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Pressure-induced phase matching in high-order harmonic generation
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We present an alternative explanation of the high-order-harmonic-generation experimental results published
recently by Seres et al. [Nature Phys. 6, 455 (2010)]. We show that the physical interpretation can be
comprehensively done in the frame of classical theory of high-order harmonic generation without referring to a
parametric effect in the XUV domain. The experimental conditions explored by Seres et al. indeed correspond
to the case of long-pulse, low-infrared-energy laser beams for which tight focusing is necessary to reach the
minimum intensity required for high atomic response. The positive atomic dispersion can compensate for the
Gouy phase and explains the behavior of the experimental variation of the harmonic signal presented. We will
show that our interpretation explains not only the global behavior of the curves but also the second-order variation
of the signal as a function of experimental parameters.
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I. INTRODUCTION

Due to its wide field of application, high-order harmonic
source obtained from the interaction between an intense laser
pulse and a rare gas has been extensively studied for the
last 20 years. Since the first experimental demonstration
at the end of the 1980s [1], the conversion efficiency has
considerably progressed from about 10−9 [1] in 1990, to 10−8

in 1993 [2], 10−7 in 1995 [3], and 5 × 10−6 in 1998 [4]; the
evolution in time is exponential until 2000 with 10−5 [5]. These
advances were due to a better theoretical understanding of both
the atomic response [6] and the phase-matching conditions
[7,8]. Meanwhile, development and technical progress on
high-energy short-pulse-duration [9] laser systems have been
done.The most efficient high-order harmonic generation takes
place in experimental conditions where the focusing is quite
loose, the pressure relatively low, and the laser intensity quite
high [10,11].

Historically, the use of low pump energy, long-pulse-
duration lasers was progressively withdrawn because it re-
quired quite tight focusing and the conversion efficiency
was lower than for loose focusing. The high-order harmonic
generation in those conditions had not been extensively studied
for several years. Recently published experimental results [12]
provide a wide range of new data obtained in those conditions
with high dynamics detectors. We will show that classical
phase-matching analysis can provide a physical interpretation
of what is observed experimentally [13]. We analyze more
specifically the influence of gas pressure, harmonic order, max-
imum laser intensity, and focusing conditions on high-order
harmonic generation. The quite low conversion efficiency
obtained by Seres et al. [12] of near 10−7 is also compatible
with our analysis.

II. OVERVIEW OF THE BASIC THEORY
OF HIGH-ORDER HARMONICS

High-order harmonic generation (HHG) is a highly nonlin-
ear process induced in rare gases by an intense laser field with
ultrashort pulse duration: in the picosecond or femtosecond
regime. The intensity reached at focus, of the order of

1014 W/cm2, is so high that the laser field is comparable to
the electric field between the core and the electron. Twice in
an optical cycle, tunnel ionization can occur; afterward the
quasifree electron is accelerated in the laser electric field. If
the laser polarization is strictly linear, there can be a recollision
between the electron and the parent ion when the electric field
changes sign. During the radiative recombination, a harmonic
photon is produced with an energy corresponding to the sum of
the kinetic energy acquired in the laser field and the ionization
potential of the atom. This three-step model was first analyzed
in 1992 [14,15] using a semiclassical approach and afterward
through a full quantum understanding in 1994 in the frame of
the strong field approximation (SFA) [6]. This model allows
the quantitative prediction of both harmonic dipole phase and
amplitude as a function of the laser intensity. It explains the
quantum origin of the two quantum paths with their different
phases connected to the time spent in the continuum by the
electron before it recollides with its parent ion.

The macroscopic growth of the harmonic signal along the
propagation in the generative medium is the result of phase-
matching considerations. For a given order q, the instantaneous
harmonic signal SHHG(t) at the output of a medium with length
lmed depends on the coherence length lcoh and on the absorption
length labs following the law [16]

SHHG(t) ∝ 4l2
absP

2Aq(t)2

1 + 4π2
[
l2
abs

/
lcoh(t)2

]

×
[

1 + e
− lmed

labs − 2 cos

(
π

lmed

lcoh(t)

)
e
− lmed

2labs

]
, (1)

where P is the gas pressure and Aq is the individual harmonic
dipole amplitude. Following the results presented by Lewen-
stein [6], Aq strongly depends on time through its variation
with laser intensity. The laser intensity is compared with Icutoff ,
the minimum intensity required for a given harmonic to be
efficiently generated. If I > Icutoff then Aq scales as ( I

