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Stochastic dynamics of an electron in a Penning trap: Phase flips correlated with amplitude
collapses and revivals
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We study the effect of noise on the axial mode of an electron in a Penning trap under parametric-resonance
conditions. Our approach, based on the application of averaging techniques to the description of the dynamics,
provides an understanding of the random phase flips detected in recent experiments. The observed correlation
between the phase jumps and the amplitude collapses is explained. Moreover, we discuss the actual relevance
of noise color to the identified phase-switching mechanism. Our approach is then generalized to analyze the
persistence of the stochastic phase flips in the dynamics of a cloud of N electrons. In particular, we characterize
the detected scaling of the phase-jump rate with the number of electrons.
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I. INTRODUCTION

The research on electron traps has opened the way to
significant advances in fields ranging from atomic physics
to metrology [1]. For instance, the application of the trap-
ping techniques has been crucial for achievements like
the generation of antimatter atoms [2] or the realization
of precision tests on fundamental constants [3]. Moreover,
trapped electrons provide a controllable testing ground for
a variety of physical behaviors, predicted or experimentally
identified in other areas. Actually, the possibility of controlling
the trapping setup, in particular, of varying its components,
can allow the systematic characterization of different effects
via their realization under well-defined conditions and in
regimes unexplored in other contexts. In this way, problems
like the emergence of nontrivial effects of noise [4], the
preparation of Fock states [5], the appearance of squeezing in
quantum-dissipation processes in nonlinear oscillators [6–8],
or the implementation of proposals for quantum-information
algorithms [9–12] have been analyzed with different variations
of the basic trapping setup. Here, we focus on an effect detected
in recent experiments on electrons in a Penning trap [4].
Namely, under parametric-resonance conditions, the axial
mode of a one-electron system was observed to present random
amplitude collapses correlated with phase flips. That behavior
was traced to noise rooted in different elements of the practical
arrangement. Indeed, by adding fluctuations in a controlled
way, the dependence of the phase-jump rate on the noise
strength was characterized. Remarkably, for increasing noise
intensities, the correlation between the amplitude collapses
and the phase jumps was found to disappear. The study of
the persistence of those effects in the dynamics of a cloud of
N electrons revealed a nontrivial behavior, in particular, the
attenuation and eventual disappearance of the stochastic phase
switching as the number of electrons was increased. Despite
the advances in the characterization of the observed dynamics
[4,13], a satisfactory explanation of the underlying physical
mechanisms is still needed, as stressed in Ref. [4]. For example,
the actual relevance of colored noise to the emergence of some
of the detected effects is an open question. Here, we present a
description of the dynamics based on averaging techniques
applicable to stochastic systems. From our approach, the
origin of the experimental findings is uncovered and the

elements of the system which are essential for the appearance
of the observed behavior are identified. Furthermore, our
semianalytical characterization of the dynamics provides us
with some clues to controlling the system response to the
fluctuations. The direct implications of the study to the
advances in the techniques of confinement and stabilization are
evident. Additionally, because of the fundamental character of
the physics involved, the analysis can be relevant to different
contexts, where conditions similar to those realized in the
trapping scenario can be implemented [14,15].

The outline of the paper is as follows. In Sec. II, we present
our model for the stochastic dynamics of the axial mode of
an electron in a Penning trap. Through the application of the
averaging methods of Bogoliubov, Krylov, and Stratonovich
[16,17], we derive an effective description in terms of a system
of stochastic differential equations for the amplitude and the
phase. In Sec. III, the validity of our approach is confirmed
through the simulation of the main experimental findings.
Moreover, an analysis of the physical mechanisms responsible
for the observed behavior is presented. Section IV contains the
study of the persistence of the stochastic phase switching in
the dynamics of a cloud of N electrons. Finally, some general
conclusions are summarized in Sec. V.

