes the electron-electron repul-
sion, electron-nuclear attraction, internuclear repulsion, and
time-dependent dipole interaction term, if an external field
is being applied. At present, we also omit the two-electron
terms in l̂2 (proportional to l̂i l̂j ) and in (

∑
i Ŷi)2 (proportional

to Ŷi Ŷj ). These terms are in general similar in magnitude to
the mass polarization terms that we have already omitted and
are not relevant to the processes of immediate interest. The
usual nonadiabatic effects such as curve crossing transitions
are driven by the cross term in Eq. (23) involving products
of electronic and vibrational momenta, as opposed to the
terms that we have omitted containing terms quadratic in
the electronic momenta. They and the Coriolis coupling may
be included in future applications, and their omission here
accelerates the numerical implementation.

B. Wave function

To include nuclear motion and electronic motion simultane-
ously, and also avoid the Born-Oppenheimer approximation,
we begin with a trial function in which we use the same con-
figurations specified in Eq. (1), expressing the time-dependent
orbitals in the prolate spheroidal FEM DVR basis, and taking
advantage of the implicit dependence on the internuclear
distance R of those orbitals,

〈R|�(t)〉 =
∑
a,κ

Aa,κ (t)|�na(t ; R)〉χκ (R). (25)

In Eq. (25) the function χκ (R) is an ordinary FEM DVR
basis function based on Gauss-Lobatto quadrature within finite
elements in R, and is labeled by the grid point Rκ at which
it is nonzero. The coefficients Aa,κ (t) of the configurations
depend explicitly on the index κ as well as the configuration
index a. So this representation of the wave function uses
MCTDHF for the electrons while using a full primitive basis
DVR representation of nuclear motion. The configurations
have a parametric dependence on R, which we emphasize with
the notation |�na(t ; R)〉, and that dependence comes entirely
through the R dependence of the prolate coordinates, and thus
of the FEM DVR grid for the electrons,

〈�q|φn(t ; R)〉 = φαn
(�r(R),t)�msn

(�), (26)

where �r(R) = (ξ (R),η(R),ϕ) are the prolate spheroidal coor-
dinates.

Using this trial function in the variational principle in Eq. (6)
means that a single set of orbitals is used to describe the
electronic motion for all R, and thus that the coefficients cα

i (t),

φα(�r,t) =
∑

i

cα
i (t)fi(�r(R)), (27)

do not depend on R. This fact simplifies the resulting
MCTDHF equations in a fundamental way, and is key to the
practicality of this approach. The ansatz in Eq. (25) is largely

motivated by this fact, but it is clear nonetheless that it is
capable in principle of representing the exact wave function if
a sufficient number of orbitals is included. Our numerical tests
below will test the efficiency of this expansion. The coefficients
of the configurations depend explicitly on the R index and thus
are capable of weighting the configurations constructed from
those orbitals differently at different internuclear distances,
and thus different orbitals can contribute differently at different
values of R. The nuclear cusps of the wave function are
represented accurately at all values of R in this approach, and
the orbitals are automatically orthogonal for all internuclear
distances.

V. MCTDHF WORKING EQUATIONS INCLUDING
NUCLEAR MOTION

Using the following notation for combining parts of the
Hamiltonian in Eq. (24),

T̂ el =
∑

i

[
− R2

2µe

∇2
i − 1

2µR

(
Ŷi + 3

2

)2

+ 1

2µR

l̂i
2
]
,

T̂ R = −1

2

∂2

∂R2
, D̂el =

∑
i

[
Ŷi + 3

2

]
,

D̂R =
[

2

R

(
∂

∂R

)
ξηφ

− 1

R2

]
, (28)

the Hamiltonian including a radiation field employed here
for R3N/2+1 times the wave function, omitting Coriolis and
two-electron terms in l̂2 and (

∑
i Ŷi)2, may be compactly

expressed as

Ĥ0 = 1

R2
T̂ el + 1

R
V + 1

µR

(T̂ R + D̂RD̂el), (29)

H (t) = Ĥ0 + RE(t)µ̂ (length),

= Ĥ0 + 1

R

A(t)

c
µ̂ (velocity), (30)

where E(t) and A(t) are the electric field and vector potential,
and µ̂ is a coordinate or derivative operator in the electronic
prolate spheroidal coordinates. The operators D̂R and D̂el

are anti-Hermitian, first-order differential operators, and the
potential is a separable product of 1/R times a potential for the
nuclear repulsion plus two-electron repulsion that is a function
of only the prolate spheroidal coordinates:

V = [Z1Z2 + v12(ξ1,η1,ϕ1,ξ2,η2,ϕ2)] , (31)

with v12 = R/r12.
The working equations for MCTDHF with nuclear motion

are similar to the Born-Oppenheimer version. The inverse of
the reduced single-particle (electronic) reduced density matrix
still appears, and that matrix is a sum over the nuclear grid
points,

ραβ =
∑

κ

ρκακβ, (32)

where

ρκατβ =
∑

a b ms

A∗
a,κAb,τ 〈�na|a†

αmsaβms|�nb〉, (33)
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and the reduced two-electron matrix Wγβ is defined similarly.
We also have the reduced two-electron density matrix defined
as

�καα′κββ ′

=
∑

a b ms ms′
A∗

a,κAb,κ〈�na|a†
α msa

†
α′ms′aβ msaβ ′ms′ |�nb〉. (34)

By defining reduced matrices for 1/R, 1/R2, and R (which
appears as the length gauge dipole operator), and a reduced
derivative operator,

R(Q)
αβ =

∑
κ

ρκακβRQ
κ , Q = 1, − 1, − 2

R(−1)
αβα′β ′ =

∑
κ

�καα′κββ ′
1

Rκ

, (35)

DR
αβ =

∑
κτ

ρκατβDR
κτ ,

along with matrix elements of the differential operators in
Eq. (28), we arrive at the MCTDHF equations for the orbital
coefficients,

i
∂

∂t
�cα =

∑
β

(1 − P)ρ−1
αβ

∑
γ

[
R(−2)

βγ Tel + DR
βγ Del

+
∑
β ′γ ′

R(−1)
βγβ ′γ ′ W̄β ′γ ′

]
· �cγ . (36)

The equation for the coefficients of the configurations still has
the form i ∂

∂t
�A = H �A. We provide expressions for the various

matrix elements of the one-electron operators appearing in this
section in Appendix A.

VI. EXTERIOR COMPLEX SCALING AND THE
TREATMENT OF IONIZATION

In the application of the MCTDHF approach to molecules
subject to short UV pulses, there is in general some component
of the wave function that is ionized. As the wave function is
propagated, the outgoing electron flux will inevitably reach the
end of the FEM DVR grid in ξ and reflect back from it. In a
number of other time-dependent applications of grid methods,
it has been shown that the ECS transformation is capable of
perfectly extinguishing those reflections, both in the absence
of an external field [46] and in the presence of a time-varying
field [47,48].

