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Complete characterization of double photoionization processes
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We analyze correlated photoelectron spectra of single-photon two-electron ionization [double photoionization
(DPI)] of helium to reconstruct the phase of the spectral amplitude of this process. The phase can be reconstructed
reliably in a wide range of photoelectron momenta, thus allowing one to retrieve information about the wave
function of the DPI process and its temporal evolution. Our simulation indicates that the proposed phase
reconstruction technique can be applied in experiment to trace dynamics of the DPI process with attosecond
precision.
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I. INTRODUCTION

The method of attosecond pump-probe spectroscopy allows
one to get an insight into temporal evolution of atomic and
molecular processes on the attosecond time scale [1–3]. By
using this technique, it has become possible to observe tran-
sient processes [4], electron tunneling [5] in atoms, and probe
ultrafast electron motion in low-excited atomic states [6].
The pump-probe approach can also be used to reveal time-
varying correlated motion of electrons in the process of double
atomic ionization. It was shown [7] that, for the suitably
prepared initial wave packets, electron spectra in this process
show distinct traces of rotational and vibrational modes in
agreement with the well-known view of doubly excited atomic
states as states of a floppy triatomic molecule [8,9].

Excellent temporal resolution, which is achieved by using
attosecond pump pulses, results in poor energy resolution.
Wave packets created by attosecond pulses have a broad
spectrum and may include a number of bound states, making
detailed analysis difficult [10]. The same problem of broad
wave packets and comparatively low spectral resolution ham-
pers the study of temporal evolution of photoionization phe-
nomena based on the time-delay theory [11,12]. Techniques
such as continuum reference wave-packet [10] or electron
wave-packet interference [13] allow one to overcome this
problem and to achieve high temporal and spectral resolution
simultaneously.

As an alternative to traditional attosecond pump-probe
spectroscopy for two-electron ionization processes, which
may suffer from poor spectral resolution and low count rate,
a measurement scheme was proposed based on correlation
between the two emitted photoelectrons [14]. The utility of this
scheme was demonstrated in the case of Auger decay triggered
by absorption of an extreme ultraviolet (XUV) photon and
modulated by a weak infrared (IR) field. By varying the delay
between the XUV and IR fields, one can create different
patterns of modulation, which can be analyzed to retrieve the
phase of the spectral amplitude of the Auger process. This, in
turn, can be converted into the timing information to trace the
dynamics of the ionization process with attosecond precision.

In this paper, we apply this scheme to the process of
single-photon two-electron ionization [double photoionization
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(DPI)] of helium. We demonstrate that this approach allows
one to determine the phase of the spectral amplitude of this
process from the measured cross sections, which is a step to-
ward the so-called complete photoionization experiment [15].
This circumstance is particularly important when electron
correlation plays a significant role in the ionization process.

II. THEORY AND RESULTS

The part of the wave function that is relevant to the DPI
process and, therefore, of interest to us can be expanded over
the set of the double continua states of the helium atom:

�1(r1,r2,t) =
∫

dq1dq2f (q1,q2)�−
q1,q2

(r1,r2)e−iEt , (1)

where E(q1,q2) = q2
1/2 + q2

2/2. In the following, we consider
the DPI process driven by an XUV pulse with a low intensity.
In this case, the amplitudes f (q1,q2) can be computed per-
turbatively. The well-known lowest-order perturbation theory
(LOPT) result is

f (q1,q2) = −i

∫ ∞

−∞
〈�−

q1,q2
|Ĥ XUV

int |�0〉ei[E(q1,q2)−E0]τ dτ,

(2)

where �0 describes the ground state of the helium atom and
Ĥ XUV

int describes interaction of the atom and the XUV pulse.
A similar perturbative treatment can be applied in the case

wherein the helium atom interacts with the XUV and IR fields
of low intensity. Technically, however, it is much simpler
to treat this case by solving the time-dependent Schrödinger
equation (TDSE) for the helium atom in the presence of the
XUV and IR pulses. In this paper, particular values of the pulse
parameters are chosen as follows.