II. THE MODEL SYSTEM

An electron in a Penning trap is usually described in terms
of three coupled modes (magnetron, axial, and cyclotron)
with widely different time scales [1]. Here, we concentrate
on the axial coordinate z. In general, because of the intermode
coupling, the axial dynamics can be quite complex: a variety of
behaviors can emerge depending on the considered regime of
experimental parameters. However, under standard conditions,
different approximations can be made and the description
simplifies considerably. Namely, the (slow) magnetron motion
can be adiabatically treated and its influence on the dynamics
can be reduced by sideband cooling [4]. Additionally, by
damping the (fast) cyclotron mode to its fundamental state,
its effect on the axial coordinate is minimized [4]. In typical
realizations, z is coupled to a measuring external circuit, which
introduces resistive damping and noise in the mode; moreover,
the trap potential that is usually applied is approximately
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harmonic. Hence, in the basic scheme, z corresponds to
a dissipative harmonic oscillator which can be described
classically. Axial outputs qualitatively different from that
basic realization can be generated by introducing different
driving fields and controlled fluctuations in the practical setup
[1,18–20]. Apart from directly affecting the dynamics, those
external elements can indirectly enhance the effect of the
nonlinear corrections to the trap potential. Here, we aim at
explaining the experiments of Ref. [4]. In them, a nontrivial
axial dynamics was uncovered in a variation of the basic setup
which incorporated a driving field at parametric resonance and
noise of controllable intensity. Those experimental conditions
are simulated in our approach. Specifically, we consider that
z is parametrically driven at the frequency ωd , which is
nearly twice the characteristic resonant frequency ωz, i.e.,
ωd = 2(ωz + ε) with the restriction ε � ωz for the detuning ε.
Moreover, our model incorporates a stochastic force η(t) with
the characteristics of the noise present in the practical setup.
Residual nonlinear terms of the confining potential, which are
known to account for the stabilization of the noiseless version
of the system in the parametric-resonance regime [18,19], are
also included in the model. Accordingly, we consider that
the axial coordinate (normalized to a typical trap length, and,
therefore, dimensionless) is described by the equation

z̈ + γzż + ω2
z [1 + h cos ωdt] z + λ4ω

2
zz

3 + λ6ω
2
zz

5 = η(t),

(1)

where γz is the friction coefficient, h characterizes the
amplitude of the driving force, and, λ4 and λ6 are coefficients
which determine the magnitude of the nonlinear terms of the
confining potential. For now, we deal with a one-electron
system; later on, we will tackle the dynamics of a cloud of
N electrons.

Crucial to the applicability of our model to the considered
experiments is the appropriate modeling of the stochastic force
η(t). Two types of fluctuations are relevant to the experimental
scheme. First, the system presents “internal” noise rooted in
different elements of the practical setup. It has been argued
that those fluctuations are well modeled by broadband noise
and centered narrowband fluctuations. Second, white noise,
more intense than the internal fluctuations, was injected in
the experimental realization of Ref. [4]. Indeed, it was the
addition of this “external” noise that allowed the study of
the dependence of the switching mechanism on the noise
strength. Here, in order to account for both, the broadband
internal fluctuations and the added white noise, we consider
that η(t) has general Gaussian wideband characteristics [21].
Specifically, we assume that the correlation function kη(t ′ −
t) ≡ 〈η(t)η(t ′)〉 − 〈η(t)〉2 has a generic functional form and
that the correlation time is much shorter than any other
relevant time scale in the system evolution. The intensity
coefficient D = 1

2

∫ ∞
−∞ kη(τ )dτ is used to characterize the

noise strength [17]. (The white-noise limit, defined by kη(t ′ −
t) = 2Dδ(t − t ′), is included in our analysis.) Additionally,
a zero mean value, 〈η(t)〉 = 0, is assumed. (Notice that a
nonzero 〈η(t)〉 can be simply incorporated into the model
as an effective deterministic contribution.) A more elaborate
noisy input should be added to tackle the effect of residual
colored noise. However, that generalization of our approach

is not necessary for the objectives of the present paper: it will
be shown that the detected behavior can be simply traced to
broadband-noise characteristics.