In a time-dependent calculation, the ECS transformation
enforces outgoing wave boundary conditions for the ionized
part of the wave function, even at very long times. In
the application of the ECS method in prolate spheroidal
coordinates, the electronic coordinates are scaled only beyond
a radius ξ0 by a complex phase factor according to ξ →
ξ0 + (ξ − ξ0)ei�, where 0 < � < π/2 is an angle on which
the results do not depend formally. The value of ξ0 is chosen
large enough that the physical quantities of interest can be
calculated from the wave function for all electronic coordinates
satisfying ξ < ξ0. This is a formally exact procedure, and in
a converged calculation it does not alter the wave function in
the inner region from its exact value. In fact, we may calculate

TABLE I. Converged Hartree-Fock energies from MCTDHF
relaxation calculations and the FEM DVR basis sets required to
converge them, compared with literature values. For H2 and CO,
the calculation is repeated with complex scaling with ξ0 = 1, for
two scaling angles. In these ECS results, the last real digit and the
imaginary components are not converged with respect to primitive
basis. Also in the last entry, an MCTDHF relaxation calculation
equivalent to a 10 orbital full CI MCSCF result for N2 is compared
with results computed with Cartesian Gaussian functions and a triple-
or quadruple-ζ basis set.

R0 Nη nξ ξ elements Energy (hartree)

H2 1.4 9 14 3.0, 10.0, 10.0 −1.133 629 571 46
Same with θ = 15◦ −1.133 629 573 +1.1×10−9 i

Same with θ = 30◦ −1.133 629 572 +1.2×10−9 i

HF limit −1.133 629 5715 [53]

Li2 5.051 25 20 0.75, 3× 4.0 −14.871 562 0178
Elliptic basis HF −14.871 5619 [54]

LiH 3.015 21 19 1.0, 3× 5.0 −7.987 352 237
Numerical HF −7.987 352 237 [55]

CO 2.132 21 19 1.5, 7.5, 7.5 −112.790 907 18
Same with θ = 15◦ −112.790 907 14 +1.1×10−8 i

Same with θ = 30◦ −112.790 907 14 +8×10−8 i

Numerical HF −112.790 907 [55]

N2 2.068 21 19 1.5, 7.5, 7.5 −108.993 825 63
Numerical HF −108.993 825 7 [55]

N2 Same basis, (14/10) CAS SCF −109.141 847 93(5)
(14/10) COLUMBUS cc-pVTZa −109.132 509 251
(14/10) COLUMBUS cc-pVQZb −109.140 039 408

aCorrelation-consistent polarized triple-ζ basis set.
bCorrelation-consistent polarized quadruple-ζ basis set.

accurate bound state energies even with ξ0 = 1, as shown in
Table I. However, to extract ionization information, we choose
a larger ξ0 and perform an analysis inward of that value, on the
real ξ axis.

The analytic continuation of the Hamiltonian under the
ECS transformation leads to a complex symmetric matrix
representation when the basis functions are real at real values of
the coordinates, and the DVR implementation of ECS, detailed
previously [35,49] also leads to complex symmetric matrices.
So, for example, the matrix representation of the one-body
operators in the Hamiltonian, h(1) in the present FEM DVR
basis is complex symmetric, and the DVR basis functions,
as defined in Eq. (18), are orthonormal when their overlap is
quadratured along the ECS contour [49].

Once the MCTDHF orbitals are expanded in terms of the
orthonormal FEM DVR basis in Eq. (19), they are represented
by the coefficient vectors �cα in Eq. (27). We may define
the inner product of a pair of those orbitals in terms of the
expansion coefficients in the usual, Hermitian way,

〈φa|φb〉 = �c†a · �cb, (37)

making use of the orthonormality of the DVR functions on the
ECS contour. We can then arrange the coefficients defining
the MCTDHF orbitals as the matrix Ci,α , and use this inner
product when transforming the operators from the FEM DVR
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basis to the orbital basis. So, for example, we would transform
the ECS-scaled one-body Hamiltonian according to

h̃(1) = C†h(1)
ECSC, (38)

where † denotes the Hermitian conjugate of the matrix.
Because it is unitary (in the limit that there are the same number
of orbitals as FEM DVR basis functions), this transformation
does not change the spectrum of the ECS-scaled matrix
representation of h(1). Doing every transformation to the orbital
basis that is involved in constructing the matrices in the
working equations, Eqs. (13) and (8), in this way preserves
the analytic properties of the ECS solutions.

The implementation of ECS in this manner in the MCTDHF
equations has another very important advantage. As the
solutions are propagated forward in time, the constraint that
the orbitals remain orthogonal, and the constraint on their
variations in time imposed by Eq. (7), are then imposed with
the usual sense of the Hermitian inner product in Eq. (37).
This procedure is essential to the numerical robustness of
the MCTDHF method, because if an inner product without
complex conjugation were used instead, as it is frequently in
the complex scaling literature, an orbital could in principle
have zero overlap with itself. While there may be no formal
reason to choose one implementation over the other, there
is therefore a compelling numerical reason to choose the
Hermitian inner product. This choice does result in matrices H
and W that appear in the working equations, Eqs. (13) and (8),
for example, with no symmetry, but nonetheless the overall
properties of the solutions, in particular their outgoing wave
character, under ECS are correctly reproduced.

VII. NUMERICAL INTEGRATION

The integration of the coupled nonlinear differential equa-
tions of Eqs. (13) and (8) has been the source of several
theoretical and numerical studies over the past years. Splitting
the orbital equation by separating the one-body, stiff kinetic
energy terms from the two-body, local, nonstiff potential terms
has received considerable attention [49–51], but we do not
pursue this avenue here.

In the context of nuclear motion only within the MCTDH
method, it has been shown [27] that it is useful to decouple the
orbital and A-vector equations for short times, which is enabled
by the fact that the product of the inverse density matrix and the
reduced operator ρ−1W̃ in Eq. (8) is in general slowly changing
with time. Within the MCTDH implementation, ρ−1W̃ and
the A-vector Hamiltonian H are taken as constant over a short
time step, which approximation is denoted as “constant mean
field” (CMF). The orbital and A-vector equations are integrated
separately over the CMF time step, which is typically much
bigger than, for instance, the time step used in the integration of
the nonlinear equation for the orbitals. The error is determined
by backward propagation, and the CMF time step is adjusted
to keep it within a specified tolerance.

We employ a similar method, but without intelligent error
control and with constant step size, and with a predictor-
corrector scheme that appears numerically robust. The pre-
dictor step is identical to the CMF step in the MCTDH
implementation, and the corrector step incorporates a linear
approximation to the matrices H(t) and ρ−1W(t). In the

MCTDH terminology, this would be “linear mean field”
(LMF). Thus, in the CMF predictor step starting at t0, with
the matrices ρ0, W0, and H0 for that time in hand, the wave
function for the next time t1 = t0 + δt is obtained as

�A1 = e−iH0δt �A0,

i
∂

∂t
�c = [1 − P(t)]

[
h(1) + ρ−1

0 W̃0
]�c, (39)

t = t0, . . . ,t1.

This first, predictor step in the propagation yields a first guess
for �A(t1) and �c(t1), which yields first guesses for the matrices
ρ1, W1, and H1 at t1. These first guesses are used to propagate
the wave function in a LMF corrector step, in which the first-
order Magnus approximation is used for the A vector and a
linear approximation for the product ρ−1W is used.