Icutoff
)4.6,

otherwise it is taken as ( I
Icutoff

)10.6, which means logically
almost zero [17]. The second dependence of Aq comes from the
fact that only nonionized atoms are considered for harmonic
generation: Aq thus scales with the proportion of neutral atoms.
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Lengths lmed and labs are constant in time, but the coherence
length can rapidly change within the infrared pulse duration
because of the ionization process that influences the electronic
and atomic dispersions. It is given by lcoh = π

|δk| , where the
wave-vector mismatch δk between infrared and XUV fields is
(the notation is the same as for Ref. [5]):

δk = q(δkat + δkelec + δkGouy) + δkφat , (2)

where δkGouy is known as the Gouy phase gradient and depends
on laser focusing conditions, and δkφat is the atomic phase
gradient and depends on the quantum path. Within the pulse
duration, the maximum harmonic emission is obtained as
a compromise between phase-matching considerations and
atomic response. High atomic response would require high
laser intensity but at the same time high intensity generates
a high ionization level that damages phase matching. Phase
matching is reached when the coherence length is greater
than the medium length so that no destructive interferences of
the coherent signal can occur between two harmonic dipoles
with π phase difference [16]. The absorption limit is obtained
when the medium length is also longer than a few times
the absorption length. When absorption-limited generation
is reached, the two other ways of still increasing the signal
is to increase the laser intensity at which the perfect phase
matching occurs [5] or increase the transverse dimension of
the beam [10,11,18]: this is the so-called loose focusing
technique obtained when the Rayleigh range is much longer
than the medium length.

III. DESCRIPTION OF THE 1D MODEL

A one-dimensional (1D) numerical code, described in
detail in Ref. [5], has been written to analyze the high-order
harmonic generation. This code was adapted to study the case
of low intensity, tight focusing, and high gas pressure recently
published in Fig. 2 of Ref. [12].

The harmonic signal from H31 to H55 was calculated using
the same parameters as in [12]: argon gas pressure up to
2 bars, laser intensity of (1–5)×1014 W/cm2, temporal Gaus-
sian envelope with duration up to 350 fs, 1050-nm wavelength,
z0 = 5 mm Rayleigh range, medium length lmed = 2 mm, and
medium entrance located at zcell = 2 mm from the laser focal
position.

Table I presents the absorption lengths (in mm) for argon for
harmonic 31 to harmonic 55 for a pressure of 100 mbar [19].
Note also that it scales inversely with pressure.

The atomic dispersion for a 1050-nm laser wavelength in
argon is given by

δkat[mm−1] = 1.66 × 10−3 × P [mbar](1 − τ ), (3)

where τ is the ionization degree calculated from the Ammosov,
Delone and Krainov rates [20] and solving the differential
system of atomic and argon ion species.

Electronic dispersion depends on the infrared laser wave-
length according to the plasma dispersion law:

δkelec = ω

c
δnelec = −ω

c

ne

2nc

, (4)

with

ne = τP

kBT
, (5)

and

nc = ω2me

µ0c2e2
, (6)

δkelec[mm−1] = −λP [mbar](0.1τµ0e
2)

4πmekBT
. (7)

For λ = 1050 nm it is given by

δkelec[mm−1] = −0.07366 × τP [mbar] , (8)

The atomic phase gradient plays a role in phase matching;
the corresponding wave-vector mismatch is expressed for both
the first and the second quantum paths using

δkφat = −α∇I, (9)

with α = 2 × 10−14 cm2/W for the first quantum path and
α = 22 × 10−14 cm2/W for the second one [21].

The calculation of the time dependence of the above
wave-vector mismatches allows us to determine the value
of lcoh(t) and then the instantaneous value of the harmonic
flux from Eq. (1). The total harmonic signal is integrated
over the whole pulse duration separately for quantum
paths 1 and 2, then the total signal is summed for both
contributions [21].

IV. RESULTS OBTAINED FROM THE 1D CODE

Figures 1 and 2 present in semilogarithmic scale the
time-integrated harmonic signals for H31 and H55, respec-
tively, as a function of the gas pressure for different laser
intensities.

