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Relativistic ionization characteristics of laser-driven hydrogenlike ions
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In this contribution, we investigate the relativistic ionization characteristics of highly charged hydrogenlike
ions in short intense laser pulses as a function of the laser pulse parameters by means of the numerical solution
of the time-dependent Dirac equation and the time-dependent Klein-Gordon equation as well as by the classical
phase-space averaging method. For this purpose, we generalize the phase-space averaging method such that it is
applicable to relativistically driven particles in arbitrary central potentials. If the ionization probability is not too
small, quantum mechanical and classical methods give similar results for laser wavelengths in the range from the
near-infrared to soft x-ray radiation. We find that ionization in few-cycle intense laser pulses depends sensitively
on the pulses’ peak intensity but little on the pulse tails and on the pulse energy. The ionization probability is
shown to be strongly linked to the peak intensity allowing for an estimation of the laser intensity via ionization
yields.
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I. INTRODUCTION

Current high-power petawatt lasers reach intensities of the
order of 1022 W/cm2 [1]. The mean field strength for these
lasers is several orders of magnitude higher than the Coulomb
field strength in a hydrogen atom at the distance of a Bohr
radius from the nucleus. Lasers with high intensities in the
relativistic optical regime have been employed to investi-
gate strong laser-matter interactions, e.g., to study nuclear
interactions [2], relativistic quantum optics [3], and γ -ray
emission [4] or to test the validity of quantum electrodynamics
through vacuum polarization [5]. High-intensity lasers also
have applications in cancer therapy [6].

Apart from the increase of the maximum intensity, progress
in laser technology allows to push the laser wavelength
from the optical to the x-ray range, e.g., by x-ray free
electron lasers (XFELs) [7]. Thus, a new wavelength regime
of strong-field laser-matter interaction is available reaching
from the ultraviolet to the x-ray regime. Furthermore, it is
experimentally possible to control these intense lasers to form
attosecond pulses [8]. Measurements of the carrier envelope
phase of pulses in the infrared and the ultraviolet have been
demonstrated in [9].

However, the accurate determination of high-intensity laser
parameters, particularly the intensity in the relativistic regime,
is still challenging. A laser’s intensity may be inferred from
photoionization of atoms or clusters [10]. The generation
of highly charged ions is nowadays possible for essentially
every charge state. Sending atoms through thin foils allows to
generate ions with high purity and high density [11]. Thus,
in [12] it is proposed to determine the intensity of very
high intensity lasers sensitively by measuring the ionization
probability [13] of multiply charged hydrogenlike ions. Be-
cause the above-the-threshold-intensity grows proportionately
to the sixth power of the atomic number, determining the
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laser intensity by measuring the ionization probability may
be implemented for a wide range of intensities from about
1014 W/cm2 to about 1026 W/cm2 using different kinds of
hydrogenlike ions. However, this requires knowing the relation
between ionization probability, intensity, wavelength, and
pulse shape. The ionization of atomic, molecular, and cluster
targets [13–15] in intense laser fields has been investigated
by several experiments. The numerical solution of the time-
dependent Schrödinger equation allows the study of the
ionization of hydrogen and hydrogenlike ions for various laser
frequencies and a large variety of pulse lengths and intensities
theoretically [15,16].

For atomic numbers larger than Z = 14, the velocity of
the (classical) electron in a hydrogenlike ion exceeds 10% of
the speed of light. Thus, for hydrogenlike ions with atomic
numbers larger than Z = 14, we enter the weakly relativistic
regime. Relativistic effects may also be induced by a strong
external electromagnetic field if the laser field parameter [17]
ξ is of the order of one or larger. Thus, the ionization dynamics
of highly charged hydrogenlike ions necessitates a relativistic
treatment [15].

Ionization in the weakly relativistic regime may be studied,
e.g., by the numerical solution of the weakly relativistic
Schrödinger equation [18]. For highly relativistic electrons,
however, one has to solve the time-dependent Dirac equation
[19] or the Klein-Gordon equation [20], provided that the
spin of the electron can be neglected. A numerical solution
of the Dirac or Klein-Gordon equation is computationally
expensive because a huge excursion amplitude of the electron
leaving the ionic core needs to be resolved in real space as
well as in momentum space requiring large grids with high
resolution. Furthermore, the solution of the time-dependent
Dirac or Klein-Gordon equation requires much smaller time
steps as compared to the time-dependent Schrödinger equation
due to the relativistic rest mass energy. Classical trajectory
Monte Carlo simulations [21] offer an alternative approach
to study the ionization process of hydrogenlike ions in laser
fields. This method is less computationally expensive than the
solution of quantum wave equations but it neglects genuine
quantum effects.
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In this contribution, we study the ionization of highly
charged hydrogenlike ions by few-cycle intense laser pulses
by solving the time-dependent Dirac equation and the time-
dependent Klein-Gordon equation numerically as well as by
classical Monte Carlo methods. We investigate how ionization
probabilities depend on laser parameters and the pulse form
focusing on laser pulses in the XFEL regime. Because of
computational limitations we restrict our quantum mechanical
simulations to one and two dimensions. To be able to compare
one- and two-dimensional quantum calculations with soft-core
potentials and classical Monte Carlo methods we generalize
the relativistic phase-space averaging method for the Coulomb
potential [22] to general central potentials in one, two, and,
three dimensions.

This paper is organized as follows. In Sec. II, we provide
an overview of the computational techniques utilized in our
investigations, and a comparison of the two different numerical
approaches follows in Sec. III. The electron dynamics in
ultrastrong laser fields and the ionization probability are
studied in Sec. IV. In Sec. V we compare our findings, as
obtained by the solution of the time-dependent Dirac equation
and the relativistic phase-space averaging method, with results
that may be obtained by the application of the WKB method.
Finally, our results are summarized in Sec. VI.

II. PHYSICAL SETUPS AND COMPUTATIONAL
TECHNIQUES

In order to study ionization dynamics in ultrastrong laser
fields in various laser setups we apply different computational
techniques: the numerical propagation of Dirac wave functions
and Klein-Gordon wave functions, and the relativistic phase-
space averaging method.

A. Physical setups

In all our numerical simulations we consider initially bound
electrons of rest mass m and charge −e evolving in an attractive
central potential and in a strong external electromagnetic field
of a linearly polarized laser pulse traveling at the speed of light
c, having the wavelength λ, the angular frequency ω = 2πc/λ,
and the wave number k = ω/c. Introducing the phase

η = kn · x − ωt, (1)

the laser’s electromagnetic fields EL(x,t) and BL(x,t) are
given as functions of position x and time t by

EL(x,t) = EL,maxw(η,j ) sin(η + αL), (2a)

BL(x,t) = 1

c
n × EL,maxw(η,j ) sin(η + αL). (2b)

In (1) and (2) w(η,j ) is an envelope function and n = (1,0,0)T

denotes the propagation direction; EL,max = (0,EL,max,0)T is
the maximal electric field strength vector, and αL allows for
a possible phase shift. For one-dimensional systems the mag-
netic field component has to vanish and the electric component
reduces to EL(x,t) = EL,maxw(−ωt,j ) sin(αL − ωt).
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FIG. 1. Illustration of the employed envelope functions (3), from
top to bottom wrect(η,10), wsin2 (η,10), and wramp(η,10,2).