�A1 = e−i(H0+H1)δt/2 �A0,

i
∂

∂t
�c = [1 − P(t)]

[
h(1) +

(
t1 − t

δt
ρ−1

0 W̃0 + t − t0

δt
ρ−1

1 W̃1

)]
�c,

t = t0, . . . ,t1. (40)

The splitting of the orbital and A-vector equations over the
mean field step is beneficial for, among other things, ensuring
unitarity and parallelizing the algorithm. Although we have im-
plemented versions of this method of higher order than linear
(LMF), none exhibited its nearly unconditional stability. We
use the EXPOKIT package [52] to calculate both the matrix ex-
ponential for the A-vector equation and the solution of the or-
bital equation. The exponential propagation of the orbital equa-
tion was the fastest method tried in this study, although we note
that the explicit, basic Verlet method also gave good results.

Our wave functions are Slater determinants and are not spin
adapted; it is most efficient to calculate the high-spin case,
so for a triplet we include projections of total spin Ms = 1,
but therefore higher multiplets are present in the configuration
basis. However, we intermittently project the wave function on
the proper spin subspace to ensure that it is not contaminated
by numerical error. A full description of the integration method
will be presented in a forthcoming publication.

VIII. GROUND ELECTRONIC STATES FROM
IMAGINARY TIME PROPAGATION

Of course, one requires initial-state eigenfunctions to be
used as a starting point for a time-dependent calculation. While
some aspects of the present method have been well established
in the literature, others—in particular, the use of prolate
spheroidal orbitals shared among all points in R—have not,
and for this reason here we provide various ground, metastable,
and excited vibrational state properties calculated with the
present method. These are obtained by “improved relaxation”
[56,57], in which the orbitals are propagated forward in
imaginary time and the CI Hamiltonian (except when there
is only one configuration) is diagonalized at every time step.
We have also implemented a state-averaged version analogous
to a multiconfiguration state-averaged self-consistent field
(MCSCF) calculation in which the orbitals are optimized to
minimize the average energy of the first N eigenfunctions of
the A-vector Hamiltonian. This procedure requires averaging
the density matrices and reduced operators for the first N
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eigenfunctions of the A-vector Hamiltonian and propagating
their shared orbitals in imaginary time.

A. Fixed-nuclei ground electronic states

First, as a measure of the performance of the primitive basis
in representing electronic wave functions, we list calculated
fixed-nuclei Hartree-Fock energies for a variety of molecules
in Table I. A MCTDHF calculation using full CI in the space
of ten orbital for N2 is also reported and compared with
the corresponding calculation using the COLUMBUS quantum
chemistry suite [58] and the correlation-consistent triple- and
quadruple-ζ bases of Dunning [59]. We also include results
for a few molecules including complex scaling with ξ0 = 0,
in which the coordinates of all electrons are continued into
the complex plane. These latter complex scaling results were
obtained by using the c-norm, not the Hermitian norm, as
explained in Sec. VI, and demonstrate that the electronic
Hamiltonian has been accurately analytically continued to
complex ξ . To achieve a given accuracy, these in general
require slightly more DVR basis functions because of the
oscillatory nature of the solutions under complex scaling.

B. Nuclear motion: HD+ and natural orbitals
for electrons and nuclei

In our treatment the orbitals are used to span the entire range
of internuclear distances R. Because the prolate spheroidal
coordinates do not mimic the behavior of molecular orbitals—
which asymptotically limit to atomic orbitals with constant
size, whereas the prolate spheroidal coordinates continue to
expand with increasing R—a greater number of orbitals is
required to represent a wave function with nuclear motion than
one without. To precisely quantify this behavior, in Table II we
give ground-state HD+ energies calculated both with a numer-
ically exact, converged calculation we performed using a large
primitive FEM DVR basis, and with the MCTDHF method for
an increasing number of orbitals. One can see that submicro-
hartree accuracy is achieved with three orbitals, and essentially
the exact result is achieved with five orbitals. For HD+, our
Hamiltonian is exact for J = 0 and our exact result agrees
with that of Balint-Kurti [60] to all significant figures given.

Also shown in Table II are the occupation numbers corre-
sponding to the eigenfunctions of reduced density matrices for
the ground J = 0 state of HD+. These are the natural orbitals
for electronic and nuclear motion in this coupled system.
These natural orbitals and their eigenvalues provide a compact
representation of the wave function known in the quantum-
information literature as a Schmidt decomposition [66–68].

According to the theorems on which the Schmidt decom-
position is based we may divide the HD+ molecule with
J = 0 into two subsystems, namely, that represented by (1)
the coordinates of the electron and (2) the nuclear separation,
R. Then the two reduced density operators, operating from
unprimed variables to primed variables, that for electronic
motion

ρ̂el =
∫

dV dR R2ψ(ξ ′,η′,φ′,R)ψ∗(ξ,η,φ,R),

(41)

with dV given by Eq. (17),and that for nuclear motion,

ρ̂nuc =
∫

dV dR R2ψ(ξ,η,φ,R′)ψ∗(ξ,η,φ,R) (42)

TABLE II. Left: Energies of MCTDHF wave functions including
nuclear motion for ground state HD+ as a function of orbitals, along
with the exact result using our prolate spheroidal basis and the exact
J = 0 nonadiabatic result of Balint-Kurti et al. [60]. Right: natural
prolate spheroidal occupation numbers for Born-Oppenheimer and
non-Born-Oppenheimer HD+ calculations.

Energy Natural occ.

No. orbitals E (hartree) Orb. BO NBO

1 −0.594 612 8688 1 0.996 34 0.996 29
2 −0.597 852 6051 2 3.64 ×10−3 3.68 ×10−3

3 −0.597 897 4489 3 2.44 ×10−5 2.48 ×10−5

4 −0.597 897 9622 4 2.36 ×10−7 2.42 ×10−7

5 −0.597 897 9683 5 2.50 ×10−9 2.6 ×10−9

6 −0.597 897 9683 6 2.94 ×10−11 3.1 ×10−11

Exact −0.597 897 9686 7 4.4 ×10−13 5 ×10−13

Ref. [60] −0.597 897 9686 8 7 ×10−15 1 ×10−14

have exactly the same nonzero eigenvalues, ρi . The complete
wave function may be expressed in terms of the eigenfunctions
ϕel

i (ξ,η,φ) and ϕnuc
i (R) of these matrices as

ψ(ξ,η,φ,R) =
∑

i

ρ
1/2
i ϕel

i (ξ,η,φ)ϕnuc
i (R). (43)

The ρi are the natural occupations and are a measure of the
degree to which the parametric dependence of the prolate
spheroidal coordinates upon the bond length follows the
change in the electronic wave function within the Franck-
Condon region. In contrast, beyond ρ1 the occupation numbers
in Cartesian coordinates x,y,z that do not follow the nuclei
would be much higher. In Table II we show two sets of occupa-
tion numbers, those for the Born-Oppenheimer approximation
to the ground vibrational state and those for the the numerically
exact wave function whose energy agrees with Ref. [60], and
the occupations are comparable. In Fig. 1 we plot the pairs of
corresponding natural orbitals in ξ,η (independent of φ since
m = 0) and in R, obtained from the exact wave function natural
orbitals. In this example, only slight differences exist between
these and those from the Born-Oppenheimer or improved
adiabatic [43] wave functions in the same coordinate system.