Our approach to deal with Eq. (1) is based on the
averaging methods developed by Krylov and Bogoliubov for
the analysis of deterministic nonlinear oscillations as they
were generalized by Stratonovich to the study of stochas-
tic processes [16,17]. Those averaging techniques can be
applied to generic wideband fluctuations with sufficiently
short correlation time. In this approach, the amplitude A

and the phase � of the oscillations are defined through
the equations z = A cos [(ωz + ε)t + �] and ż = −(ωz +
ε)A sin [(ωz + ε)t + �]. With these changes, Eq. (1) is re-
duced to a system of two first-order equations in standard
form [17], i.e., with the structure of a harmonic oscillator
perturbed by deterministic and stochastic terms. For ωz � γz,
ε, the average of the deterministic perturbative elements over
the period τef = 2π/(ωz + ε) = 4π/ωd is readily carried out.
Moreover, for a noise correlation time much smaller than the
relaxation times of the amplitude and the phase, the coarse
graining of the stochastic terms over τef can be applied fol-
lowing the procedure presented in Ref. [17]. Accordingly, we
obtain that, to first-order, the averaged equations are [17,20,22]

Ȧ = −γz

2

[
1 − h

hT

sin 2�

]
A + Deff

A
+ ξ1(t), (2)

�̇ = −ε + 3

8
λ4ωzA

2 + 5

16
λ6ωzA

4 + 1

4
ωzh cos 2� + ξ2(t)

A
,

(3)

where we have introduced hT ≡ 2γz/ωz. (The meaning of hT

as a threshold amplitude of the driving field will be evident
shortly.) Additionally, ξ1(t) and ξ2(t) are effective Gaussian
white-noise terms defined by 〈ξi(t)〉 = 0, and 〈ξi(t)ξj (t ′〉 =
2Deffδi,j δ(t − t ′), i,j = 1,2, with Deff = κη(ωz + ε)/[4(ωz +
ε)2]. (Note that Deff , which determines the strength of the (un-
correlated) effective noise terms, is obtained from the power
spectral density κη(ω) ≡ ∫ ∞

−∞ eiωτ kη(τ )dτ of the original noise
η(t) at the frequency ωz + ε. Here, we must remark that, from
the broadband characteristics assumed for η(t), a smooth form
of κη(ω) can be inferred. Indeed, a completely flat spectrum
occurs in the white-noise limit.) Whereas the noise term in
Eq. (2), ξ1(t), is additive, the fluctuations enter Eq. (3) through
the term ξ2(t)/A and, therefore, have multiplicative character.
Moreover, it is important to take into account the presence of
the noise-induced “deterministic” term Deff/A in Eq. (2): its
appearance will be shown to account for the partial character of
the amplitude collapses detected in the experiments. It is worth
emphasizing that our use of averaged equations is specially
appropriate for the considered experimental setup, where, be-
cause of the specific characteristics of the detection scheme, the
registered data do actually correspond to averaged magnitudes.

In order to trace the response of the system to noise,
we must clearly define the deterministic scenario into which
the fluctuations enter. The noiseless dynamics of the system,
described by Eq. (1) without the random term η(t), and,
consequently, by Eqs. (2) and (3) with Deff = 0, has been
intensively studied [18,19]. From the averaged equations,
it is straightforwardly shown that parametric amplification,
i.e., exponential growth of the amplitude, takes place for a
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driving amplitude h larger than the threshold value hT and
for a detuning ε within the excitation range, namely, for ε− <