The laser intensities are 1, 1.5, and 2 ×1014 W/cm2. For
the sake of comparison, the curve marked with ∗ corresponds
to a quadratic growth. As a first conclusion, the theoretical
predictions obtained using a 1D model are in qualitative
agreement with the experimental data in [12]. Figures 1
and 2 clearly exhibit the harmonic signal increase over
four orders of magnitude at low pressures below 100 mbar
observed experimentally. Furthermore, they reproduce the
two different behaviors observed at high pressures in [12]:
signal saturation for high intensities and decrease for low
intensities. An important point is that the saturation of the
signal with pressure starts almost for the same pressure for all
the harmonic orders, which shows that this effect is not due to

TABLE I. Absorption lengths (in mm) in argon for harmonic 31 to harmonic 55 and a pressure of 100 mbar.

Order 31 33 35 37 39 41 43 45 47 49 51 53 55

labs 0.23 0.60 1.34 2.72 4.03 4.45 4.65 4.49 4.25 3.98 3.68 3.40 3.18

063405-2



PRESSURE-INDUCED PHASE MATCHING IN HIGH-ORDER . . . PHYSICAL REVIEW A 83, 063405 (2011)

0 100 200 300 400 500
10-11

10-10

10-9

10-8

10-7

H 31

1014 W/cm2

1.5x1014 W/cm2

2x1014 W/cm2

QuadraticH
ar

m
o

n
ic

si
g

n
al

(a
rb

.u
n

it
s)

Argon pressure (mbar)

FIG. 1. (Color online) Signal from H31 in argon as a function
of pressure for three laser intensities. A pure quadratic law is also
indicated.

reabsorption, since absorption strongly depends on harmonic
order (see Table I). The 1D simulations also reproduce the
curve inflexion, the so-called shoulder, observed only for a
high-order harmonic (H55) at low intensity for a pressure
around 100 mbar (see Fig. 2(a) of Ref. [12]). The expla-
nation of these characteristics in the following paragraphs,
including second-order effects such as the shoulders, will
show that our model provides an accurate understanding of
the high-order-harmonic-generation processes involved in the
experiment.

V. DEPENDENCE OF THE COHERENCE LENGTH
WITH THE PRESSURE AT LOW INTENSITY

At low laser intensity, i.e., when the ionization rate
in the medium and the atomic phase gradient can be
neglected, the coherence length can be analytically cal-
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FIG. 2. (Color online) Same as Fig. 1, but for the signal from H55
in argon.

culated as a function of pressure for a 1050-nm pump
wavelength:

lcoh(τ = 0) ≈ π/q

|δkGouy + δkat|
≈ π/q∣∣ 1

z0+z2
cell/z0

− P × 1.66 × 10−3
∣∣

≈ 600
π/q

|Popt − P | . (10)

lcoh increases up to the optimum pressure for which the
atomic dispersion exactly compensates the Gouy phase gra-
dient. The coherence length becomes theoretically infinite
for

Popt = 600

z0 + z2
cell
z0

. (11)

This optimum pressure is obviously independent of the
harmonic order q, but inversely scales with the Rayleigh range:
the shorter the focusing, the greater the effect. For the lowest
intensity (1014 W/cm2), thus low ionization (τ ∼ 0), Fig. 2
shows the evolution of lcoh of H31 as a function of pressure for
z0 = 5 mm and zcell = 2 mm.

When the gas remains neutral during the whole infrared
pulse duration, the coherence length remains constant in
time and the maximum of the harmonic emission occurs at
the maximum of the infrared laser intensity. The signal can
be analytically calculated as a function of gas pressure by
including Eq. (10) into Eq. (1). The result is presented in
Fig. 3 together with a pure quadratic law. We conclude that the
fast growth of the high-order harmonic signal at low pressures
is explained by the coherence length increase with pressure
in addition to the quadratic growth of the atomic response
with gas density [the P 2 term in Eq. (1)]. Note that this is
valid for any harmonic order, because Popt is independent of
q. The signal decrease after the maximum is also due to the
coherence length decrease with pressure after the maximum
value. These results compare well with Fig. 2(b) of Ref. [12].
Note that the experimental conditions, not only the high quality
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FIG. 3. (Color online) Analytical H31 signal as a function of
pressure (◦) as compared to pure quadratic increase (∗), the coherence
length evolution (in mm) is shown in full line.
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of the experimental setup but also the broad detection range of
Ref. [12], were very appropriate to seeing this strong increase
in coherence length with pressure, which was predicted as
early as 1999 [7].

This simple time-independent view only works for low
intensities. At higher laser intensity in order to get higher
harmonic orders, the ionization level in the medium at the
maximum of the laser pulse can reach a few percents (for
350-fs pulse duration, 1014 W/cm2 leads to 1% whereas
2 × 1014 W/cm2 leads to 80%). The phase-matching behavior
is then more complicated and connected to temporal effects as
we will see in the following.