For a more complicated system, the concept of these
coordinate-system-dependent natural occupations can be gen-
eralized. For a multielectron wave function, the generalization
of the natural orbitals in R is straightforward. In this case,
for the electronic degrees of freedom, we would have natural
multielectron wave functions, not just orbitals, corresponding
to the same set density matrix eigenvalues. For a polyatomic
system, we expect that the number of terms needed to
converge the Schmidt decomposition analogous to Eq. (43), as
indicated by the the R natural orbital or natural wave function
occupation numbers, will be a measure of the suitability of any
geometry-dependent electronic coordinate system. One could
compare two different choices of coordinate systems for the
electronic degree of freedom (which like prolate spheroidal
coordinates need not be orthogonal to R) by computing only
the eigenvalues of the reduced density matrix, ρnuc, for a
suitable wave function.
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FIG. 1. (Color online) Schmidt decomposition of the HD+

ground-state wave function: Natural prolate spheroidal (elliptic)
orbitals (left) and conjugate natural orbitals in R (right) for J = 0
ground-state HD+, diagonalizing the reduced density matrices in
Eqs. (41) and (42), corresponding to the occupation numbers listed
in Table II. On left, the scale is determined by the origins of the
coordinate system denoted by black dots and aspect ratio of 1:1
(prolate spheroidal coordinates are unitless).

C. Vibrational states

In Table III we give properties calculated using the
MCTDHF approach for the J = 0 ground vibrational states
of LiH, H2, and HD, using a modest number of orbitals, with
comparison to exact nonadiabatic results from the literature.
The reported values for H2 are obtained from a calculation
in which the first two vibrational states are simultaneously
optimized using the same set of orbitals, whereas the other
results are from optimizing the ground ν = 0 state only. These
calculations all use a single π orbital and varying numbers
of σ orbitals. Differences in energies from the exact result
on the order of several millihartree for HD and H2 or tens
of millihartree for LiH are apparent. The various expectation
values differ by approximately 1% or less from their exact
values, even though in our multiconfiguration wave function a
relatively small number of electronic orbitals have been used to
span all grid points in R which number from 36 for H2 to 48 for
LiH. For the calculations in Tables II and III and in Fig. 2 we
use nuclear masses mH = 1836.152 701, mD = 3670.483 014,
mLi = 12 789.395 862.
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FIG. 2. (Color online) Convergence of vibrational transition
frequencies for H2 and LiH from state averaged MCTDHF calcu-
lations using one π orbital while optimizing four vibrational states
for LiH and ten vibrational states for H2. The difference between
the calculated transition frequency and the experimental one is
plotted with respect to the total number of orbitals, varying the
number of σ orbitals. For LiH, the errors using the Hartree-Fock
Born-Oppenheimer curve are also plotted, with atomic masses as the
arrows on the right side. For H2, the errors for the same transitions
from a Born-Oppenheimer calculation with five σ , one π orbitals are
also plotted as arrows to the right.

In Table III we also report properties calculated for
the Born-Oppenheimer wave function, i.e., the solu-
tion χ0(R)ψ1(�r; R) obtained by diagonalizing the Born-
Oppenheimer vibrational Hamiltonian using the ground Born-
Oppenheimer electronic state ψ1(�r; R) with orbitals optimized
for each Ri separately, and using the atomic masses. For
H2, the error in these results is comparable to that of our
nonadiabatic MCTDHF wave functions. For LiH, we achieve
better agreement with the previously computed accurate values
using the full nonadiabatic treatment than we do with the
Born-Oppenheimer calculation using fixed masses.

There is a striking observation to be made about these
results concerning the convergence of our approach in which a
single set of electronic orbitals is used for all R. By accounting
for the nonadiabatic coupling terms in the Hamiltonian and
using one small set of orbitals for all R, we achieve results
closely approaching those of previous accurate calculations on
these systems. This point, and the importance of nonadiabatic
coupling, can be judged in particular by examining the last
three lines of Table III.

In Fig. 2 we show the performance of the method in
representing the vibrational spectrum of H2 and LiH. For LiH,
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TABLE III. Properties of vibronic states. The H2 calculation is from a state averaged calculation on the ν = 0 and ν = 1 states. Otherwise
the energy of the ground vibrational state has been minimized. With six σ and one π orbital for LiH, fixed nuclei at 3.015 bohr bond length,
the dipole moment calculated was 2.2856 atomic units, compared with the prior result of 2.306 [65].

ν 〈E〉 〈T 〉 〈V 〉 〈r1〉 〈r2
1 〉 〈r2〉 〈r2

2 〉 〈R〉 〈R2〉 D

H2

5σ 1π 0 −1.160 08 1.160 06 −2.320 14 1.5834 3.1894 1.5834 3.1893 1.4553 2.1451 0.0000
8σ 1π 0 −1.160 88 1.160 85 −2.32 174 1.5784 3.1620 1.5784 3.1620 1.4527 2.1383 0.0000
Ref. [61] 0 −1.164 03 1.4487 2.1270
Ref. [62] 0 −1.164 03 1.164 03 −2.328 05
5σ 1π BO 0 −2.322 42 1.5773 3.1557 1.5773 3.1557 1.4520 2.1367 0.0000
5σ 1π 1 −1.140 47 1.140 40 −2.280 87 1.6270 3.3691 1.6270 3.3691 1.5482 2.4787 0.0000
8σ 1π 1 −1.141 56 1.141 67 −2.283 24 1.6295 3.382 86 1.6295 3.3826 1.5482 2.4817 0.0000
Ref. [61] 1 −1.145 06 1.5453 2.4740

HD
5σ 1π 0 −1.161 64 1.161 58 −2.323 22 1.575 20 3.149 28 1.575 47 3.150 29 1.446 34 2.115 11 −0.000 5391
Ref. [63] 0 −1.165 47 1.571 19 3.130 09 1.571 48 3.131 20 1.442 23 2.104 32
5σ 1π BO 0 −2.325 06 1.5738 3.1409 1.5738 3.1409 1.4456 2.1142 0.0

LiH
6σ 1π 0 −8.037 62 8.037 65 −16.0753 2.5808 7.8354 1.9864 6.6936 3.0834 9.5398 2.3458
Ref. [64] 0 −8.06644 2.5651 7.745 17 1.9719 6.5857 3.0610 9.4197
6σ 1π BO 0 −16.086 29 2.6219 8.1238 2.0066 6.8593 3.1285 9.8404 2.3306

the first four vibrational states are simultaneously optimized
using the same orbitals in these calculations, and for H2 the
first ten are optimized. The errors in the vibrational transition
frequencies are plotted with respect to the total number of
orbitals. The corresponding errors in the transition frequencies
for the vibrational states of the Born-Oppenheimer curves
(again, computed with atomic masses) are plotted as arrows on
the right. These errors are comparable, so the arrows overlap.

Because in these calculations we are simultaneously op-
timizing a set of vibrational states spanning a larger range
of internuclear distances than ν = 0 and ν = 1, the errors in
Fig. 2 are greater than those in Table III. However, despite this
fact the errors in the vibrational transitions may be made to
be quite small even in a state averaged calculation. We obtain
4173.4 cm−1 versus the correct value of 4161.1 for the ν = 0
to 1 transition of H2.