The envelope function w(η,j ) forms the pulse shape. We
will apply rectangular windows

wrect(η,j ) =
{

1 if −jπ � η � 0,

0 otherwise,
(3a)

(sin2) envelopes

wsin2 (η,j ) =
{

sin2(π + η/j ) if −jπ � η � 0,

0 otherwise,
(3b)

as well as envelopes with linear on-off-ramps

wramp(η,j,l) =

⎧⎪⎨
⎪⎩

(η + jπ )/(lπ ) if −j � η/π � −j + l,
1 if −j + l � η/π � −l,
−η/(lπ ) if −l � η/π � 0,
0 otherwise.

(3c)

Each laser pulse has a spatial extent of jλ/2 in the propa-
gation direction but is of infinite width perpendicular to the
propagation direction. The on-off-ramps of wramp(η,j,l) have
lengths of lλ/2. See Fig. 1 for some illustrative examples of
the employed envelope functions (3).

The attractive central potential is modeled by a Coulomb
potential

V (|x|) = − α

|x| with α = e2Z

4πε0
, (4)

where Z denotes the atomic number and ε0 the electric
permittivity of the vacuum. The electron dynamics during
the ionization process is mainly governed by an oscillation
in the laser polarization direction and an additional drift in
the laser propagation direction caused by the Lorentz force.
Thus, it is sufficient to describe the ionization dynamics in
the two-dimensional plane of the laser’s polarization direction
and its propagation direction to cover the essential features
of the electron dynamics. While restricting the electron
wave dynamics to two dimensions, the singularity of the
Coulomb potential is overemphasized. Therefore, we replace
the Coulomb potential by a soft-core potential

V (|x|) = − α√
|x|2 + ζ 2

(5)
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for lower dimensional settings. The soft-core parameter ζ

models the missing third dimension and avoids the singularity
of the Coulomb potential.

B. Propagation of relativistic quantum wave functions

Solving the time-dependent Dirac equation or the Klein-
Gordon equation allows us to study the ionization in ul-
trastrong laser fields including all quantum features. The
evolution of the four-component Dirac spinor wave function

(x,t) is determined by

ih̄
∂
(x,t)

∂t
=

[
cα ·

(
h̄

i
∇ + eA(x,t)

)

+V (|x|) + βmc2

]

(x,t), (6)

with α = (α1,α2,α3), β denoting the Dirac matrices. Neglect-
ing the spin of the electron leads to the Klein-Gordon equation
in the Feshbach-Villars representation [23]

ih̄
∂
(x,t)

∂t
=

[
τ3 + iτ2

2m

(
h̄

i
∇ + eA(x,t)

)2

+V (|x|) + τ3mc2

]

(x,t), (7)

where 
(x,t) is a two component wave function and τi denote
the Pauli matrices. The vector potential A(x,t) in (6) and
(7) specifies the electromagnetic laser fields, viz., EL(x,t) =
−∂ A(x,t)/∂t and BL(x,t) = ∇ × A(x,t).

The ionization dynamics of the electron is obtained by
solving the time-dependent equations (6) and (7) numerically.
For the Dirac equation (6) we utilize the Fourier split-operator
method [19,24,25], which is more accurate than approaches
based on finite-difference schemes [26]. The basic idea of the
Fourier split-operator method is to replace the time evolution
operator that is generated by the Dirac Hamiltonian in (6) by
a product of operators that are diagonal either in real space
or in momentum space and to propagate the wave function
alternately in real space and momentum space. The two-
component representation (7) of the Klein-Gordon equation
allows us to propagate the Klein-Gordon equation entirely
in real space [20] by a split operator scheme. In contrast
to the Fourier split operator method for the Dirac equation,
we can avoid the Fourier transformations in each propagation
step. Thus, the algorithm may be efficiently parallelized on
parallel computers by a domain decomposition. This leads to
an enormous reduction of computation time and enables us to
consider laser pulses with larger wavelength than it is possible
for the Dirac equation. In order to reduce computing time,
we solve the time-dependent Dirac equation and the Klein-
Gordon equation for only one- and two-dimensional systems.
Furthermore, the employed numerical schemes propagate the
wave function on an adaptive grid that may grow or shrink
according to the wave function dynamics.

The initial quantum state is the ground state of the potential
V (x) which may be obtained by a spectral method introduced
by Feit et al. [19,24]. After the laser pulse has passed the
hydrogenlike ion, we propagate the wave packet further to
some final time tend to determine the ionization probability

pion. It may be calculated by projecting the wave function

(x,tend) onto the bound field-free eigenstates 
i(x)

pion = 1 −
∑

i

∣∣∣∣
∫


i(x)∗
(x,tend) d2x

∣∣∣∣
2

. (8)

However, it is challenging to determine all bound eigen-
states 
i(x) because the soft-core-potential’s non-ground-state
eigenstates are degenerated and energy level spacings become
narrow near the continuum energy band. Thus, Eq. (8) is
not a practicable method and we use an alternative approach.
We calculate the ionization fraction by comparing the spatial
distribution of the electron density |
(x,t)|2 before and after
the interaction of the electron with the laser field. Before the
interaction with the laser field, we choose a quadratic area
(indicated by �) around the center of the soft-core potential
that is as small as possible but large enough to carry all relevant
parts of a (normalized) bound state, viz.,

∫
�


(x,0)∗
(x,0) d2x ≈ 1. (9)

After the interaction with the laser field the ionization
probability is given by an integral of the electron density over
the quadratic area,

pion = 1 −
∫

�

(x,tend)∗
(x,tend) d2x. (10)

Note that the time tend has to be large enough to ensure that
the ionized part and the bound part of the wave packet are well
separated and the computational grid has to be much larger
than the quadratic area in (9) and (10).

The solution of the time-dependent Dirac or Klein-Gordon
equation comprises all quantum mechanical characteristics of
the ionization process. However, the relativistic total energy of
the electron of the order mc2 limits the maximal temporal step
size that can be taken in each step of the split-operator method
to �t � h̄/(mc2). This renders the numerical propagation of
relativistic wave functions into a computationally expensive
task. In order to study the ionization dynamics of hydrogenlike
ions in laser pulses having a length of about 7.25 nm, we
have to propagate the wave function over about an atomic
unit of time h̄/(mc2α2

em) ≈ 2 × 10−17 s, with the fine-structure
constant αem ≈ 1/137, requiring more than 1/α2

em ≈ 2 × 104

time steps. Realistic laser pulses might be much longer
requiring even more time steps.

Thus, in order to cope with computational and numerical
limitations in solving the time-dependent Dirac or Klein-
Gordon equation, we have to introduce two important approxi-
mations: We reduce the dimensionality to two dimensions and
we replace the Coulomb potential by a soft-core potential (5).
The replacement of the three-dimensional Coulomb potential
by a two-dimensional soft-core potential prevents inferring
quantitative results from the evolution of the wave function that
could be directly compared with the outcome of an experiment.
However, the solution of the two-dimensional Dirac equation
or Klein-Gordon equation allows us to analyze the ionization
process qualitatively.
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C. Relativistic phase-space averaging method

The phase-space averaging method approximates a quan-
tum dynamical process by replacing the motion of a wave
function by an ensemble of classical single-particle trajectories
(x(t), p(t)). Single-particle observables at time t are functions
of the position x(t) and the momentum p(t). The quantum
mechanical expectation value of an observable O at time t is
replaced by

〈O〉(t) =
∫ ∫

O(x(t), p(t))p(x(t), p(t)) d3x d3p, (11)

where p(x(t), p(t)) d3x d3p denotes the probability of finding
a particle at time t in a phase-space volume d3x d3p around
(x(t), p(t)). In a numerical implementation of the phase-space
averaging method, only a finite number N of single-particle
trajectories (xi(t), pi(t)) can be calculated and (11) is estimated
by

〈O〉(t) = 1

N

N∑
i=1

O(xi(t), pi(t)). (12)

The classical equations of motion have to be solved for a
sufficient large sample of members from this ensemble.