ε < ε+ (ε± = ±ωz

4

√
h2 − h2

T ). The experimental conditions on
which we focus correspond to this parametric-amplification
regime. In the absence of nonlinear terms in the trap po-
tential, the amplitude would grow monotonously. However,
the nonlinear corrections, characterized by the coefficients
λ4 and λ6, which must be included in the description to
simulate the actual potential applied in the practical setup,
do arrest the amplitude growth, allowing the stabilization
of the motion. The system presents two stationary states
with the same amplitude and with phase values differing in
π radians. Specifically, the stationary amplitude ASS is ob-
tained from the equation ε+ − ε + 3

8λ4ωzA
2
SS + 5

16λ6ωzA
4
SS =

0, and the two π -differing values of the equilibrium phase �SS

are given by �SS = 1
2 arcsin( hT

h
). [Important for the discussion

of some of the noisy features is to notice that, for the values of
the nonlinear parameters applied in the experiments, (λ4 = 0
and λ6 < 0), ASS increases with ε+ − ε]. The stationary
states correspond to attractors in the phase space. Depending
on the initial conditions, the system eventually reaches one
or the other attractor. The objective of the next section is
the explanation of the effects of noise on this deterministic
scenario.

III. STOCHASTIC DYNAMICS OF A ONE-ELECTRON
SYSTEM

In the analysis of the noisy dynamics, we proceed by
showing first that Eqs. (2) and (3) provide a satisfactory
description of the behavior observed in the experiments.
Then, once its validity has been confirmed, our approach
will be applied to uncover the physics underlying the detected
features.

A. The response to noise

In Ref. [4], the presence of noise was shown to significantly
alter the deterministic picture. The system was no longer
stabilized in one of the attractors. Instead, it was observed
to display amplitude collapses and revivals correlated with
abrupt changes in the phase. Those experimental findings are
reproduced by our approach. Figures 1(a) and 1(b), respec-
tively, depict results for A and � as obtained from Eqs. (2)
and (3). There, the correlation between the phase flips and the
collapses and revivals of the amplitude is evident. Actually, in
agreement with the experimental results, it is found that the
amplitude collapses are almost always followed by phase flips.
In other words, the system rarely stays in the same basin of
attraction once a collapse in A has occurred. One should notice
that, in the interjump intervals, � is strongly localized around
its equilibrium values; in contrast, a significant dispersion
in A is observed. Our study reproduces the detected partial
character of the collapses. Already noticeable in Fig. 1(a), this
feature is particularly evident in Fig. 2, where we depict a
typical noisy trajectory, which includes different flips between
the two basins. There, it is apparent that the unstable point
defined by A = 0 is never reached. As stressed in Ref. [4], these
features cannot be understood with a simple activation-process
model.
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FIG. 1. Time evolution of the phase (a) and of the amplitude
(b) as obtained from Eqs. (2) and (3). [ωz/2π = 61.6 MHz, λ4 = 0,
λ6 = −0.27, γz = (10 ms)−1, ε+/2π = 100 Hz, ε/2π = 50 Hz, D =
10−2 (arbitrary units)]. (The same set of parameters is used throughout
the paper).

In the analysis of the experimental results, a histogram for
the residence time (i.e., the time interval between phase flips)
served to obtain the average jump rate �. Actually, � was found
to be well approximated by an exponential function of the
noise strength, namely, � ∼ exp(−E/D), where E denotes the
effective activation energy. That characterization is reproduced
by our approach. In Fig. 3, we represent a histogram for the
residence time as obtained from Eqs. (2) and (3). Moreover,
in Fig. 4, we plot the jump rate as a function of the noise
strength. There, the validity of the exponential fit is patent. (In
our calculations, we have directly worked with Deff as noise
strength: the used arbitrary units include the ratio between the
actual strength of the original noise D and Deff .) Apart from
the dependence on the fluctuations, the jump rate incorporates,
through the effective activation energy, the influence on the
process of elements like the frequency and strength of the
driving field, the characteristics of the trapping potential, or
the damping coefficient. The description of the role played
by those deterministic components of the system in the noisy
dynamics is crucial for understanding the process of phase
switching. In the experiments, the dependence of E on those
system parameters was traced via the systematic variation
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FIG. 2. Phase space diagram for a particular noisy trajectory.
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FIG. 3. Histogram for the time interval between phase flips.

of the practical conditions. In particular, an approximately
exponential dependence of the jump rate � on the detuning,
expressed as ε+ − ε, was reported. That behavior is also
simulated with our approach, as shown in Fig. 5.