In Fig. 3 we plot the natural orbitals from a Born-
Oppenheimer calculation and the MCTDHF calculation with
the same number of orbitals for the ν = 0 state, labeled by
their occupations. Although some differences may be seen,
particularly in the sixth σ orbital, the overall impression is
that the two sets of natural orbitals are remarkably similar.
That similarity suggests that the electron-nuclear correlation
is substantially accounted for by the dependence of the orbitals
on R via the prolate spheroidal coordinate system, since they
have no other R dependence. A similar conclusion can be
drawn from an examination of the natural orbitals for the state
averaged calculation (not shown).

IX. CALCULATION OF IONIZATION CROSS SECTIONS

We calculate ionization probabilities and cross sections
using the flux formalism of Jäckle and Meyer [69]. Three
MCTHDF steps are involved: (1) relaxation to the ground
initial state, (2) propagation from t = −T to t = 0 in which
a pulse of duration T is applied, and (3) propagation of �(0)

forward in time until the ionized portion has been absorbed
by the ECS grid in ξ . The wave function propagated during
the third step, from t = 0 onward, is saved and used in the
following analysis.

As per Ref. [69], the total ionized flux at energy E is defined
as

f (E) =
∫ ∞

0
dt

∫ ∞

0
dt ′〈�(0)|ei(Ĥ−E)t ′ F̂ e−i(Ĥ−E)t |�(0)〉.

(44)

The flux operator F̂ is defined as the flux through a hy-
persurface, the region exterior to which corresponds to the
breakup process of interest—in this case, ionization. Defining
the Heaviside operator �( �r1, �r2, . . .) to be the unit operator
in this exterior region and zero within, the flux operator may
be expressed as the commutator of the Hamiltonian with this
Heaviside function,

F̂ = i[Ĥ ,�]. (45)

Under appropriate assumptions and after some algebra [69],
one arrives at

f (E) =
∫ ∞

0
dt

∫ ∞

0
dt ′eiE(t−t ′)〈�(t ′)|i(Ĥ − Ĥ †)|�(t)〉.

(46)

In this expression, the flux is obtained through matrix elements
of the anti-Hermitian part of the Hamiltonian between wave
functions at different times; in deriving it, we have exploited
the fact that the anti-Hermitian part of the Hamiltonian lies
only on the complex part of the ECS contour.

In the present context, the anti-Hermitian part of the
Hamiltonian comes from the exterior complex scaling in the ξ

coordinates, and is nonzero only when at least one electron
has reached the FEM DVR element that terminates at ξ0,
the start of the ECS tail. As long as ξ0 has been chosen
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Born-Op. ν = 0
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0.0000836 0.000182

0.00446 0.00443

FIG. 3. (Color online) Electronic natural orbitals of ground state
H2, labeled with occupation numbers, from calculations with one π

and six σ orbitals. Left column: Born-Oppenheimer natural orbitals
at R = 1.4a0; right column: natural orbitals from nonadiabatic
calculation of the ν = 0 state. The scale is determined by the origins
of the coordinate system denoted by black dots and aspect ratio of
1:1 (prolate spheroidal coordinates are unitless).

sufficiently large, the anti-Hermitian part is nonzero in the
region corresponding to single or multiple ionization. In the
MCTDH implementation for heavy-particle motion, complex
absorbing potentials (CAPs) are used instead of ECS in
the exterior region to absorb the outgoing part of the wave
function, and the validity of the above equations for the flux
depend on the CAP being weak enough not to perturb the wave

function in the inner region. In contrast, ECS is an analytic
continuation of the Hamiltonian to complex coordinates, and
does not perturb the solution in the inner region at all, unless
a significant basis set error is present.

In terms of the flux, the integral photoionization cross
section (summed over final channels) is

σ (E) = 2παω

|F(E)|2 f (E), (47)

where α is the fine structure constant, ω is the photon energy,
ω = E − E0 where E0 is the ground-state energy, and F(E)
is the Fourier transform of the pulse from a length gauge
calculation, for example,

F(E) =
∫ 0

−T

dt E(t)ei(E−E0)t . (48)

To evaluate Eq. (46) it is necessary to evaluate the matrix
element of Ĥ − Ĥ † between wave functions at two different
times, comprised of two different sets of orbitals, in an efficient
manner. Although for the present applications to H2 simpler
methods would suffice, we use an approach that will be
applicable to larger systems. To that end, we transform to
a biorthogonal set of orbitals, in the spirit of the treatment of
Malmqvist [70], after which we may evaluate matrix elements
of arbitrary operators, for instance, the flux operator, via
Slater’s rules for zero, single, and double excitations just
as in the usual orthogonal case. Thus, given orbitals and
A vectors at t and t ′, we first transform the orbitals φ(t ′) into
a new set ϕ(t ′) which obeys a biorthonormality relationship
to φ(t): 〈ϕi(t ′)|φj (t)〉 = δij . Whereas the MCTDHF orbitals φ

are themselves orthonormal at all times, the ϕ functions alone
obey no such relationship,

sij = 〈φi(t)|φj (t ′)〉, ϕi(t
′) =

∑
j

(s−1)jiφj (t ′). (49)

The full wave function at time t ′ has a new A vector of
configuration coefficients—which we denote as the B vector,
�B—corresponding to its expansion in the new biorthogonal
orbitals ϕ(t ′). In our notation the A vector corresponds to the
configuration basis |�n(t ′)〉, and we denote the configurations
made from the ϕ(t ′) orbitals as | �m〉, where 〈�n(t)| �m(t ′)〉 = δ�n �m.
We solve for �B via

�(t ′) =
∑
�m�n

B �m(t ′)|�n〉〈�n| �m〉 =
∑

�n
A�n(t ′)|�n〉,

�A(t ′) = S(t ′) �B(t ′), S�n �m = 〈�n(t ′)| �m(t ′)〉. (50)

To solve these equations we must first construct S�n �m, the
overlap between configurations defined in terms of nonorthog-
onal sets of orbitals, a task which becomes increasingly more
demanding as the number of electrons increases. We can
take advantage of the remarkable fact that for full CI wave
functions, although the matrix S is dense, its logarithm, ln S,
has sparse representations. In fact, the matrix ln S is not unique,
for the same reason that the multibranched complex function
ln(z) is not unique, and it has both sparse and nonsparse
representations.

The nonzero matrix elements of a sparse branch of ln S
may be calculated by applying Slater’s rules for the matrix
elements of a one-electron operator using any branch of the
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matrix logarithm ln s of the orbital overlap matrix appearing in
Eq. (49), thereby treating the matrix elements of ln s as though
they were the matrix elements of a one-electron operator such
as the kinetic energy. In particular, the matrix element ln S�n �m
with respect to configurations |�n(t)〉 and | �m(t ′)〉 is zero if these
configurations differ by more than one index.