The nonrelativistic version of the phase-space averaging
method has been introduced by Percival et al. [21] in order to
study the charge transfer and ionization of hydrogen ions by
protons and the ionization of highly excited atoms by electric
fields. It has been utilized in various studies of light-matter
interaction, see [15] for a short review. Here, we will apply
this method to light-matter interaction in the relativistic regime
[22,27]. A fully relativistic phase-space averaging method
for the three-dimensional electron motion in hydrogen atoms
(Z = 1) has been introduced in [22]. In this section, we are
going to review and to extend this method. Generalizing [22]
we will consider single-electron motion in a three-dimensional
Coulomb potential with Z � 1 and we show how to adopt the
relativistic phase-space averaging method for general central
potentials in one, two, and three dimensions.

Starting from the initial condition (x0, p0), we obtain the
single-particle trajectories by integrating the equations of
motion

dx(t)

dt
= p(t)

m

√
1 + p(t)2

m2c2

, (13a)

d p(t)

dt
= −e

⎛
⎝E(x(t),t) + p(t) × B(x(t),t)

m

√
1 + p(t)2

m2c2

⎞
⎠ (13b)

numerically by means of an implicit Runge-Kutta method.
The electromagnetic fields E(x,t) and B(x,t) are given by
the superposition of the external laser field (2) and one of the
central potentials (4) or (5):

E(x,t) = EL(x − x0,t) + 1

e
∇V (|x|), (14a)

B(x,t) = BL(x − x0,t). (14b)

After the laser pulse has passed the electron, we determine
whether it has been ionized or not. It has been ionized if its
energy (16) exceeds mc2, otherwise it remains bounded.

Solving the equations of motion (13) is computationally less
demanding than solving the time-dependent Dirac (6) or Klein-
Gordon (7) equation. It is not required to restrict the dynamics
to two dimensions to keep the computing time manageable.
Thus, the relativistic phase-space averaging method is a
feasible scheme that enables us to investigate ionization of
hydrogenlike ions in short intense laser pulses with the full
three-dimensional Coulomb potential in a reasonable amount
of computing time.

The preparation of the initial position x0 and the initial
momentum p0 is a crucial step in the application of the phase-
space averaging method. Initial conditions (x0, p0) have to be
sampled from a microcanonical ensemble with the uniform
probability density

�(x0, p0) ∼ δ(W − W (x0, p0)), (15)

where W denotes the microcanonical ensemble’s total energy.
For a relativistic particle moving in a central potential V (|x|),
the energy is given by

W (x, p) = V (|x|) + c
√

m2c2 + p2. (16)

Sampling the initial conditions from a nonuniform distribution
leads to biased expectation values of observables [28]. The
preparation of the initial conditions depends on the potential. In
Newtonian mechanics as well as in relativistic mechanics [29]
it is possible to devise analytic expressions for the classical
trajectories in the Coulomb potential which allow one to devise
a direct-sampling method to sample from (15). For general
central potentials as soft-core potentials (5) we will apply a
Markov chain Monte Carlo method that we will introduce in
Sec. II C 2.

1. Coulomb potential

We consider bound electrons in a Coulomb field (4) with
the energy

W = mc2
√

1 − α2/(h̄2c2) (17)

that equals the ground-state energy of the Dirac equation
Coulomb problem. A relativistic particle of mass m in a
Coulomb/Kepler potential (4) with energy 0 < W < mc2

and angular momentum α/c � L � α/[c
√

1 − W 2/(m2c4)]
rotates in a bound rosette around the center of force [22,29].
The extremal radii are given by

rmin = r̄ − �r, rmax = r̄ + �r (18)

with the Z-dependent relativistic Bohr radius

r̄ = Wα

m2c4 − W 2
(19a)

and

�r = mc2α

m2c4 − W 2

√
W 2

m2c4
−

(
1 − W 2

m2c4

) (
L2c2

α2
− 1

)
.

(19b)

Because of the potential’s rotational symmetry and the
conservation of the angular momentum, the trajectory remains
in a two-dimensional plane. Assuming that the particle is at
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t = 0 in its pericenter [30], the trajectory may be parametrized
in polar coordinates by a parameter u, viz.,

r(u) = r̄ − �r cos u, (20a)

ϕ(u) = 2√
1 − α2

L2c2

{
arctan

[(
1 − W 2

m2c4

L2c2

α2 − 1

)1/2

× mc2(r̄ + �r)

α
tan

u

2

]
+

⌊
u + π

2π

⌋
π

}
, (20b)

t(u) = α

mc3
(
1 − W 2

m2c4

)3/2 u − mc
(
1 − W 2

m2c4

)1/2
r̄�r

α
sin u.

(20c)

The notation �·	 denotes rounding to the largest integer not
greater than the argument. The parameter u is a relativistic
generalization of the eccentric anomaly of the nonrelativistic
Kepler problem.

One can show [22] that in the microcanonical ensemble of
the three-dimensional Coulomb potential the distribution of the
squared angular momentum is uniform. Thus, the ensemble of
initial conditions that corresponds to an electron in the ground
state of a hydrogenlike ion having the total energy (17) can be
parametrized by a set of five uniformly distributed independent
random variables. These variables are the time t̂ , the squared
angular momentum L̂2, and three Euler angles φ̂, θ̂ , and ψ̂ .
Sampling from the microcanonical ensemble is a four-step
procedure:

(1) We choose a point in time t̂ between two pericenters,

0 � t̂ <
2παm2c3

(m2c4 − W 2)3/2
= 2πh̄3

mα2
, (21)

and compute the eccentric anomaly u by solving the Kepler
equation (20c).

(2) We select a random absolute value of the angular
momentum, with

α

c
� L̂ � h̄, (22)

which determines together with u the radius (20a) and the
angle (20b) of a point (x̂,ŷ,0) in the x-y plane. Note that for
the three-dimensional Coulomb potential, L̂ has to be drawn
such that L̂2 has uniform distribution.

(3) To identify the initial position x0 and the angular
momentum L, the point (x̂,ŷ,0) and the vector (0,0,L̂) are
rotated by three random Euler angles

0 � φ̂ < 2π, 0 � θ̂ < 2π, 0 � ψ̂ < 2π (23)

about the z axis, the new x axis, and the new z axis, in this
particular order.

(4) The initial momentum p0 follows from the conservation
of the energy and the angular momentum,

p0 = L × x0

|x0|2

− x0

|x0|

√(
W

c
+ α

|x0|c
)2

− (mc)2 −
(

L × x0

|x0|2
)2

.

(24)

In the second step of the preparation of the initial condition, we
assure that the initial position and momentum are such that L =
|x0 × p0| � α/c because trajectories of particles in a Coulomb
field with an angular momentum L < α/c are unstable [29].

While propagating a single-particle trajectory from the
initial condition (x0, p0), the external laser field breaks the
rotational symmetry of the Coulomb potential and, therefore,
the angular momentum is no longer conserved and may
become so small that the electron eventually falls into the
nucleus. In this case, we have to reject the trajectory as
unphysical [22]. Rejected trajectories do not contribute to the
expectation values (12).

2. General central potentials

For general central potentials V (|x|) we implemented
sampling from the microcanonical ensemble by Markov
chains [31] which have been inspired by molecular dy-
namics methods [32]. The Markov chains generate se-
quences of initial conditions (x0,i , p0,i) by proposing new
initial conditions (x0,new, p0,new) and setting (x0,i+1, p0,i+1) =
(x0,i , p0,i) or (x0,i+1, p0,i+1) = (x0,new, p0,new) depending on
the Metropolis-Hastings transition probability that is a func-
tion of the last initial condition (x0,i , p0,i) and the proposed
one (x0,new, p0,new).