The time dependence of the electric field of the XUV
pulse is EXUV(t) = E0

XUVf (t) cos ωt , with the base frequency
ω = 3.307 a.u. (corresponding to the photon energy of 90 eV)
and the peak field strength E0

XUV = 0.1 a.u. (corresponding
to the intensity of 3.5 × 1014 W/cm2). The XUV pulse is
switched off outside the interval (−6T ,6T ), where T = 2π/ω

is an optical cycle corresponding to the angular frequency of
the XUV pulse. The total duration of the XUV pulse is thus
12T . The envelope function f (t) for the XUV pulse is chosen
in such a way that the amplitude of the XUV field is ramped on
and off smoothly during one optical cycle T , and is constant
in between. Time dependence of the electric field for the IR
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pulse is EIR(t) = E0
IR sin �(t + �) , with the base frequency

� = 0.0367 a.u. (photon energy of 1 eV) and peak field
strength E0

IR = 0.001 a.u. The total duration of the IR pulse
is T1, where T1 = 2π/� is an optical cycle corresponding to
the IR frequency �. The IR field is zero outside the interval
(−�,T1 − �). Parameter � describes delay between the XUV
and IR pulses, which is the time elapsed between the beginning
of the IR pulses and the arrival of the center of the XUV pulse.
XUV and IR pulses are linearly polarized along the same
direction, which we assume to be the z axis.

We solve numerically the TDSE for the helium atom
interacting with the XUV and IR fields described above:

i ∂�/∂t = [Ĥatom + Ĥint(t)]� , (3)

where Ĥatom is the Hamiltonian of a field-free atom and op-
erator Ĥint(t) describes the electromagnetic (EM) interaction.
We choose the velocity form for this operator

Ĥint(t) = A(t) · ( p̂1 + p̂2), (4)

with the vector potential

A(t) = −
∫ t

−∞
[EXUV(τ ) + EIR(τ )] dτ . (5)

We discretize the Hamiltonian operator on a spatial grid.
For the present problem, we have to solve the TDSE several

times for a large interval of time (90 cycles of the XUV field).
This makes this problem rather computationally demanding.
To make it less time consuming, we had to use a rather large
grid step size of �r = 0.15 a.u. The ground state of the helium
atom was found using the relaxation procedure. For the grid
step size we used, the ground-state energy was −2.806 a.u.

The wave function is represented as a superposition

�(r1,r2) =
∑

l1,l2,J

f J
l1l2

(r1,r2)|l1(1)l2(2) L〉 . (6)

Here, the notation |l1(1)l2(2) L〉 is used for bipolar
harmonics [16], the functions f J

l1l2
(r1,r2) are defined on the

radial grid, and summation is restricted to l1,l2 = 0–3 with
the total angular momentum J = 0–2. The range of the
angular momenta values included in the Eq. (6) was again
dictated by the considerations of the computational cost.
Restricting summations in Eq. (6) to l1,l2 = 0–3 allowed us
to make the problem computationally tractable, allowing us at
the same time to provide a sufficiently accurate description
of DPI. Such a range of angular momenta is sufficient to
achieve convergence with respect to angular momenta in
the calculations of DPI in helium, as was shown in [17],
where a computational procedure very similar to ours has
been employed. To conclude this discussion of the limitations
imposed on us by the computational problems, we should
mention that our choice of the IR pulse (pure sine form with one
cycle pulse duration) was also motivated by the computational
cost considerations. Calculations for the IR pulse with pulse
duration of several cycles would have been considerably more
time consuming.

Time propagation of the solution of the TDSE was
performed using the Arnoldi-Lanczos method [18,19]. At the
moment of time when both pulses are gone, the solution
of the TDSE is projected on the set of the states �−

q1,q2

representing the doubly ionized states. As in Eq. (1), these
states are described by means of the wave functions which
are products of two Coulomb waves with the nuclear charge
Z = 2. Such wave functions (also known as C2 wave functions
in the literature [20]) do not, therefore, include correlation
between electrons. At first glance, it seems not quite clear as
to why we can hope to describe double ionization of helium
accurately using these states. It has been shown, however [21],
that projecting a solution of TDSE on the set of the C2 states
produces results for total and differential cross sections of
DPI in helium and in the even more challenging problem of
DPI in hydrogen molecule, in excellent agreement with other
theoretical and experimental works. The rationale behind this
apparent success of describing final states using uncorrelated
wave functions is the observation that, if we allow the system to
evolve far enough in time, so that electrons are at large distance
from the nucleus and each other, projection on uncorrelated
states can produce valid results. More exactly, we can expect
this projection technique to be valid if, at the moment of time
when we perform the projection operation, kinetic energy
of electrons is much larger than their potential energy [21].
This is certainly true in our case. For the calculations reported
below, the projection operation is performed at least 30 cycles
(corresponding to the angular frequency of the XUV pulse)
after the end of the XUV pulse, which drives the ionization
process. It is easy to see that, for the excess energy available
to electrons in our problem, the interval of time the electrons
are allowed to travel, and typical case of approximately equal
energy sharing, electron kinetic energy is indeed several times
larger than their potential energy.