In Ref. [4], no results are presented for the dependence
of the activation energy on the friction coefficient. However,
as this aspect of the system behavior will be an important
element of our discussion of the phase-switching mechanism,
it is pertinent to describe it here using our approach. Indeed,
since early theoretical studies were set up from a Hamiltonian
approximation to the dynamics, it is worthwhile to inquire
into the actual significance of the dissipative character of
the system. Let us first recall some aspects of the purely
deterministic (dissipative) dynamics which are relevant to
the resulting stochastic scenario. Namely, from the found
threshold amplitude, given by hT = 2γz/ωz, it is evident
that the generation of oscillations is inhibited as the friction
coefficient γz increases. Additionally, we must take into
account that, as found in Ref. [11], the relaxation of the system
from any initial conditions to the equilibrium states becomes
faster for larger γz. Therefore, we can conjecture that, as γz

grows, simply because of the deterministic inhibition of the
oscillations and of the enhanced stability of the system, the
role of noise in activating the phase jumps must be hindered.
This conjecture is confirmed by our results for the dependence
of E on γz. We have found that there is an approximately
exponential decrease of the jump rate � with γz, as shown in
Fig. 6. Consequently, from the expression � ∼ exp(−E/D), a
nearly linear increase of E with γz is derived. Specifically, we

400 500 600
(noise strength)

-1

1

10

ph
as

e-
fl

ip
 r

at
e 

(s
-1

)

FIG. 4. Phase-jump rate �(s−1) versus the inverse noise strength
D−1 (arbitrary units).
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FIG. 5. Phase-jump rate �(s−1) as a function of the detuning
expressed as (ε+ − ε)/2π (Hz). (ε+/2π = 100 Hz).

can write E ≈ C1 + C2γz, where the coefficients C1 and C2

incorporate the dependence of E on other parameters of the
system. Some implications of these results will be considered
in the forthcoming discussion. By now, we anticipate that
the analysis of the persistence in the N -electron system of
the found dependence of E on γz will be central to our
understanding of the detected scaling of the phase-jump rate
with N .

B. The mechanism of stochastic phase switching

In our discussion of the physics that underlies the observed
features, we proceed gradually: we start with a simplified pic-
ture of the dynamics, which will be improved by successively
incorporating the different elements of the complete system.
Our scheme is summarized in the following steps.

(i) A zero-order approximation to the random response
detected in the experiments is provided by the artificial
decoupling of Eqs. (2) and (3). Indeed, some clues to the
origin of prominent features of the complete system are given
by the analysis of the “independent” behaviors of A and �

that respectively follow from fixing the phase in Eq. (2) and
the amplitude in Eq. (3).

For a constant value of �, Eq. (2) describes fluctuations
of A around its equilibrium position. Interestingly, because of
the term Deff/A, the equilibrium amplitude is larger than its
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FIG. 6. Phase-jump rate �(s−1) versus the friction coefficient
γz (s−1).
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counterpart in the absence of noise. Noise-induced excursions
to the region of small A can be predicted. Due to the effective
“deterministic” term Deff/A, the value A = 0 is not reached,
i.e., a complete collapse never takes place. As in the description
of the deterministic system at parametric resonance, to account
in our approach for the limited growth of A observed in
practice, the coupling to the phase equation, which contains
the nonlinear terms of the confining potential, is necessary.