Note that Markov chains could also be used in the case of the
Coulomb potential; however, in contrast to the direct-sampling
method as described in Sec. II C 1, the Markov chain generates
correlated initial conditions (x0,i , p0,i). For this reason, one
has to perform a sufficiently large number of steps j − i in the
Markov chain, between two pairs (x0,i , p0,i) and (x0,j , p0,j )
that are actually used as initial conditions for propagation in
the laser field. Empirically we found that performing 64 steps
in the Markov chain between two initial conditions was enough
to reduce correlations sufficiently to perform ionization studies
for the soft-core potential.

(a) One-dimensional potentials. For a one-dimensional
potential the microcanonical distribution (15) reads

�(x,p) ∼ δ(W − V (x) −
√

m2c4 + c2p2) (25)

and the marginal distribution �(x) follows as

�(x) ∼
∫

δ(W − V (x) −
√

m2c4 + c2p2) dp

∼ 1

c

[
1 −

(
mc2

W − V (x)

)2]−1/2

. (26)

The support of �(x) is wherever W − V (x) � mc2; for
positions x with W − V (x) < mc2 we define �(x) = 0. The
Markov chain starts with some position x0,0 with �(x0,0) > 0.
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In each step it samples x0,new with uniform distribution from
the support of �(x). New initial positions x0,i+1 are given by

x0,i+1 =
⎧⎨
⎩

x0,new with probability min
(
1,

�(x0,new)
�(x0,i+1)

)
,

x0,i with probability 1 − min
(
1,

�(x0,new)
�(x0,i+1)

)
.

(27)

To each initial position x0,i belongs an initial momentum p0,i

that is determined by the total energy W and the position x0,i

and equals

p0,i = ±1

c

√
[W − V (x0,i)]2 − m2c4 (28)

with equal probability.

(b) Two- and three-dimensional potentials. Markov chains
to sample from microcanonical ensembles of two- and three-
dimensional central potentials may be devised by the following
considerations concerning the distribution of the angular
momentum of a relativistic particle. The microcanonical
probability of finding a particle at distance r moving in
a three-dimensional central potential V (|x|) having squared
angular momentum L2 and energy W is given by

�(L2,r) ∼ (4π )2
∫ ∞

0

∫ 1

−1
δ(L2 − r2p2(1 − µ2))

× δ(W − V (r) − c
√

m2c2 + p2)�(µ)r2p2 dµ dp

∼ (4π )2

2c

(
1 − L2

r2
( [W−V (r)]2

c2 − (mc)2
)
)−1/2

×
(

1 −
(

mc2

W − V (r)

)2)−1/2

, (29)

where �(µ) = 1/2 denotes the distribution of the cosine µ

of the angle between two randomly chosen three-dimensional
unit vectors. For two-dimensional systems, we find the joint
probability distribution of the angular momentum L and the
distance r:

�(L,r) ∼ (2π )2
∫ ∞

0

∫ 1

−1
δ(L − rp

√
1 − µ2)

× δ(W − V (r) − c
√

m2c2 + p2)�(µ)rp dµ dp

∼ (2π )3

c

(
1 − L2

r2( [W−V (r)]2

c2 − (mc)2)

)−1/2

×
(

1 −
(

mc2

W − V (r)

)2 )−1/2

, (30)

where �(µ) = π/
√

1 − µ2 denotes the distribution of the
cosine µ of the angle between two randomly chosen two-
dimensional unit vectors. Note that the right-hand sides of (29)
and (30) share—up to a constant factor—the same algebraic
form, but for three-dimensional systems the distribution (29)
is a function of the squared angular momentum whereas (30)
is a function of the angular momentum for two-dimensional
systems. For the following considerations it will be convenient
to define �(L2,r) = 0 and �(L,r) = 0 if one of the arguments
of the square roots in (29) and (30) is negative.

For three-dimensional central potentials the Markov chain
generates a sequence of pairs (L2

i ,ri) starting from some
(L2

0,r0) with �(L2
0,r0) > 0 and the transition rule(

L2
i+1,ri+1

)

=

⎧⎪⎨
⎪⎩

(
L2

new,rnew
)

with probability min
(
1,

�(L2
new,rnew)

�(L2
i ,ri )

)
,

(
L2

i ,ri

)
with probability 1 − min

(
1,

�(L2
new,rnew)

�(L2
i ,ri )

)
.

(31)

New pairs (L2
new,rnew) are proposed by sampling uniformly

from the support of �(L2,r). Each pair (L2
i ,ri) translates into

an initial condition (x0,i , p0,i) by rotating the vectors (ri,0,0)
and (pi cos βi,pi sin βi,0) by three random Euler angles

0 � φ̂ < 2π, 0 � θ̂ < 2π, 0 � ψ̂ < 2π (32)

about the z axis, the new x axis, and the new z axis, in
this particular order. The momentum pi and the angle βi are
determined by the radius and the angular momentum as

pi =
√(

W − V (ri)

c

)2

− (mc)2, (33)

βi = arcsin
Li

ripi

. (34)

The Markov chain for sampling from the microcanonical
ensemble of two-dimensional central potentials works simi-
larly to the three-dimensional case. However, it produces a
sequence of pairs (Li,ri), such that

(Li+1,ri+1)

=
⎧⎨
⎩

(Lnew,rnew) with probability min
(
1,

�(Lnew,rnew)
�(Li,ri )

)
,

(Li,ri) with probability 1 − min
(
1,

�(Lnew,rnew)
�(Li,ri )

)
,

(35)

and new pairs (Lnew,rnew) are proposed by sampling uniformly
from the support of �(L,r). The proposed angular momentum
Lnew may be positive or negative allowing for different
rotational directions. Initial conditions (x0,i , p0,i) are given by
rotating (ri,0,0) and (pi cos βi,pi sin βi,0) by a random Euler
angle 0 � φ̂ < 2π about the z axis.

III. RELATIVISTIC QUANTUM DYNAMICS VERSUS
RELATIVISTIC PHASE-SPACE AVERAGING

As outlined in Sec. II B it is computationally too demanding
to simulate the full relativistic quantum dynamics in three
dimensions by solving the time-dependent Dirac or Klein-
Gordon equation. For three-dimensional systems we will have
to rely on the relativistic phase-space averaging method. Note
that classical trajectory Monte Carlo methods may be extended
to incorporate quantum features [33], yet requiring averages
over significantly more trajectories for convergence. There
is a trade-off between accounting for quantum effects and
computational feasibility.

The phase-space averaging method may be an adequate
approximation for Rydberg states in the case of low laser
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FIG. 2. Ionization probability pion as a function of the laser
intensity I for an electron in a two-dimensional soft-core potential (5)
calculated by two different computational approaches: the solution
of the time-dependent Dirac equation and the relativistic phase-
space averaging method (RPSAM). Calculations are performed with
different atomic numbers Z. Soft-core parameters ζ were chosen
such that the ground-state energy equals the ground-state energy of
the Coulomb potential with the same Z. In all cases, the laser field is
made up of a pulse with envelope wrect(η,2) and has a wavelength of
λ = 6.5 nm.

frequencies [34]. For the hydrogen atom it was found that
quantum and classical simulations [35] agree quite well for
a laser frequency of ω = 2 × 1015 s−1 with intensities above
the atomic unit intensity of I = 3.5 × 1016 W/cm2. Classical
trajectory Monte Carlo simulations have been applied in many
studies, e.g., the investigation of microwave ionization of
atoms or the analysis of stabilization [36] of hydrogenlike ions
below an atomic number of Z = 10 [27] and for acceleration
studies of electrons up to giga-electron-volt energies [37].