The projection operation discussed above allows us to
compute the DPI amplitude which, after some integrations,
can be converted into various probability distributions.

The distribution, which is presently of interest to us, is
the momentum distribution of the photoelectrons for the
particular escape geometry in which one electron (with the
momentum kz) exits along the z axis, and another (with
momentum kx) along the x axis. In this configuration, it is
only the photoelectron escaping in the z direction that feels a
noticeable effect of the IR pulse.

The photoelectron momentum distributions described
above are presented in Fig. 1. The top left panel corresponds
to the DPI process driven by the XUV pulse alone, while
other panels visualize the combined effect of XUV and IR
pulses with a varying time delay. We clearly see a characteristic
ringlike structure along the circle k2

x + k2
z = const, reflecting

the energy conservation. In the presence of the IR pulse, this
structure is split and distorted due to possibility of absorption
or emission of an IR photon. The effect of the IR field on the
spectrum depends quite sensitively on the delay between the
XUV and IR pulses. This is hardly surprising as the duration
of the IR pulse is only one optical cycle, which necessarily
introduces a good deal of asymmetry into the spectra.

By comparing the DPI spectrum driven by the XUV pulse
alone with the analogous spectra obtained in presence of both
XUV and IR pulses, we can get some information about
interference of the processes with participation of the XUV
and IR photons. Such an interference is sensitive to the phase
of the DPI amplitude. To retrieve the phase, we proceed as
follows.
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FIG. 1. (Color online) Distribution |f (kx,kz)|2 for DPI of helium
driven by the XUV pulse alone (top left), and in the presence of the
IR field for � = 6 (top right), � = 28T (bottom left), and � = 50T

(bottom right). T is the optical cycle for the XUV field.

The problem we are considering belongs to the class of
the so-called laser-assisted phenomena. Such phenomena, be
it laser-assisted scattering or photoionization, can be described
theoretically using the concept of the so-called “dressed”
states, which take into account the effect of the IR field. It
is these states, not the states �−

q1,q2
entering Eq. (1), that we

have to use as the building blocks of our theory.
To put this idea in a quantitative framework, we can use a

perturbative expansion for the evolution operator Û (t, − ∞)
describing evolution of the atom in the presence of both XUV
and IR fields. Such expansion can be obtained from the Dyson
equations for the propagators, and within the first order of
the perturbation theory in the atom-XUV field interaction, it
reads as

Û (t,t0) = Û0(t,t0) − i

∫ t

−∞
Û0(t,τ )H XUV

int (τ )Û0(τ,t0), (7)

where Û0(t,t0) is the evolution operator for the atom in the
presence of the IR field only. For the spectral amplitudes
defined in Eq. (1), we then obtain, after XUV and IR pulses
are gone,

f (q1,q2) = −i lim
t→∞ e−iE(q1,q2)t

∫ t

−∞
〈Û0(τ,t)�−

q1,q2
|

× Ĥ XUV
int (τ )|�0〉e−iE0τ dτ. (8)

Here, we assumed that the IR field perturbs the initial ground
state only slightly (as it does for the IR field parameters
we consider), so we can write Û0(τ, − ∞)|�0 = e−iE0τ�0.
The state vector Û0(τ,t)�−

q1,q2
describes the effect of the IR

field on the states �−
q1,q2

we use for the projection operation.
Comparing Eqs. (8) and (2), we see that, to describe the IR
field effect, the two-electron state �−

q1,q2
should be replaced

with the solution of the TDSE in the presence of the IR pulse,
which goes into �−

q1,q2
in the limit of vanishing IR field. This

is not a simple problem to solve, and we have to adopt an
approximation at this stage to make the problem tractable.

We use the so-called Coulomb-Volkov approximation (CVA)
[22,23], assuming that

Û0(τ,t)�−
q1,q2

= �−
q1,q2

exp

(
−i

∫ τ

t

{[q1 + A(x)]2/2

+ [q2 + A(x)]2/2} dx

)
, (9)

where A is vector potential for the IR field. The CVA
approximation is known to describe satisfactorily single-
electron ionization of atoms [22]. It is by no means guaranteed
that CVA is always reliable. In fact, CVA is an interpolation
between the solution of TDSE describing the motion of an
electron in the presence of the EM field only and the solution
of the stationary Schrödinger equation in the Coulomb field
without an external EM field. As such, it can not always work
reliably. It was found that CVA fails in certain processes of
the laser-driven electron scattering [24]. It is therefore our first
priority to determine if CVA is applicable to the DPI process
that we are interested in.