Conversely, for a fixed A, Eq. (3) describes a process
of phase diffusion in a tilted periodic potential [17]. The
bias, given by −ε + 3

8λ4ωzA
2 + 5

16λ6ωzA
4, is determined

by the detuning and by the artificially fixed amplitude. The
potential presents two minima separated by π radians.When
the bias is smaller than the height of the periodic potential,
� evolves only because of the fluctuations. Actually, in the
regime considered in the experiments, it is noise that leads
to phase jumps between the minima. Since the magnitude
of the (multiplicative) random term ξ2(t)/A increases as A

diminishes, the jumps become more frequent for smaller A.
(ii) A comparative analysis of the structure of the two

averaged equations uncovers the qualitatively different effects
of noise on the two variables. Since the amplitude has no
strong confining potential, it is continuously forced out of
equilibrium by the stochastic force. Indeed, a significant
dispersion in A is apparent in Fig. 1(a). In contrast, as shown
in Fig. 1(b), the periodic potential leads to a remarkable
concentration of � around its equilibrium values. This phase
locking is interrupted by noise-induced flips. Attention must
also be paid to some characteristics of the coupling between
Eqs. (2) and (3). As previously discussed, the presence of
A in Eq. (3) is crucial for the evolution of �. In particular,
the magnitude of A determines the frequency of the phase
flips via the random term ξ2(t)/A. In contrast, a much weaker
effect of the phase flips on the evolution of the amplitude is
apparent: given that the phase enters Eq. (2) through sin 2�,
the π jumps in the phase hardly alter the dynamics of the
amplitude.

(iii) By combining the ideas contained in the above points,
the observed correlation between amplitude collapses and
phase jumps can be explained. Noise can induce an appreciable
reduction in the amplitude, which leads to a significant increase
of the random term ξ2(t)/A in the equation for the phase
evolution, and, in turn, to a stochastic phase jump. Because
of the “deterministic” term Deff/A, the unstable point with
A = 0 and undefined � is avoided in the switching. In fact,
as A never reaches a zero value, the phase is always well
defined. Additionally, the fast regrowth of the amplitude after
each (partial) collapse is rooted in the term Deff/A and in
the friction-induced stability of the underlying deterministic
attractors. In the experiments, the correlation between the
amplitude collapses and the phase jumps was observed to
decay for increasing noise intensities. This feature can be
understood taking into account that, as the noise strength
increases, the random term ξ2(t)/A can be strong enough to
lead to phase flips even without an appreciable reduction in
A. Furthermore, the inhibition of the jumps for increasing
γz is linked to the higher stability of the (deterministic)
stationary amplitude ASS and to the consequent less probable
exploration by the system of the small-amplitude region. Then,
we can understand that, as shown in Fig. (6), the phase

jumps dwindle as γz is enhanced and, correspondingly, that
the effective activation energy increases with γz. A similar
argument qualitatively explains the dependence of the flip rate
on the detuning, reflected in Fig. 5. As previously pointed out,
ASS grows with ε+ − ε; consequently, for increasing ε+ − ε,
the collapse region is less easily reached, and, in turn, the phase
jumps become less probable.

From the above discussion, the essential components of
the mechanism responsible for the stochastic phase switching
can be identified. The periodic potential, rooted in the driving
field at parametric resonance, allows the strong localization of
� and, therefore, the well-defined character of the jumps in
phase. Additionally, the random term ξ2(t)/A accounts for the
correlation between amplitude collapses and phase flips. This
stochastic link can be traced to two fundamental characteristics
of the system. First, it is rooted in the additive character of the
input noise η(t): with the change of representation, from z to A