VI. PHASE-MATCHING OPTIMIZATION
IN PRESENCE OF IONIZATION

A. Position of the problem

It is well known that the production of an efficient
atomic response for a high-order harmonic requires high laser
intensity as this is a highly nonlinear effect. Moreover a
minimum laser intensity is needed for a given harmonic to
be efficiently generated [15]. This laser intensity, called Icutoff ,
increases with the harmonic order and also corresponds to
some ionization degree in the medium, especially for long
pulse duration as in Ref. [12] (where the laser pulse duration
is 350 fs).

At a given ionization degree τ and considering only the first
quantum path for which the atomic phase is almost zero, the
coherence length becomes

lcoh(τ ) ≈ π/q

|δkGouy + δkat + δkelec|
≈ π/q∣∣ 1

z0+ z2
cell
z0

− 10−3P (1.66 − 73.66 × τ )
∣∣

≈ 600
π/q

|Popt(0) − P (1 − 44τ )| . (12)

The pressure that leads to the highest coherence length is now
given by

Popt(τ ) = 600(
z0 + z2

cell
z0

)
(1 − 44τ )

. (13)

The ionization rate reduces the positive effect of atomic
dispersion. As long as τ < 2%, the above phase-matching
analysis is still valid except that the value of Popt is in-
creased following Eq. (13). For τ larger than ≈2%, Popt

becomes negative and the atomic dispersion is no longer
able to compensate for the Gouy phase mismatch at the
maximum of the pulse. In the following we will study
the consequence of this, in the cases of high and low
pressures.

B. Behavior for pressures higher than the optimum

For pressures largely above the optimum, the sign of the
total δk in Eqs. (2) and (12) changes and the value of lcoh is
dominated by the dispersive term that becomes much larger
than the Gouy phase mismatch. If the laser intensity is high
enough, an amount of ionization close to τ = 2% optimizes
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FIG. 4. (Color online) H43 temporal evolution of both the
coherence length in mm and the harmonic signal in arbitrary units for
pressures of 150 and 250 mbar. The unlabeled curve represents the
infrared laser envelope, I = 2.1014 W/cm2.

the coherence length since the τ for which lcoh is infinite is
equal to 1

44 (1 − Popt(0)
P

). This amount increases with P up to the
τ = 2% limit and explains why the curves at high intensity
and high pressure from Fig. 2 in Ref. [12] do not decrease and
even still increase slowly: the higher the pressure, the higher
the laser intensity at which perfect phase matching occurs.
An illustration of this is provided in Fig. 4 which shows both
the temporal evolution of the coherence length and the H43
harmonic signal at two different pressures above the optimum
one, i.e., 150 and 250 mbar, and I = 2 × 1014 W/cm2. This
effect of course cannot take place at low intensities for which
τ remains zero all along the pulse and lcoh decreases as 1/P

[P > Popt(0)].

C. Behavior for pressures lower than the optimum

If the pressure is too low, that is, lower than Popt(0), there is
no value of ionization for which the infinite coherence length
can be reached. Moreover the coherence length decreases with
τ . Efficient harmonic generation then occurs at the beginning
of the rising front of the pulse for which τ is as low as possible.
In that case, high laser intensity is not compatible with good
phase matching.

This was observed at a fixed laser intensity by comparing
different harmonic orders: in Fig. 2(b) of Ref. [12] the
exponential slope of the signal is much larger for a low-order
harmonic such as H31, which requires only a low intensity
to be generated, than for a much higher-order harmonic such
as H43.

Another consequence is that the signal increase with the
laser intensity for a given harmonic will be small. A striking
illustration of this is the absolute calibration of the harmonic
signal for H31 in Fig. 2 from Ref. [12]: whereas the optimized
signal in pressure reaches 0.5 nJ per pulse at 1.1 × 1014 W/cm2

and even 2 nJ for 1.5 × 1014 W/cm2, it falls down to 6 × 10−2

nJ at 4 × 1014 W/cm2.
The above analysis clearly shows why the atomic dispersion

compensation of the Gouy phase mismatch is appropriate
for low-intensity lasers and quite tight focusing. When phase
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matching at high intensity is desired, the only way to reach it
is to reduce the Gouy phase mismatch, which is the principle
of the “loose focusing” phase matching. As explained more in
detail in Refs. [5,18], when the Gouy phase mismatch becomes
almost negligible, phase matching is reached when the atomic
and electronic dispersions compensate for each other: that
corresponds to a precise ionization rate (here τ = 2%) but
is independent of gas pressure.