By neglecting in Eq. (9) terms that are quadratic in A
(which is permissible for the field parameters of the IR field
we consider), expanding exponential as a Fourier series, and
using Eq. (8), one can obtain the following relation between the
amplitude f (kx,kz) of DPI in the presence of the XUV pulse
only and the amplitude f 1(kx,kz,�) of DPI in the presence of
the XUV and IR pulses:

f 1(kx,kz,�) =
∞∑

m=−∞
f (kx,k

′
z)(−1)me−im��Jm

(
kzE

0
IR

�2

)
.

(10)

Here, Jm(x) is the Bessel function and k′
z = √

k2
z − 2m�,

and the notation f 1(kx,kz,�) is used to emphasize that DPI
amplitude in the presence of the XUV and IR pulses depends on
the delay �. Equation (10) is analogous to the formula given in
Ref. [14] for the process of Auger decay following absorption
of an XUV photon. Equation (10) was derived for the particular
DPI kinematics that we chose above: the electron with momen-
tum kz escapes along the direction of the IR polarization vector,
while the electron with momentum kx escapes perpendicular
to it. Terms with different m in Eq. (10) describe absorption
or emission of m IR photons which change the momentum kz

appropriately. For the weak IR field that we consider presently,
only the terms with m = 0, ± 1 are contributing. This formula,
if applicable, would provide us with a simple description of
the effect of the IR pulse on the DPI spectrum.

The electron momentum distributions produced by Eq. (10)
are shown in Fig. 2. One can see that CVA does reproduce some
important features of the TDSE spectrum shown in Fig. 1. In
particular, a considerable asymmetry in the z direction due
to the IR field is clearly visible. To get a more detailed
comparison, we take horizontal slices of the distributions
shown in Figs. 1 and 2 for a particular value of kx = 0.9 a.u.
Such a comparison is shown in Fig. 3. One can see that
CVA reproduces rather well an overall behavior of the spectra
produced by the TDSE calculation.

Armed with this fact, we can extract phases of the
amplitudes f (kx,kz) of the DPI process driven by the XUV
pulse alone from the absolute values of the amplitudes
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FIG. 2. (Color online) Distribution |f (kx,kz)|2 for DPI of He in
the presence of XUV and IR fields produced by Eq. (10). The time
delay between the XUV and IR pulses is is � = 6T (left) and � =
50T (right).

f 1(kx,kz) of DPI in the presence of the XUV and IR fields.
This can be done using a procedure similar to the one
employed in Ref. [14] for the process of single-electron
photoionization followed by Auger decay, or else using the
following procedure (which we actually employed).

By using the facts that only the terms with m = 0, ± 1 can
be retained in Eq. (10) and the difference of arguments kz,
k′
z in the amplitudes on the left- and right-hand sides of this

equation is small, one can write

|f 1(kx,kz,�)|2

= |f (kx,kz)|2
∣∣∣∣∣

1∑
m=−1

A(�,m)[1 + k(�,m)B]

∣∣∣∣∣
2

, (11)

where A(�,m) = (−1)me−im��Jm( kzE
0
IR

�2 ), k(�,m) = k′
z −

kz = √
k2
z − 2m� − kz, and B = f (kx,kz)−1 ∂f (kx ,kz)

∂kz
. The only

unknown quantity in this equation is B. By writing down
Eq. (11) for several values of �, we obtain a system of
equations from which B can be determined. In our calculation,
we used equations for � = 6T , 28T , and 50T , and solved the
resulting system of nonlinear equations in the least-squares
sense, requiring that the sum of the squared differences of the
left- and right-hand sides of Eq. (11) taken over different �

values used in the calculation attained its minimum value. We
checked the consistency of this recipe, verifying that different
choices of the set of parameters � used for constructing a
system of equations from which B is found does not affect the
results in a significant way.

This procedure allows us to determine parameter B in
Eq. (11), which gives us the absolute value of the derivative
∂f (kx,kz)/∂kz and its phase relative to the phase of the
amplitude f (kx,kz). Knowing these parameters, we can find
the phase of the amplitude f (kx,q) relative to the phase of
f (kx,kz) for values of q close to the value kz for which the
system of equations based on Eq. (11) has been solved. In this
way, by moving along the slice kx = const, we can reconstruct
the phases of the amplitude f (kx,kz) for different values of kz

relative to some starting value.
The results of this procedure are shown in Fig. 4. Instead of