and �, the fluctuations become multiplicative and the random
connection does appear. Second, its specific compact form
ξ2(t)/A, uncovered by the application of the averaging meth-
ods, is a consequence of the broadband-noise characteristics,
which guarantee the applicability of that methodology. Given
the generality of its origin, this random link can be expected
to be relevant to quite generic stochastic oscillators. In fact,
it has been previously characterized in pioneering work on
nonlinear self-excited oscillations in electronic devices [17].
Its intense differential effect on the current scenario results
from its combination with the driving field: as the phase
is strongly confined, its noise-induced evolution (enhanced
for small values of the amplitude) occurs basically through
noticeable jumps between approximate equilibrium values.
A comment on the role played by the nonlinearity of the
system is also pertinent. It is important to emphasize that the
nonlinear terms of the trap potential, which are necessary for
the stabilization of the amplitude in the parametric-resonance
regime, are not essential components of the phase-switching
mechanism. It is the nonlinearity induced by the parametric
driving field, i.e., the phase bistability, that really counts in the
process. Also, it is interesting to examine what can be extracted
from our approach about the actual relevance of colored noise.
We recall that the possibility of tracing some of the observed
features to noise-color characteristics was pointed out in
early discussions of the experiments. In this sense, our study
conclusively shows that the experimental features reported in
Ref. [4] can be induced purely by broadband noise. Even more,
we have found that simple white noise can account for those
effects. Finally, we remark that, as stressed in Ref. [4], a simple
activation-process model [21] fails to provide an appropriate
picture of the observed dynamics. Although the introduction of
an effective activation energy is useful in the characterization
of the phase-jump rate, a simple activation-process description
misses the sequence of combined effects in the evolution of the
amplitude and phase that leads to the distinctive characteristics
of the phase switching.

IV. STOCHASTIC DYNAMICS OF A CLOUD
OF N ELECTRONS

In the above, we have considered a monoelectronic sys-
tem. Now, we turn to analyze the dynamics of a cloud of
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N electrons. We aim at explaining the nontrivial features of the
evolution of the center-of-mass coordinate Z (Z = 1

N

∑N
i=1 zi)

uncovered by the experiments of Ref. [4], specifically, the ob-
served slow-down and eventual disappearance of the random
phase jumps for increasing number of electrons.

Some preliminary general considerations on the dynamics
of the electronic cloud are in order. First, we recall that, in
previous work on damping of a polyelectronic system in a
Penning trap, the friction coefficient of Z, γ (N)

z , was shown
to be well approximated as γ (N)

z = Nγz [18,19]. Second,
we must take into account that the random force on the
center-of-mass coordinate is given by η(N)(t) = 1

N

∑N
i=1 ηi(t),

where ηi(t) denotes the noise on each individual electron.
The statistical characterization of η(N)(t) is straightforward.
As given by a linear superposition of Gaussian fluctuations,
η(N)(t) has also Gaussian-noise characteristics. From the
zero-mean values of the monoelectronic stochastic forces,
one trivially obtains

〈
η(N)(t)

〉 = 0. Additionally, assuming that
the individual random forces are completely uncorrelated,
i.e.,

〈
ηi(t)ηj (t ′)

〉 = 2Dδij δ(t − t ′), i,j = 1, . . . ,N , we obtain〈
η(N)(t)η(N)(t ′)

〉 = 2 D
N

δ(t − t ′) ≡ 2D(N)δ(t − t ′). Hence, the
individual fluctuations average to a weaker noise in the
collective coordinate. (In order to present our arguments in
simple terms, we have considered here the white-noise limit.
The generalization to generic broadband noise is direct.) It
follows that the main novelties in the description of Z with
respect to the previously described monoelectronic scenario
are the presence of a larger damping coefficient and the
presence of a reduced noise strength. Our analysis will focus
on the implications of those differential characteristics for
the scaling of the phase-flip rate with N . Since, as shown
by the study of the one-electron oscillator, the mechanism of
stochastic phase switching does not essentially depend on the
anharmonicity of the potential, we can neglect the nonlinear
terms in the analysis. Accordingly, we consider the evolution
of Z as approximated by

Z̈ + γ (N)
z Ż + ω2

z [1 + h cos ωdt] Z = η(N)(t). (4)