VII. DESTRUCTIVE INTERFERENCE BETWEEN THE
HARMONIC DIPOLES: ORIGIN OF THE SHOULDERS

A. Low-intensity case

As can be observed around 100 mbar in Fig. 1 for H55,
the harmonic signal growth presents a slight inflexion of the
curve arising, which we call the shoulder in the following.
This is also observed experimentally in the results presented
in Fig. 2 from Ref. [12]. These shoulders occur for a large
number of harmonic orders, and are much more pronounced at
low intensities. It can be explained by destructive interference
within the medium between harmonic dipoles exactly sepa-
rated by lcoh [22]. This is clearly visible in the cosine term in
Eq. (1). When increasing the pressure, the coherence length
increases [Eq. (10)] but reaches some values for which the
medium length exactly corresponds to even multiples of it:
this is mainly given by lcoh = 1 mm in the experimental case
for which lmed = 2 mm. The signal then stops its rapid growth
with pressure until the pressure increase allows the coherence
length to be far from this destructive value. Equation (6) shows
that the 1/q dependence of lcoh with harmonic order predicts
a slightly higher pressure for higher q to reach 1 mm. This
effect is clearly visible on the data in Fig. 2(a) of Ref. [12].

B. High-intensity case

When the intensity is higher, the time dependence of the
coherence length plays a key role but the interpretation in terms
of destructive interference is still the same. As can be seen in
Fig. 5, which shows both the coherence length and harmonic
signal evolution in time for three pressures around the shoulder,
the value of the coherence length before ionization is higher
than 1 mm, but through the ionization process (in our case
the intensity reaches 1014 W/cm2 and τ = 1.2%), it goes
through this destructive value during the laser pulse. The most
negative effect will occur when the 1 mm value is reached at
the maximum of the pulse, case (b) for which the pressure is
85 mbar.

Looking at Eq. (12), it is then easy to understand why
the shoulder occurs for higher pressures at higher intensities,
since the value of the coherence length must be larger than
one at the beginning of the pulse. This is clearly visible in
Fig. 2 of Ref. [12]: shoulders occur around 0.1 bar for I =
1.5 × 1014 W/cm2 and are close to 0.2 bar for I = 1.5 × 1014

W/cm2.
At even higher intensities and higher pressures, the shoulder

effect almost disappears since fringes are blurred by time
integration: the coherence length reaches destructive values
too fast or too often in the pulse.
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FIG. 5. (Color online) H55 temporal evolution of both the
coherence length in mm (circles) and the harmonic signal in arbitrary
units (triangles) for three pressures. The black curve represents the
infrared laser envelope, I = 1014 W/cm2.

VIII. CONCLUSION

Using a analytical 1D time-dependent model of high-order
harmonic generation, we have explained the interplaying roles
of gas pressure, focusing geometry, and laser intensity on phase
matching in a range of parameters relevant to recent exper-
imental observations [12] in argon. Without any adjustable
parameter, our model reproduces the more than quadratic
growth of the harmonic signal with pressure. Moreover, we
explain as a function of harmonic order and laser intensity
the different ways the curves saturate, which was not even
mentioned nor numerically reproduced by Seres et al. [12].
Our model shows the origin of curve inflexion at low pressures
and how it behaves with harmonic order and laser intensity,
the x-ray parametric amplification model proposed by Seres
does not.

Our 1D model is unable to quantitatively predict the har-
monic spectra and spatial distribution. However, a hypothesis
can be proposed to explain the experimental results described
in [12]. A very low divergence beam plus reduced spectral
width were observed for the high level of harmonic signal at
optimum pressure, whereas they were both large for the low
level signal. This case corresponds to what the authors call a
seed beam and which is harmonic generation at too low of a
pressure. We think this difference can be explained in terms
of the transition between phase matching from the first to the
second quantum path [22,23]. It has indeed been well known
since 1995 [24] that the second quantum path leads to a larger
divergence and a much larger spectrum than the first one, both
on the blue and the red sides [25], through the atomic phase
derivative in time.