However, as a classical approach, the (relativistic) phase-
space averaging method is not able to cover genuine quantum
mechanical features, e.g., tunneling. Thus, we estimated the
systematic error that is caused by modeling the ionization
dynamics via the phase-space averaging method by comparing
the relativistic quantum dynamics with the classical relativistic
phase-space averaging method in one and two dimensions.
More precisely, we determined the ionization probability pion

for an electron in a two-dimensional soft-core potential (5)
by means of the numerical solution of the Dirac equation and
the Klein-Gordon equation as well as by the relativistic phase-
space averaging method. In Fig. 2 we show the ionization
probability pion as a function of the mean laser intensity

I = 1
2cε0E

2
L,max (36)

for the Dirac equation as well as for the relativistic phase-
space averaging method. Here we consider two-dimensional
soft-core potentials (5) with different atomic numbers Z

and lasers with a wavelength of λ = 6.5 nm. We find a
reasonable match of the ionization probabilities especially
in the over-the-barrier ionization regime of high ionization
probabilities. In the regime of intensities well below the
classical ionization potential ionization probabilities are low
because ionization happens via tunneling (tunneling regime).
In the tunneling regime the relativistic phase-space averaging
method underestimates the ionization probability, because
tunneling is inherently neglected. Once energies above the

classical ionization potential are imposed (above-the-barrier-
ionization) both methods tend to agree better. The discrepancy
between the quantum mechanical ionization probability and
the ionization probability as obtained by the relativistic phase-
space averaging method (classical ionization) depends also on
the wavelength and the system’s dimension.

To study the wavelength dependence of the ionization prob-
ability we have to employ the Klein-Gordon equation in order
to reduce the numerical computation time. The discrepancy
between the quantum mechanical ionization probability and
the classical ionization probability increases as we go to larger
wavelengths, shown in Fig. 3. As the wavelength increases, the
electron has more time to tunnel through the potential barrier.
The increasing shift of the ionization profile of the quantum
mechanical calculations toward lower intensities indicates that
tunneling becomes more and more important for larger wave-
lengths till it completely dominates the ionization process.

Because of tunneling one may expect that the quantum
mechanical ionization probability always exceeds the classical
ionization probability. For very short wavelengths, however,
we find that classical ionization probabilities may be larger
than the quantum mechanical ones. For example, for λ =
5 nm and small intensities classical ionization probabilities
are smaller than quantum mechanical ionization probabilities
because of tunneling, see Fig. 3. For larger intensities, however,
we observe signatures of above-the-barrier reflection [38]
reducing the quantum mechanical ionization as compared to
classical ionization.

The comparison between the left column and the right
column of Fig. 3 illustrates the impact of the dimension on
the quality of the match between the quantum mechanical
ionization probability and the classical ionization probability.
The left column shows the wavelength dependence of the
ionization probability for one-dimensional systems where
quantitative differences between the two approaches are rather
large. The intensities at which the ionization profiles reach
pion = 0.5 differ by a factor of 3.9, 2.6, and 1.1, respectively,
for the setups in the left column of Fig. 3. Quantum and
classical calculations agree better if we consider the ionization
dynamics in two dimensions, as shown in the right column of
Fig. 3. Here, the relativistic phase-space averaging method is a
reasonable approximation for the employed laser wavelengths.
The intensities at which the ionization profiles reach pion = 0.5
differ only by a factor of 2.3, 1.5, and 1.1, respectively.
Extrapolating dimensional effects we presume that in three
dimensions the role of quantum effects is reduced further.

Thus, we conclude that the relativistic phase-space av-
eraging method is a useful approach to study ionization
of hydrogenlike ions in ultrastrong few-cycle laser pulses
of wavelengths in the range from the near-infrared to soft
x-ray radiation. Our comparison of the relativistic phase-space
averaging method with the solution of the Klein-Gordon
equation demonstrates that ionization profiles as obtained by
the relativistic phase-space averaging method may be utilized
to determine the peak laser intensity of intense few-cycle laser
pulses having wavelengths in the range from near-infrared to
soft x-ray radiation by the ionization yield with a systematic
error of a factor of about two. QED effects via laser-induced
vacuum polarization, which may demand further corrections,
can be neglected because the laser intensities as considered
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FIG. 3. Ionization probability pion as a function of the laser intensity I for an electron in a one-dimensional soft-core potential (left
column) and in a two-dimensional soft-core potential (right column) calculated by two different computational approaches: the solution of
the time-dependent Klein-Gordon equation and the relativistic phase-space averaging method (RPSAM). Calculations are performed with the
atomic number Z = 20 and the soft-core parameters ζ = 0.06 (one-dimensional soft-core potential) and ζ = 0.032 (two-dimensional soft-core
potential). In all cases, the laser field is made up of a pulse with envelope wrect(η,1). Wavelengths lie in the near-infrared (λ = 911 nm), in the
ultraviolet (λ = 91 nm), and in the soft x-ray range (λ = 5 nm).

in this contribution are high but still far below the Schwinger
intensity of about 1029 W/cm2. QED corrections in heavy ions
may be substantial for systems with Z � 50 only [39].

IV. RELATIVISTIC IONIZATION OF
HYDROGENLIKE IONS

The ionization of hydrogenlike ions in intense laser fields
depends in a complex manner on the atomic number, the laser
frequency, the electric field strength, the pulse length, and the
shape of the pulse. In this section, we investigate relativistic
ionization in various laser setups as available today or in the

near future. In doing so we focus on the ionization probability
and study the dynamics of the electron probability density.

A. Dynamics of the electron probability density—quantum
mechanical studies

In Fig. 4 we present the two-dimensional quantum me-
chanical evolution of the electron probability density during
the ionization of an electron in a soft-core potential (5) with
Z = 10, ζ = 0.079a0, and a0 denoting the Bohr radius. The
laser pulse has a wavelength of λ = 17.6 nm and a peak field
strength of EL,max = 5.14 × 1013 V/m corresponding to an
average intensity of 3.52 × 1020 W/cm2, and the envelope
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FIG. 4. (Color online) Snapshots of the Dirac electron probability density for an electron in a soft-core potential (5) with Z = 10 and
ζ = 0.079a0 on a logarithmic scale for a field strength of EL,max = 5.14 × 1013 V/m corresponding to an average intensity of 3.52 × 1020 W/cm2

at different points in time: (a) t = 1/4 T , (b) t = 2/4 T , (c) t = 3/4 T , and (d) t = 4/4 T , with T = λ/c and λ = 17.6 nm. Length scales of
the propagation direction (x axis) and the polarization direction (y axis) are given in units of the Bohr radius a0; the pulse shape is formed by
the envelope function wramp(η,4,1).
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FIG. 5. (Color online) Snapshots of the Dirac electron probability density for an electron in a soft-core potential (5) with Z = 10
and ζ = 0.079a0 on a logarithmic scale for various field strengths and intensities, respectively: (a) EL,max = 3.07 × 1013 V/m, I = 1.25 ×
1020 W/cm2; (b) EL,max = 5.14 × 1013 V/m, I = 3.51 × 1020 W/cm2; (c) EL,max = 1.03 × 1014 V/m, I = 1.41 × 1021 W/cm2; (d) EL,max =
1.54 × 1014 V/m, I = 3.15 × 1021 W/cm2. The snapshots were taken at T/4 with T = λ/c and λ = 17.6 nm, length scales are given in units
of the Bohr radius a0, and the pulse shape is formed by the envelope function wrect(η,2).

function is given by wramp(η,4,1). The figure shows the
probability density when the first maximum [Fig. 4(a)], the
first minimum [Fig. 4(b)], the second maximum [Fig. 4(c)],
and the second minimum [Fig. 4(d)] of the electric field
strength passes the ionic core. During the first half-period of
the laser cycle—the turn-on ramp—the electric force points
in the negative y direction and the electron gains momentum
in the same direction, whereas in the second half-period, the
electric force points in the opposite direction, deaccelerating
the electron and causing distinct interference patterns by
scattering on the ionic core [40], as shown in Fig. 4(c). The
electric field strength of the setup in Fig. 4 is large enough to
accelerate the electron to velocities comparable with the speed
of light so that the magnetic field component of the Lorentz
force becomes relevant and accelerates the electron into the
propagation direction of the laser pulse.