For full CI wave functions, which are employed in the
present work, the solution of the linear equation �A = S �B can
be done in sparse arithmetic using the Krylov-space EXPOKIT

[52] subroutine ZGEXPV, which performs a matrix exponential
onto a vector. The solution is thereby expressed as

�B = exp(− ln S) �A. (51)

The transformation to the biorthogonal basis being done, we
proceed to evaluating the matrix elements of the anti-Hermitian
parts of the Hamiltonian operators appearing due to our use of
exterior complex scaling, calculating orbital matrix elements
and assembling them into the configuration matrix elements in
the same manner as in constructing the A-vector Hamiltonian
matrix H .

The results for ionization of H2 in � symmetry (polarization
parallel to the bond axis) are shown in Fig. 4. We find that
calculation is converged at a total of one π and nine σ

orbitals. The other parameters of the calculation are given
in the caption to Fig. 4. In obtaining Eq. (46) we assumed
that 〈ψ(0)|ψ(t)〉 = 〈ψ(0)|ψ(−t)〉∗, and via backward time
propagation, we verified that this identity is obeyed in general
for these MCTDHF wave functions, at least to one part in
10−4. To eliminate the oscillations of the Gibbs phenomenon
in the Fourier transform over a finite interval we additionally
multiply Eq. (46) by sinusoids in t and t ′, as cos tπ

2T
, where

T is the time for which we propagate the wave function after
the pulse. The result is converged to visual accuracy within
approximately 1600 atomic time units.

In Fig. 4 we also plot the results for one, two, and three σ

orbitals only. All reproduce the overall magnitude and shape
of the cross section, but are incorrect in the energy range
where the autoionizing resonances appear. The one-orbital
treatment is featureless there, as the parent H+

2 (�u) state is
not represented in the basis, but is otherwise correct. The two-
and three-orbital treatments reproduce the Fano line shapes
of the resonances but place them at incorrect energies, and
additionally their locations do not appear to converge until the
nine σ , one π result shown in black.

However, the result converges to a cross section slightly
different than the accurate results of Sanchez and Martı́n [71].
We may be able to understand this numerical behavior by re-
alizing that at these intensities, only about 1/1000 of the wave
function has been ionized, and that these calculations have not
converged that portion. This slow convergence behavior would
seem to be a problem for the utility of the MCTDHF method
for describing photoionization or other perturbative processes
in general. One would like to treat perturbative problems just
as well as nonperturbative ones, but the variational ansatz of
the MCTDHF wave function will use the variational flexibility
in the calculation to optimize the larger, unperturbed (initial
state) portion of the wave function at the expense of the smaller
components in which we are more interested.

In the limit of a large number of orbitals, the MCTDHF
equation should converge to the exact result. It is likely that this
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FIG. 4. (Color online) Fixed-nuclei ionization cross section
of H2, � symmetry, calculated using the full wave function with
one π and nine σ orbitals, with a single pulse of intensity
1×10−13 W cm−2, frequency 1.1 hartree, and duration 0.5 fs in the
length gauge. Top: cross section from threshold (0.60 449 hartree) to
above the H2

+ A2�+
u threshold at 1.28 hartree. The thresholds are

marked with arrows and the Fourier transform of the pulse is plotted
with arbitrary units as dots. Also shown are the results of Sanchez and
Martı́n [71]. Bottom: magnification of resonance region, including
result using only three σ orbitals. Several other results are plotted
that nearly coincide: lower intensity (1 × 10−15 W cm−2); velocity
gauge; and more orbitals of σ , π , and δ symmetry.

number is much larger than we have used in the calculations
shown in Fig. 4, as additional orbitals are likely to mostly
further optimize the correlation within the ground state until
enough have been added so that the occupation numbers of the
natural orbitals describing the ground-state correlation have
fallen at least two orders of magnitude. There is, however, an
alternative approach.

X. MORE EFFICIENT CALCULATION OF IONIZATION

The problem that additional orbitals mostly serve to
improve the description of the initial state is particular to
the present application to calculate a perturbative result, and
more intense-field applications would not suffer from it. This
state of affairs in unsatisfactory, but fortunately there is a
straightforward solution to this problem. We can calculate not
�(t), the full wave function, but the quantity we label � ′(t),
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the change in the wave function due to the pulse:

�(t) = e−iE0t�(0) + � ′(t),
(52)

i
∂

∂t
� ′(t) = H (t)� ′(t) + V (t)e−iE0t�(0),

where E0 is the initial-state eigenvalue and V (t) is the per-
turbation. This formulation modifies the MCTDHF working
equations, Eqs. (8) and (13), introducing driving terms to each,
but we were not immediately able to implement the orbital
driving term in a numerically stable way. We thus double
the orbital dimension at the start of the pulse, generating
additional orbitals by operating with the dipole operator upon
the occupied orbitals of the initial state, and causing the orbital
driving term to equal zero at the start of the pulse. We then
calculate ��(t) ≡ eiE0t� ′(t) by modifying Eq. (13) as

i
∂

∂t
�A�(t) = [H(t) − E0] �A�(t) + V(t) �A(0), (53)

where the matrix V is the matrix of the dipole operator in
the nonorthogonal basis of orbitals at times t and 0, V�n �n′ =
〈�n(t)|µ̂|�n′(0)〉. This equation is solved with routine ZGPHIV in
the EXPOKIT package [52].

The results are significantly better than in our first treatment,
calculating the entire wave function, although we find that we
cannot accurately calculate the entire range between the H2

ionization thresholds with the single pulse we used for the
calculation of the full wave function �(t). We focus on the
resonance region, where our h̄ω = 1.1 hartree, 0.5 fs pulse is
centered. The results are again insensitive to intensity across
the whole energy range.

In Fig. 5 we show that the ionization cross section converges
to essentially its correct value using σ orbitals only. In our
treatment we double the number of orbitals going from the
ground initial state to the propagation steps of the calculation;
thus the minimum is two. We can see that the minimum one
orbital (Hartree-Fock) ground state, two propagation orbital
treatment yields an ionization cross section without the correct
resonance features; the two orbitals of the propagation of
� ′(t) correspond to the ground H+

2 1σg cation state and the
wavepacket ionized in its field. The resonances, which are
based on the 1σu cation state, are thus not represented. For
three initial and six propagation orbitals, the resonances appear
in essentially their correct locations. Only two additional
propagation (one additional initial) orbitals are needed to
give good agreement with the calculations of Sanchez and
Martı́n [71].