“experimentally observable” |f 1(kx,kz)|, we used the results
provided by the TDSE solution which we presume to be nearly
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FIG. 3. (Color online) Distribution |f (kx,kz)|2 as a function of kz for the fixed value kx = 0.9 a.u. is shown for various delays between
the XUV and IR pulses. � = 6T (top left), � = 28T (top right), � = 50T (bottom left), and � = 74T (bottom right). The solid (red) line
displays the TDSE calculation, the dashed (green) line corresponds to the CVA result.
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FIG. 4. (Color online) Phase of the amplitude f (kx,kz) relative to the phase of f (kx, − 1) (left panels) and f (kx,0.6) (right panels) for
kx = 0.9 a.u. (upper panels) and kx = 0.4 a.u. (lower panels). Results given by the TDSE calculation for DPI driven by the XUV pulse alone
are shown by the (red) solid line. Results obtained by using Eq. (10) are displayed by the (green) dashed line.

as good as experiment. Before discussing these results, we
should clarify an important point. Spectral amplitudes of DPI
get their full meaning only when a corresponding set of doubly
ionized states is defined. By changing arbitrarily phases of the
doubly ionized states �−

q1,q2
(r1,r2) in Eq. (1), we introduce

corresponding changes into the amplitudes f (q1,q2). Two
sets of the states �−

q1,q2
(r1,r2), which differ by an arbitrary

phase factor, are completely equivalent, and no experiment
can possibly tell the difference between them. It is not clear
at first sight as to which set of phases the procedure based
on Eq. (10) actually provides. The answer to this question
can be found after a closer inspection of this equation. Its
derivation assumes that a set of states �−

q1,q2
(r1,r2) is such

that �−
q1,q2

(r1,r2) ≈ �−
q1,q

′
2
(r1,r2), when |q2 − q ′

2| <
√

2�,
which restricts considerably the freedom of choice of the
arbitrary phase factor for the set of the doubly ionized states.
This factor can not vary too fast, remaining approximately
constant on the momentum scale of

√
�.

In Fig. 4, we show results for the phase of the amplitude
f (kx,kz) relative to the two starting values of kz = −1 a.u.
(left) and kz = 0.6 a.u. (right) obtained for two horizontal
slices of the momentum distributions shown in Figs. 1 and 2.
One can see that the phases obtained by the TDSE solution
corresponding to DPI driven by the XUV pulse, and the phases
obtained using the procedure based on Eq. (10) agree quite well
in the intervals of momenta shown in Fig. 4. This procedure

works not so reliably for the values of kz outside these intervals.
This is not surprising given the fact that the intensity in Fig. 1
is much weaker in this part of the momentum distribution.

III. CONCLUSION

We have applied the phase reconstruction technique to
the spectral amplitude of DPI of helium. This technique is
based on the analysis of the correlated two-electron ionization
spectrum. We demonstrated that the phase of the amplitude
(relative to an arbitrary starting value) could be determined
reliably in a wide interval of photoelectron momenta. This
suggests that information about the wave function describing
the DPI process, and its temporal development, can be obtained
from experimental data. Accurate phase reconstruction of the
spectral amplitude and its momentum dependence is also
crucial for evaluating the time delay in the photoionization
process (this quantity can be related to the energy derivative
of phase of the spectral amplitude [25]). This subject received
recently a considerable attention after unexpected, and not yet
fully understood, results [11] were published, demonstrating
anomalously large time delays in photoionization from the
neon atom. The problem we consider is not so dissimilar to
the problem of the reconstruction of the phase of the scattering
amplitude from the experimental data, which is particularly
important in nuclear physics. Solution of this problem is
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an important step toward solution of the inverse problem in
nuclear physics, i.e., reconstruction of the (unknown) potential
from the experimental data [26]. In atomic physics, if we
use a completely ab initio approach, the potential is known
quite reliably, of course. However, if complex systems are
considered, such as the Ne atom, we necessarily have to use
approximations, e.g., the single active electron approximation.
In some cases, this may lead to considerable disagreement
with experiment. An attempt to resolve this issue, which we
undertook in [12] using the random-phase approximation with
exchange (RPAE) [27] to partly account for the correlation
effects, showed that RPAE can not solve this problem as
well. This tells us that electron correlations may play a very
important role in ionization phenomena for some atomic
systems.

Another example of a strongly correlated phenomenon is
the single-photon DPI process, which we considered above.
The described technique can help to resolve experimentally
electron correlation in time for the DPI in helium. The
advantage of the proposed method is that it does not require
a sequence of intense XUV pulses needed for the direct XUV
pump-probe measurement proposed in Ref. [28].
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