The effect of the Lorentz force, which grows with increasing
laser field, is visualized in Fig. 5. Here, we compare the
electron density at time t = λ/(4c)—when the first maximum
of the electromagnetic field is passing the ionic core—for four
different laser field strengths EL,max having the same laser
wavelength λ = 17.6 nm and envelope function wrect(η,2).
For a laser field strength of EL,max = 3.07 × 1013 V/m well
below the mean atomic field strength of an electron on the
first Bohr orbit of Z = 10, the effect of the Lorentz force is
marginal, see Fig. 5(a). However, at higher field strengths,
the Lorentz force accelerates the electron into the propagation
direction resulting in an asymmetric distribution of the electron
probability distribution as shown in Fig. 5(d).

B. Ionization probability—classical studies

In this section, we are going to investigate the ionization
probability of hydrogenlike ions in intense laser fields as a
function of the electric field strength, the atomic number, the
laser frequency, and the pulse shape by means of the classical
relativistic phase-space averaging technique, as described
in Sec. II C, taking into account the full three-dimensional
Coulomb potential.

1. Ionization profiles, scaling relations, and relativistic effects

Before we examine the influence of some laser parameters
on the ionization probability, we characterize the basic features

of a typical ionization profile for a single-cycle rectangular
laser pulse. Shifting from the infrared regime which has been
considered in [12] to the soft x-ray regime, Fig. 6 illustrates
the ionization probability pion as a function of the electric field
strength EL,max and the mean laser intensity I for hydrogenlike
ions with different nuclear charges Z [41] in a laser pulse with
fixed wavelength λ = 6.5 nm. The ionization profiles show a
typical threshold behavior. At intensities below some critical
value, the ionization probability is zero, above this critical
intensity, the ionization probability rises rapidly and saturates
for intensities considerably above the critical intensity. The
maximal slope of the ionization profile is essential to determine
the laser intensity, as described in [12]. The ionization profiles
for Z � 35 in Fig. 6 show some kinks as indicated by black
arrows. These kinks correspond to changes in the decay rate
of 1 − pion which we will investigate in Sec. IV B 2.

In the nonrelativistic limit ionization profiles obey a simple
scaling relation. The breakdown of this scaling relation
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FIG. 6. (Color online) Ionization probability as a function of the
mean laser intensity I and the maximal electric field strength EL,max

for hydrogenlike ions of different atomic numbers Z and a laser pulse
with wavelength of λ = 6.5 nm. The atomic number Z increases
from left to right. The pulse shape is formed by the envelope function
wrect(η,2). Ionization profiles have been obtained by averaging over
10 000 trajectories or more per data point. Kinks in the ionization
profiles correspond to changes in the decay rate of the occupation
probability 1 − pion, see Sec. IV B 2.
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portends relativistic effects. The ionization dynamics of
hydrogenlike ions in strong laser fields is affected by four
independent system parameters: the nuclear charge Z, the
laser wavelength λ, the laser’s field amplitude EL,max, and the
phase αL. In the nonrelativistic limit, however, the equation of
motion (13) obeys a scaling relation that allows us to reduce
the number of independent system parameters by one. The
nonrelativistic limit of (13) reads

d2x(t)

dt2
= − α

m

x(t)

|x(t)|3
− e

m
EL,maxw(−ωt,j ) sin(αL − ωt), (37)

provided that |x(t)| � λ. If the wavelength is sufficiently
large, λ � h̄2/(αm), the condition |x(t)| � λ is clearly
satisfied before ionization occurs. The quantity h̄2/(αm)
equals the Z-dependent (nonrelativistic) Bohr radius.
Rescaling the Coulomb field strength, the space, the time, the
laser frequency, and the laser field strength by

α = Zα′, x = 1

Z
x′, t = 1

Z2
t ′,

(38)
ω = Z2ω′, EL,max = Z3E′

L,max

we obtain a new equation of motion

d2x′(t ′)
dt ′2

= −α′

m

x′(t ′)
|x′(t ′)|3

− e

m
E′

L,maxw(−ω′t ′) sin(αL − ω′t ′), (39)

where the dependence on the nuclear charge Z cancels
out [42]. The new scale (38) implies a new laser wavelength
λ′ with λ = λ′/Z2. Note that we have two different length
scales—the wavelength and the electron’s position—that
scale differently. This is a consequence of not scaling the
speed of light c = λω/(2π ).

As as consequence of (39), one may expect that the
ionization probability for a hydrogenlike ion with a (small)
nuclear charge Z in a laser pulse with the electric field strength
EL,max, the intensity I , and a wavelength of λ will be the same
as for a hydrogen atom in a laser pulse with the same shape but
with an electric field strength of EL,max/Z

3 (intensity of I/Z6)
and a wavelength of λ/Z2. Figure 7 illustrates the probability
not to ionize—the occupation probability—as a function of
the scaled intensity I/Z6 for hydrogenlike ions of different
atomic numbers Z and a laser pulse with scaled wavelength of
λ = (1 µm)/Z2. In all cases, the wavelength λ is several orders
of magnitude larger than the relativistic Z-dependent Bohr
radius (19a). For small Z, i. e., in the nonrelativistic limit, the
ionization profiles collapse to a single curve if the occupation
probability 1 − pion (or the ionization probability pion) is
plotted against I/Z6. In this regime the ionization threshold
as obtained by the phase-space averaging method agrees
quite well with the value 7.7 × 1014 W/cm2 · Z6 that can
be derived by a classical model of nonrelativistic quasistatic
tunneling [43]. For larger Z, however, relativistic effects set
in and the ionization profiles for hydrogenlike ions with large
nuclear charge no longer coincide with the ionization profile
of hydrogen. Ionization sets in at smaller scaled intensities
I/Z6 for large-Z nuclei. High-Z ionization profiles approach
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FIG. 7. (Color online) Occupation probability 1 − pion as a
function of the scaled intensity I/Z6 for hydrogenlike ions of different
nuclear numbers Z and a laser pulse with scaled wavelength of
λ = (1 µm)/Z2. Ionization profiles for small Z (nonrelativistic limit)
collapse onto a universal curve; deviations from this curve are caused
by relativistic effects. The pulse shape is formed by the envelope
function wrect(η,2). The noise in the tails of the distributions is due to
the statistical uncertainties by the relativistic phase-space averaging
method. Ionization profiles have been obtained by averaging over
50 000 trajectories per data point.

ionization probability one more slowly than low-Z ionization
profiles. Thus relativistic effects lower the ionization threshold
but reduce ionization rates at high intensities.