XI. CONCLUSION AND OUTLOOK

We have explored the formulation of the MCTDHF ap-
proach both for fixed nuclei and including nuclear motion for
application to any diatomic molecule within the nonrelativistic
approximation. Furthermore, methods for overcoming several
important technical barriers to such calculations have been
demonstrated. The use of prolate spheroidal coordinates and
an expansion of the wave function including nuclear motion
in terms of configurations of orbitals which depend on R

only through the dependence of the underlying coordinates on
internuclear distance are crucial parts of the strategy described
here. We have demonstrated that the use of such orbitals gives
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FIG. 5. (Color online) Fixed-nuclei ionization cross section of
H2, � symmetry, using the treatment of Eq. (52) to solve for only
the perturbation to the wave function: results for one through four
initial state σ orbitals, with twice that number for the pulse and flux
steps, using the same pulse parameters as in Fig. 4. Circles: results of
Sanchez and Martı́n [71].

a rapidly convergent representation of the vibrational states
of diatomics in calculations that avoid the Born-Oppenheimer
approximation. Furthermore, we have shown that photoion-
ization cross sections can be extracted from the MCTDHF
wave functions in full dimensionality, and demonstrated
that accurate photoionization cross sections can be calculated
using a method for solving for only the perturbation caused by
a time-dependent potential. These methods are immediately
applicable, with no modification, to photoionization including
nuclear motion and to photoionization of larger diatomic
molecules. A straightforward extension to include projection
on states of the cation will allow calculations of excitation
ionization. Finally, the problem of Auger decay spectra, with
or without nuclear motion, should be amenable to treatment
using these methods.
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APPENDIX A: ONE-ELECTRON MATRIX ELEMENTS

We follow Ref. [33] in the derivation of the matrix elements
of the electronic Hamiltonian in our prolate spheroidal DVR
basis, and provide additional formulas for the nonadiabatic
terms. For details on the use of the FEM DVR basis, see
Ref. [35]. We evaluate all the integrals by quadrature; the
only nonpolynomial terms approximated by quadrature are
the repulsive inverse integer powers that appear, for example,
in centrifugal potentials.

We refer to the matrix elements using the notation of
Eq. (28) representing the Hamiltonian we use here, which is ex-
act for J = 0 except for the omission of the two-electron terms
in l̂2. The Hamiltonian is otherwise accurate except for Coriolis
coupling for J 	= 0. In the equations below, fM

iα refers to an
electronic FEM DVR product basis function of Eq. (19), χ to a
primitive DVR function of Eq. (18), and χ ′ to its first derivative.
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The matrix elements in R are straightforward,

TR
ij = 〈χi(R)| − 1

2

∂2

∂R2
|χj (R)〉

= 1

2

∑
k

wkχ
′(i)(Rk)χ ′

j (Rk), (A1)

DR
ij = 〈χi(R)| 2

R

(
∂

∂R

)
ξηφ

− 1

R2
|χj (R)〉

≈ 1

Ri

χ ′
j (Ri) − 1

Rj

χ ′
i (Rj ).

The electronic matrix elements

Tel
iajbM = 〈

fM
ia

∣∣−R2

2µe

∇2 + 1

2µR

[
−

(
Ŷ + 3

2

)2

+ l̂2

]∣∣fM
jb

〉
,

Del
iajbM = 〈

fM
ia

∣∣Ŷ + 3

2

∣∣fM
jb

〉
, (A2)

involving the operators

R2∇2 = 4

(ξ 2 − η2)

[
∂

∂ξ
(ξ 2 − 1)

∂

∂ξ
+ ∂

∂η
(1 − η2)

∂

∂η

]
,

Ŷ = (ξ + αη)(ξ 2 − 1)

ξ 2 − η2

∂

∂ξ
+ (η + αξ )(1 − η2)

ξ 2 − η2

∂

∂η
,

l̂2 = M2 + 1

2
(l̂+ l̂− + l̂− l̂+) = M2 + 1

2
( ˆl−

†
l̂− + ˆl+

†
l̂+),

l± = e±iφ

(
±ρ(η + αξ )

ξ 2 − η2

∂

∂ξ
∓ ρ(ξ + αη)

ξ 2 − η2

∂

∂η
− ξη + α

ρ
M

)
,

where we use the shorthand ρ ≡
√

(ξ 2 − 1)(1 − η2), may be
expressed using the identities

Ŷ + 3
2 = 1

2 (Ŷ − Ŷ †),
(A3)(

Ŷ + 3
2

)2 = − (
Ŷ + 3

2

)† (
Ŷ + 3

2

)
,

as

Tel
iajbM ≈ δij

∑
c

χ ′
a(ξc)χ ′

b(ξc)wc

[
ξ 2
c − 1

2µe

+ (ξc + αηi)2(ξ 2 − 1)2 + ρ2(η + αξ )2

2µR

]
+ δab

∑
k

χ ′
i (ηk)χj (ηk)wk

×
[

1 − η2
k

2µe

+ (ηk + αξa)2
(
1 − η2

k

)2 + ρ2(ξ + αη)2

2µR

]
− 3

2
δij

[
(ξa + αηi)

(
ξ 2
a − 1

)
χ ′

b(ξa) + (ξb + αηi)
(
ξ 2
b − 1

)
χ ′

a(ξb)
]

− 3

2
δab

[
(ηi + αξa)

(
1 − η2

i

)
χ ′

j (ηi) + (ηj + αξa)
(
1 − η2

j

)
χ ′

i (ηj )
] + δij δab

[
9

4
+

(
Mξaηi + α

ρ

)2
]

, (A4)

Del
iajbM ≈ δij

[
(ξa + αηi)

(
ξ 2
a − 1

)
χ ′

b(ξa) − (ξb + αηi)
(
ξ 2
b − 1

)
χ ′

a(ξb)
] + δab

[
(ηi + αξa)

(
1 − η2

i

)
χ ′

j (ηi)

+ (ηj + αξa)
(
1 − η2

j

)
χ ′

i (ηj )
]
. (A5)

In the present application, the pulse was parallel to the bond
axis, and the dipole operator is given in length and velocity
gauge as〈

fM
ia

∣∣µ̂∣∣fM
jb

〉 = 〈
fM

ia

∣∣ z

R

∣∣fM
jb

〉 ≈ δij δab

ξaηi + α

2
(A6)

and 〈
fM

ia

∣∣µ̂∣∣fM
jb

〉 = 〈
fM

ia

∣∣R ∂

∂z

∣∣fM
jb

〉
≈ 2δij

[(
ξ 2
a − 1

)
(ηi + αξa)χ ′

b(ξa)

− (
ξ 2
b − 1

)
(ηi + αξb)χ ′

a(ξb)
]

+ 2δab

[(
1 − η2

i

)
(ξa + αηi)χ

′
j (ηi)

− (
1 − η2

j

)
(ξb + αηj )χ ′

j (ηi)
]
, (A7)

respectively. Extension to perpendicular or circular polariza-
tion is straightforward.

APPENDIX B: TWO-ELECTRON MATRIX ELEMENTS

We can follow the method of Refs. [33,35] to construct the
matrix elements of 1/r12 in the DVR basis. We evaluate the
matrix elements of a multipole expansion of this operator by

solving Poisson’s equation in the radial (ξ ) coordinate while
evaluating the η integrals by quadrature. The resulting matrix
elements retain the sparsity of the DVR representation, being
diagonal in ξ and η and off-diagonal only in the M quantum
numbers of the electrons. This point is crucial for the present
time-dependent application, as it means that the two-electron
transformations do not dominate the computational time,
which is instead primarily determined by the action of the
Jacobian of Eq. (8) onto the orbitals within the mean field step.

We begin by defining regular and irregular Legendre
functions [72] with an additional normalization factor,

P̃lm(ξ ) ≡ NlmPlm(ξ ) =
√

(2l + 1)(l − m)!

2(l + m)!
Plm(ξ ),

(B1)

Q̃lm(ξ ) ≡ NlmQlm(ξ ) =
√

(2l + 1)(l − m)!