Given that Eq. (4) has the same structure as Eq. (1),
the methodology previously presented for the study of the
monoelectronic system can also be used here. Indeed, this
parallelism allows us to extrapolate some of the previous
results. In particular, the flip rate, which, for a one-electron
system was found to scale as exp(−E/D), can be expected
now to have the form exp(−E(N)/D(N)), where D(N) is the
(effective) strength of η(N)(t) and E(N) is the activation energy
for Z. Crucial to the analysis is to take into account that
both E(N) and D(N) depend on N . Actually, as pointed out
in the above application of our approach, the activation energy
increases with the damping constant. Therefore, as the friction
coefficient is γ (N)

z = Nγz, we conclude that E(N) increases
with N and, consequently, that the phase flips are hindered as N

grows. An additional contribution to the inhibition of the phase
switching is rooted in the curbed fluctuations in the center-of-
mass coordinate: the decrease of the effective noise strength
D(N) = D/N with N contributes also to the hindrance of the
phase jumps for growing electron number. We can go further
in the analytical characterization of the dependence of �(N)

on N : by combining the equations �(N) ∼ exp(−E(N)/D(N)),

E(N) = C1 + C2Nγz, and D(N) = D/N , we obtain

�(N) ∼ exp[−N (C1 + C2Nγz)/D]. (5)

This expression is the key element in our explanation of the
observed scaling of the jump rate. The experimental procedure
reported in Ref. [4] included different variations of the system
parameters. Especially revealing of the mechanism responsible
for the jump inhibition is the analysis of the experimental
run corresponding to a simultaneous variation of N and γz

with constant Nγz. Indeed, the observed decrease of the
jump rate with N points to a mechanism not linked to the
friction term γ (N)

z , which, in fact, is kept constant in this run.
From our approach, we can conjecture that, in this case, it
is the decrease of the effective noise strength that leads to
the detected slowdown of the phase flips. More specifically,
the measured linear dependence of the exponent of �(N)

on N can be traced to the term NC1/D in our analytical
characterization of �(N) given by Eq. (5). Additional insight is
provided by the experimental results corresponding to a mere
variation of N , with constant γz. In this case, both, a reduction
in D(N) and an increase of γ (N)

z take place. Since, again,
an approximately linear dependence of the exponent of �(N)

on N was found, we can conjecture that, in the regime studied
in the experiments, the reduced noise strength is the dominant
element in the mechanism responsible for the inhibition of
the phase switching. Following the report of the experimental
findings, our discussion in this section has focused on the
persistence of the stochastic flips in the polyelectronic system.
For a more complete description of the dynamics of the
electronic cloud, the access to additional experimental data
is necessary.

V. CONCLUDING REMARKS

Our description of the stochastic dynamics of the one-
electron Penning-trap oscillator explains the experimental
findings of Ref. [4]. The physical mechanism responsible for
the observed random phase switching has been traced to the
combination of a driving field at parametric resonance and
broadband noise entering additively the axial-mode equation.
The driving field allows the strong localization of the phase
around two equilibrium positions and, therefore, the abrupt
character of the changes in phase. Additionally, the fluctuations
establish a link between the amplitude and the phase which
results in a significant enhancement of the effects of noise
on the phase for small values of the amplitude. Our analysis
uncovers the generality of this mechanism and, therefore,
its relevance to different contexts. Indeed, we have reported
its previous characterization in studies on the appearance of
selfexcited nonlinear oscillations in electronic devices [17].
Our work proves that the detected characteristics of the system
response do not specifically depend on the presence of residual
colored noise in the practical setup. In fact, it has been shown
that the emergence of the observed features can be simply
traced to broadband fluctuations. Finally, from a generalization
of our approach, we have shown that the observed attenuation
of the phase flips in the dynamics of a cloud of N electrons can
be explained as rooted in the effective reduction of the noise
strength in the center-of-mass coordinate.
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