We find that for large Z and the laser parameters chosen here
the ionization profile follows approximately an exponential
decay law. Above some threshold intensity, the occupation
probability falls exponentially as a function of the laser
intensity I/Z6 as shown in Fig. 7. For small Z, the occupation
probability decays subexponentially. Figure 2 shows the ion-
ization probability as obtained by solving the two-dimensional
Dirac equation. If we plot the data of Fig. 2 on the same
scale as in Fig. 7 (not shown), we find that this probability
falls exponentially, too. Thus, both methods—the solution of
the Dirac equation and the relativistic phase-space averaging
method—make the same qualitative predictions.

Fraiman et al. [44] demonstrate that electron-ion collision
in strong laser fields is also affected by the nonrelativistic
dimensionless parameter ε = m2ω4/(4πε0eE

3
L,max). For ε >

1 an ionized electron may be rescattered or trapped by the ionic
core. All simulations in this contribution are carried out in the
ε < 1 regime, where rescattering plays a negligible role. To
allow rescattering one has to apply higher laser frequencies.
In particular, we apply laser frequencies that are much lower
than the frequency mα2/h̄3 of the orbit of the ground state.
Thus, ionization happens in a quasistatic regime.

2. Influence of the laser wavelength on the ionization probability

For simplicity and clarity, we investigate the effect of the
laser wavelength on the ionization fraction for a one-cycle
rectangular pulse without any additional field ramping. Thus,
the pulse duration changes with the wavelength, but the number
of electric field maxima remains constant. Figure 8 shows
the probability 1 − pion measured at the end of a one-cycle
sinusoidal pulse as a function of the mean laser intensity I for
hydrogenlike ions with Z = 30, for intensities to be achieved
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FIG. 8. (Color online) Occupation probability 1 − pion as a
function of the intensity I for hydrogenlike ions with Z = 30. The
applied laser pulse has a shape function wrect(η,2) and wavelengths
of various multiples of λ0 = 6.5 nm. The intensity range is expected
to be accessible to high-intensity laser facilities of the near future.

in the near future. The laser’s wavelength λ varies from the
ultraviolet (λ = 52 nm) [7] over the soft x-ray (λ = 6.5 nm)
[45] toward the hard x-ray (λ = 0.8 nm) [46] range, by several
multiples of the reference wavelength λ0 = 6.5 nm.

We find for the relativistic phase-space averaging method
applied to the three-dimensional Coulomb potential an ex-
ponential decay of the probability 1 − pion as a function of
the intensity I . The decay rate grows with the wavelength λ.
Smaller wavelengths lead to a reduction of the interaction time
between the laser and the ion, which decreases the ionization
probability for fixed intensities. The decay rate is for given
λ and Z not constant over all intensities. Especially for long
wavelengths, the ionization profile has intensity intervals with
different decay rates. Note the kink in the semilogarithmic plot
of 1 − pion for λ = 8λ0 in Fig. 8. For atomic numbers other
than Z = 30, we observe a qualitatively similar dependence
of the ionization probability on the laser wavelength as for
Z = 30.

3. Moment of ionization

Let us define the electron’s energy neglecting the con-
tribution of the electromagnetic laser field by Wfree(t) =
W (x(t), p(t)), where x(t) and p(t) denote the trajectory and
the momentum of an classical electron in the relativistic
phase-space averaging method and W (x(t), p(t)) is given by
(16). For electrons that are eventually ionized, we call the first
point in time where Wfree(t) exceeds the electron’s rest energy
mc2 the moment of ionization tion.

Figure 9 shows the distribution ρ(tion) of the moment of
ionization for a laser pulse with an on-off-ramp and a maximal
field strength such that pion ≈ 0.4. Turn-on and turn-off
half-cycles and bulk half-cycles differ in the maximum field
strength as well as in the maximal rate of intensity change. To
ionize, the electron has to accumulate energy from the external
laser field, which is most efficient when the Hamiltonian—that
is the external laser field—changes most rapidly. In fact, the
ionization rate is highest when the intensity raises most rapidly,
which is about an eighth-period before the global intensity
maximum is reached. Note that the fast intensity increase
allows ionization in the bulk half-cycles (second and third
half-cycle) of the pulse in Fig. 9 at intensities smaller than
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FIG. 9. Probability histogram ρ(tion) of the moment of ionization
for ionization of hydrogenlike ions with Z = 25 in laser pulses
of wavelength λ = 1054 nm, peak field strength EL,max = 7 ×
1014 V/m, and intensity profile proportional to [wramp(η,4,1) sin(η)]2

(solid line, left axis) and the intensity near the ionic core (dashed line,
right axis). T denotes the laser period T = λ/c. Ionization happens
most likely at the steepest intensity ascent.

the maximum intensity of the turn-on and turn-off half-cycles.
Virtually no ionization occurs during the turn-on and turn-off
phases.

4. Influence of the laser pulse shape on the ionization probability

The manipulation of the shape of a pulse is a capable tool
to control ionization and to generate complex tailored pulses
[47]. Besides the peak laser intensities, also the pulse shape of
ultrashort and ultrastrong fields is experimentally challenging
to measure and, therefore, a crucial parameter to be examined.

Laser pulses with the same wavelength and the same pulse
energy may have different pulse shapes. An example of two
such pulses is given in Fig. 10(a). Despite the fact that both
pulses have the same energy, the ionic electron will not gather
the same amount of energy from the two pulses with different
shapes, which results in different ionization profiles as shown
in Fig. 11. The ionization probability depends only indirectly
on the pulse energy. It is primarily determined by the maximal
rate of intensity increase and how often it is attained in the
laser pulse.

The maximal rate of intensity increase is proportional to
the peak intensity. To compare different pulse shapes with
the same intensity maximum, we have chosen a ramp pulse
with additional turn-on and turn-off phases and a smooth
sin2-shaped envelope pulse; the corresponding intensities are
presented in Figs. 10(b) and 10(c), respectively. The two
pulses shown in Fig. 10(b) [and in Fig. 10(c)] have very
similar intensity profiles in the pulse bulk but differ in their
tails. For pulses with similar bulk intensity profiles, we
find very similar ionization profiles, as plotted in Fig. 12.
For the profiles wramp(η,6,2) and wsin2 (η,16) the ionization
profiles are virtually indistinguishable, and for wramp(η,3,1)
and wsin2 (η,3) the ionization profiles differ only marginally.
Thus we conclude that the ionization profiles depend on the
intensity maximum of a pulse and how often the maximum is
attained but little on the details of the pulse tails. These findings
are in accordance with the fact that ionization happens when
the rate of intensity increase is maximal.
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FIG. 10. (a) Pair of intensity profiles with the same pulse energy.
(b), (c) Two pairs of laser pulses with similar intensity profile in
the pulse’s bulk but with different tails. For comparison of the laser
pulses, the horizontal positions of the pulses in (a) and (c) have been
shifted such that the pulse maxima are at the same position.