2(l + m)!
Qlm(ξ ),

so that the Neumann expansion of 1/r12 may be written

1

r12
= 8π

R

∑
lm

(−1)m
2

2l + 1

eimφ1

√
2π

e−imφ2

√
2π

×P̃lm(ξ<)Q̃lm(ξ>)P̃lm(η1)P̃lm(η2). (B2)

063416-14



MULTICONFIGURATION TIME-DEPENDENT HARTREE- . . . PHYSICAL REVIEW A 83, 063416 (2011)

Thus to compute the two-electron integrals we require the
matrix elements of P̃lm(ξ<)Q̃lm(ξ>) in the DVR basis in ξ . This
function is the Green’s function for the following equation:[

∂

∂ξ1
(ξ 2 − 1)

∂

∂ξ1
− l(l + 1) − m2

ξ 2
1 − 1

]
P̃lm(ξ<)Q̃lm(ξ>)

= (
ξ 2

1 − 1
)
W (P̃lm(ξ1),Q̃lm(ξ1))δ(ξ1 − ξ2), (B3)

where W is the Wronskian of the two Legendre functions,
which has the value

Wlm(ξ1) = (−1)m22m(
1 − ξ 2

1

) �
(

l+m+2
2

)
�

(
l+m+1

2

)
�

(
l−m+2

2

)
�

(
l−m+1

2

) . (B4)

Expressing the operator in square brackets in Eq. (B3) in the
DVR basis and approximating the matrix elements of both
sides of that equation using the DVR quadrature, we arrive at
an expression for the matrix elements of P̃lm(ξ<)Q̃lm(ξ>),

Rlm
ab ≡ 〈χaχb| 2

2l + 1
P̃lm(ξ<)Q̃lm(ξ>)|χcχd〉

≈ δacδbd

[
2

2l + 1

P̃lm(ξa)P̃lm(ξb)Q̃lm(ξN )

P̃lm(ξN )

− (−1)m
(l − m)!

(l + m)!

�
(

l+m+2
2

)
�

(
l+m+1

2

)
�

(
l−m+2

2

)
�

(
l−m+1

2

) (
T −1

lm

)
ab√

wawb

]
.

(B5)

In Eq. (B5), N is the last Gauss-Radau grid point in ξ ,
corresponding to a DVR function discarded to enforce the
correct boundary condition at the end of the ξ grid on the

solution of Eq. (B3), and Tlm is the the matrix of the operator in
square brackets in that equation in terms of the DVR functions

χi(ξ ) (for even m) or
√

(ξ 2 − 1)/(ξ 2
i − 1)χi(ξ ) (for odd m),

which are normalized to unity with respect to integration over
ξ . Those matrix elements are

(Tlm)ij ≈ −δij

(
m2

ξ 2
i − 1

+ l(l + 1)

)
−

∑
k

χ ′
i (ξk)χ ′

j (ξk)wk

(
ξ 2
k − 1

)
. (B6)

Using the expression for Rlm
ab in Eq. (B5) we obtain the final

result for the two-electron matrix elements in our DVR basis,〈
f

M1
ia f

M2
jb

∣∣ 1

r12

∣∣fM1−m
kc f

M2+m
ld

〉
= δacδbdδikδjl

4

R

lmax∑
l=0

Rlm
ab P̃lm(ηi)P̃lm(ηj ), (B7)

which has exactly the form in Eq. (20). This expression
depends also on having used a fixed DVR quadrature to
approximate the η1 and η2 integrations, and a given quadrature
order cannot be used for arbitrarily large l values in the
Neumann expansion in Eq. (B2). In our numerical calculations
we use lmax = Nη where Nη is the number of DVR functions
in η. We have found this choice to be optimal when using this
algorithm implemented for spherical polar coordinates, and at
least near optimal for the present case of prolate spheroidal
coordinates.

[1] F. Krausz and M. Ivanov, Rev. Mod. Phys. 81, 163 (2009).
[2] T. Sekikawa, A. Kosuge, T. Kanai, and S. Watanabe, Nature

(London) 432, 605 (2004).
[3] V. Ayvazyan et al., Eur. Phys. J. D 37, 297 (2006).
[4] J. Ullrich, R. Moshammer, A. Dorn, R. Doerner, L. Schmidt,

and H. Schmidt-Bocking, Rep. Prog. Phys. 66, 143 (2003).
[5] M. Lesius, V. Blanchet, M. Ivanov, and A. Stolow, J. Chem.

Phys. 117, 1575 (2002).
[6] S. Tanaka and S. Mukamel, Phys. Rev. Lett. 89, 043001

(2002).
[7] A. M. Virshup, C. Punwong, T. V. Pogorelov, B. A. Lindquist,

C. Ko, and T. J. Martinez, J. Phys. Chem. B 113, 3280 (2009).
[8] Y. Arasaki, K. Takatsuka, K. Wang, and V. McKoy, J. Chem.

Phys. 132, 124307 (2010).
[9] H. Hudock, B. Levine, A. Thompson, H. Satzger, D. Townsend,

N. Gador, S. Ullrich, A. Stolow, and T. Martinez, J. Phys. Chem.
A 111, 8500 (2007).

[10] M. Eroms, O. Vendrell, M. Jungen, H.-D. Meyer, and
L. Cederbaum, J. Chem. Phys. 130, 154307 (2009).

[11] H. Nakai, Int. J. Quantum Chem. 107, 2849 (2007).
[12] T. Ishimoto, M. Tachikawa, and U. Nagashima, Int. J. Quantum

Chem. 109, 2677 (2009).
[13] T. Kreibich, R. van Leeuwen, and E. Gross, Chem. Phys. 304,

183 (2004).
[14] H. Yonehara, S. Takahashi, and K. Takatsuka, J. Chem. Phys.

130, 214113 (2009).

[15] O. E. Alon, A. I. Streltsov, and L. S. Cederbaum, J. Chem. Phys.
127, 154103 (2007).

[16] O. E. Alon, A. I. Streltsov, and L. S. Cederbaum, Phys. Rev. A
79, 022503 (2009).

[17] M. Kitzler, J. Zanghellini, C. Jungreuthmayer, M. Smits,
A. Scrinzi, and T. Brabec, Phys. Rev. A 70, 041401 (2004).

[18] J. Caillat, J. Zanghellini, M. Kitzler, O. Koch, W. Kreuzer, and
A. Scrinzi, Phys. Rev. A 71, 012712 (2005).

[19] T. Kato and H. Kono, J. Chem. Phys. 128, 184102 (2008).
[20] T. Kato and K. Yamanouchi, J. Chem. Phys. 131, 164118

(2009).
[21] M. Nest, Phys. Rev. A 73, 023613 (2006).
[22] M. Nest, R. Padmanaban, and P. Saalfrank, J. Chem. Phys. 126,

214106 (2007).
[23] M. Nest, F. Remacle, and R. D. Levine, New J. Phys. 10, 025019

(2008).
[24] M. Nest, Chem. Phys. Lett. 472, 171 (2009).
[25] J. Kucar, H.-D. Meyer, and L. S. Cederbaum, Chem. Phys. Lett.

140, 525 (1987).
[26] H.-D. Meyer, U. Manthe, and L. S. Cederbaum, Chem. Phys.

Lett. 165, 73 (1990).
[27] M. H. Beck and H.-D. Meyer, Z. Phys. D 42, 113 (1997).
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