Concerning the specific case of helium, and despite the low
atomic dispersion of this gas, our model also predicts a rapid
increase of the signal with pressure at the beginning of the
curve, but it fails to explain the position of the maximum for
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the different harmonic orders. Our interpretation is that three-
dimensional effects such as strong beam defocusing are occur-
ring, since the laser intensity is as high as 2 × 1016 W/cm2.
A more refined code with the time-dependent Schrödinger
equation (TDSE) and three-dimensional propagation of the
laser in a strongly ionized medium would probably be able to
reproduce the experimental curves.

An important point concerning the experimental results
from Ref. [12] is whether or not they provide a signature
of self-stimulated harmonic emission as mentioned by Seres

et al. Our conclusion based on the very good agreement
between our model and the experimental data is that any
self-stimulated contribution is negligible in the experimental
conditions of [12].
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T. Brabec, and F. Krausz, Phys. Rev. Lett. 83, 722 (1999).

[10] J.-F. Hergott, M. Kovacev, H. Merdji, C. Hubert, Y. Mairesse,
E. Jean, P. Breger, P. Agostini, B. Carré, and P. Salieres, Phys.
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S. Sebban, G. Grillon, F. Augé, D. Hulin, and Ph. Balcou, Eur.
Phys. J. D 21, 353 (2002).

[19] The Center for X-Ray Optics website: [www.cxro.lbl.gov].
[20] N. P. Delone and V. P. Krainov, Phys. Usp. 41, 469

(1998).
[21] Ph. Balcou, A. S. Dederichs, M. B. Gaarde, and A. L’Huillier,

J. Phys. B 32, 2973 (1999).
[22] S. Kazamias, D. Douillet, C. Valentin, F. Weihe, F. Augé,

Th. Lefrou, G. Grillon, S. Sebban, and Ph. Balcou, Phys. Rev.
A 68, 033819 (2003).

[23] Ph. Balcou, P. Salières, A. L’Huillier, and M. Lewenstein, Phys.
Rev. A 55, 3204 (1997).

[24] P. Salieres, A. L’Huillier, and M. Lewenstein, Phys. Rev. Lett.
74, 3776 (1995).

[25] D. H. Reitze et al., Opt. Lett. 29, 86 (2004).

063405-6

http://dx.doi.org/10.1364/JOSAB.7.000754
http://dx.doi.org/10.1103/PhysRevLett.70.774
http://dx.doi.org/10.1103/PhysRevA.51.R902
http://dx.doi.org/10.1088/0953-4075/31/5/014
http://dx.doi.org/10.1103/PhysRevLett.90.193901
http://dx.doi.org/10.1103/PhysRevLett.90.193901
http://dx.doi.org/10.1103/PhysRevA.49.2117
http://dx.doi.org/10.1103/PhysRevLett.83.2187
http://dx.doi.org/10.1126/science.280.5368.1412
http://dx.doi.org/10.1103/PhysRevLett.83.722
http://dx.doi.org/10.1103/PhysRevA.66.021801
http://dx.doi.org/10.1103/PhysRevA.66.021801
http://dx.doi.org/10.1103/PhysRevA.62.063802
http://dx.doi.org/10.1103/PhysRevA.62.063802
http://dx.doi.org/10.1038/nphys1638
http://dx.doi.org/10.1038/nphys1638
http://dx.doi.org/10.1038/nphys1826
http://dx.doi.org/10.1038/nphys1826
http://dx.doi.org/10.1103/PhysRevLett.71.1994
http://dx.doi.org/10.1103/PhysRevLett.68.3535
http://dx.doi.org/10.1103/PhysRevLett.68.3535
http://dx.doi.org/10.1103/PhysRevLett.82.1668
http://dx.doi.org/10.1103/PhysRevLett.82.1668
http://dx.doi.org/10.1140/epjd/e2002-00193-0
http://dx.doi.org/10.1140/epjd/e2002-00193-0
http://www.cxro.lbl.gov
http://dx.doi.org/10.1070/PU1998v041n05ABEH000393
http://dx.doi.org/10.1070/PU1998v041n05ABEH000393
http://dx.doi.org/10.1088/0953-4075/32/12/315
http://dx.doi.org/10.1103/PhysRevA.68.033819
http://dx.doi.org/10.1103/PhysRevA.68.033819
http://dx.doi.org/10.1103/PhysRevA.55.3204
http://dx.doi.org/10.1103/PhysRevA.55.3204
http://dx.doi.org/10.1103/PhysRevLett.74.3776
http://dx.doi.org/10.1103/PhysRevLett.74.3776
http://dx.doi.org/10.1364/OL.29.000086