Experimental techniques allow to manipulate and control
the electric field of ultrashort laser pulses by stabilizing the
carrier phase αL [48]. In Fig. 13 we show three intensity
profiles with the same shape function wsin2 (η,3) but different
phases, and Fig. 14 depicts the corresponding ionization
profiles. We find a marginal dependence of the ionization
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FIG. 11. Occupation probability 1 − pion as a function of the
intensity I = cε0E

2
L,max/2 for hydrogenlike ions with Z = 30 and

laser pulses of wavelength λ = 6.5 nm and pulse shapes shown in
Fig. 10(a). Laser pulses with same pulse energy but different intensity
profiles result in distinct ionization profiles.
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FIG. 12. Occupation probability 1 − pion as a function of the
intensity I = cε0E

2
L,max/2 for hydrogenlike ions with Z = 30 and

laser pulses of wavelength λ = 6.5 nm and pulse shapes shown in
Figs. 10(b) and 10(c). Laser pulses with similar intensity profiles in
the pulse bulk result in similar ionization profiles.

profiles on the carrier phase. This might be surprising because
for few-cycle pulses the maximal intensity is very sensitive
to the carrier phase αL, see Fig. 13. However, the carrier
phase αL also modulates the number of local intensity maxima;
wsin2 (η,3) has for αL = 0 a single pronounced maximum and
two side maxima whereas for αL = π/2 it has two maxima.
Modulation of the number and the height of local intensity
maxima in laser pulse by the carrier phase almost cancel each
other concerning the ionization probability. The ionization
profiles in Fig. 14 have been calculated for rather short pulses
with only three half-cycles. For longer pulses, the carrier phase
becomes even less important for the ionization probability.

V. ON THE APPLICABILITY OF THE WKB
APPROXIMATION

Complementary to our numerical studies of relativistic
ionization, one might calculate the ionization probability by
analytical semiclassical approximations. Such a theory for
electron tunneling in hydrogenlike ions in plane-wave laser
fields taking into account relativistic effects was developed by
Milosevic et al. [49] based on a WKB-like approximation
[50,51]. Milosevic et al. calculated the ionization rate w,
which is related to the ionization probability by pion = 1 −
exp(−wjT ), where jT denotes the duration of the applied
laser field.

While this approach is quite attractive in the tunneling
regime, it is based on assumptions that are not fulfilled for
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FIG. 13. Laser pulses with the intensity profiles proportional to
[wsin2 (η,3) sin(η + αL)]2 but with different phases αL. Despite the
different phases, all three pulses carry the same energy.
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laser pulses of wavelength λ = 6.5 nm and pulse shapes shown in
Fig. 13. Ionization profiles are affected marginally by the carrier
phase.

ionization in ultrahigh-intensity few-cycle laser pulses as con-
sidered here. In [49] it is assumed that the ground-state wave
function is not significantly changed under the influence of the
external laser field. Furthermore, the laser field is modeled by
plane waves; effects of the shape of short-time laser pulses are
not taken into account. Calculations by Milosevic et al. are
performed for constant fields and extended to electromagnetic
waves by a quasistatic approximation. Therefore, care has
to be taken by extrapolating a (semiclassical) tunnel rate
into the regime of high field strengths and ultrashort pulses,
as it overestimates the ionization probability considerably
[52,53]. The WKB approximation gives good results for
tunneling through thick and high barriers [54], provided that
�s

√
V̄ > 4, where �s is the barrier width in angstroms and

V̄ is the mean barrier height in electron volts. For tunneling
of electrons of hydrogenlike ions in homogeneous electric
fields E, the condition �s

√
V̄ > 4 is violated, e.g., for

|E| > 2.3 × 1013 V/m (for Z = 10), |E| > 1.8 × 1014 V/m
(for Z = 20), and |E| > 6.2 × 1014 V/m (for Z = 30). If we
compare these field strengths to the field strengths in Fig. 2—
where we have mostly substantial ionization probabilities
beyond the tunneling regime—then we find that the application
of the semiclassical tunneling theory of [49] is not justified for
ionization in high-intensity laser pulses.

Our numerical calculations support these concerns against
the application of the WKB theory in regimes with substantial
ionization probabilities. Figure 15 displays the occupation
probability 1 − pion as a function of the intensity on a
logarithmic scale as obtained from WKB calculations and
by the relativistic phase-space averaging method. In both
cases, the electron moves in a three-dimensional Coulomb
potential. The ionization curves in Fig. 15 deviate significantly.
As demonstrated in Sec. IV B the relativistic phase-space
averaging method yields an exponential decay of 1 − pion

as a function of the laser intensity and plotting the data of
Fig. 2 on a semilogarithmic scale the ab initio solution of
the Dirac equation results the same exponential decay-law,
whereas the WKB theory predicts that 1 − pion decreases
faster than exponentially. Thus, the WKB theory fails not
only quantitatively but also in its qualitative predictions if
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FIG. 15. Occupation probability 1 − pion as a function of the
intensity I for Z = 30. The solid line shows results predicted by
the WKB theory, while the dashed line show 1 − pion as obtained
by the application of the relativistic phase-space averaging method
(RPSAM).

applied to regimes with substantial ionization probabilities.
A generalization of the WKB approach to the over-the-barrier
regime, which appears challenging at present, seems attractive.

VI. CONCLUSION

We have investigated the relativistic ionization dynamics
of hydrogenlike ions in short intense laser pulses. Perturbative
methods, such as the WKB approach, are not suited to model
the dynamics in the parameter regime of interest. Thus, we
applied two different nonperturbative computational methods,
the numerical solution of the time-dependent Dirac equation
and the time-dependent Klein-Gordon equation, and the
relativistic phase-space averaging method, which we have
generalized to arbitrary central potentials in one, two, and
three dimensions.

We compared both approaches for one- and two-
dimensional systems. For two-dimensional systems classical
and quantum mechanical calculations agree better than for
one-dimensional systems. For long wavelengths the quan-
tum mechanical ionization probability may be somewhat
larger than obtained by the classical relativistic phase-space
averaging method due to tunneling. Although the classical
relativistic phase-space averaging method does not cover
quantum mechanical features, it is often a valuable tool to
study ionization in intense laser pulses. For photoionization in
intense laser fields classical and quantum mechanical methods
give consistent results in the over-the-barrier regime.

The numerical solution of the time-dependent Dirac equa-
tion allowed us to study the quantum dynamics of the electron
probability density during the ionization process in two di-
mensions. We also visualized how an increase of the laser field
strength affects the motion of the electron’s probability density.

In the nonrelativistic limit, the ionization dynamics obeys
a scaling relation. The violation of this scaling relation allows
to analyze relativistic effects. Relativistic effects tend to lower
the ionization threshold intensity but also lower the ionization
probability at intensities above the threshold intensity.

Furthermore, we have studied the complex dependence
of the ionization probability on the atomic number and on
different laser parameters such as the laser wavelength, the
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pulse shape, and the carrier phase by means of the relativistic
phase-space averaging method. We found that the ionization
probability is basically determined by the pulse peak intensity
and the number of half-cycles that reach the peak intensity.

Therefore, the ionization characteristics of multiply charged
hydrogenlike ions may be used to determine the intensity of
few-cycle ultrastrong laser pulses with an uncertainty factor of
about two.
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J. Trost, Phys. Rev. A 56, 1781 (1997).

[39] P. J. Mohr, G. Plunien, and G. Soff, Phys. Rep. 293, 227 (1998);
V. M. Shabaev, V. A. Yerokhin, T. Beier, and J. Eichler, Phys.
Rev. A 61, 052112 (2000).

[40] G. R. Mocken and C. H. Keitel, Phys. Rev. Lett. 91, 173202
(2003).

[41] Note the misspelling of the x axis of Fig. 2 of the original
work (Ref. [12]). Instead of ionic charge it should be nuclear
charge Z.

[42] For convenience, one may set α′ = 1.
[43] J. Görlinger, L. Plagne, and H.-J. Kull, Appl. Phys. B 71, 331

(2000).
[44] G. M. Fraiman, V. A. Mironov, and A. A. Balakin, Phys. Rev.

Lett. 82, 319 (1999).
[45] J. R. Schneider, R. H. Nielsen, J. Feldhaus, B. Keitel,
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