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Coherent control of ultracold 85Rb trap-loss collisions with nonlinearly frequency-chirped light
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We present results on coherent control of ultracold trap-loss collisions using 40-ns pulses of nonlinearly
frequency-chirped light. The chirps, either positive or negative, sweep ∼1 GHz in 100 ns and are centered at
various detunings below the D2 line of 85Rb. At each center detuning, we compare the collisional rate constant
β for chirps that are linear in time, concave-down, and concave-up. For positive chirps, we find that β generally
depends very little on the shape of the chirp. For negative chirps, however, we find that β can be enhanced by
up to 50(20)% for the case of the concave-down shape. This occurs at detunings where the evolution of the
wave packet is expected to be coherent. An enhancement at these detunings is also seen in quantum-mechanical
simulations of the collisional process.
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I. INTRODUCTION

In recent years there has been increasing interest in applying
the techniques of coherent control to ultracold systems.
Coherent control [1,2] generally involves the use of shaped
laser pulses on ultrafast time scales to control internal degrees
of freedom, while ultracold physics [3] deals with external
degrees of freedom at sub-millikelvin temperatures. One topic
where these fields can productively overlap is the formation of
ultracold molecules by coherently controlled photoassociation
of ultracold atoms [4]. Since ultracold molecules [5–8] have
many potential applications in quantum information, ultracold
chemistry, dipolar systems, and precision spectroscopy, it
is important to develop techniques for their efficient and
controlled production. In the present work we investigate
a process closely related to photoassociation: long-range
excited-state collisions between ultracold atoms. In particular,
we demonstrate an improved coherent control of these inelastic
collisions using shaped frequency chirps on the nanosecond
time scale. This is relevant to photoassociative molecule
formation because the bottleneck for this process is often the
paucity of atom pairs at the desired internuclear separation R.

Although there has been much theoretical work aimed at
coherently controlled photoassociative formation of ultracold
molecules [9–21], initial experiments demonstrated only the
coherent control of the photodestruction of ultracold molecules
using shaped [22] and chirped [23] ultrafast pulses. Subsequent
experiments [24–28] observed coherent transients in excited-
state molecules photoassociated with femtosecond pulses and
there was some evidence for the production of ground-state
molecules [25]. In contrast, our approach is to control the
dynamics of ultracold atoms at large R using nanosecond-
time-scale frequency-chirped pulses. Coherent control of these
long-range interactions, and the subsequent evolution of the
atom pair to short range, may allow improved photoassociative
formation of ultracold molecules. In our previous work
we demonstrated that such linearly chirped pulses can

efficiently excite Rb atom pairs over a wide range of R,
leading to ultracold trap-loss collisions [29]. Multiple-pulse
effects were also investigated. We found that the rate of
collisions induced by a given pulse can be enhanced or
suppressed by a preceding pulse, depending on the delay [30].
In work most relevant to that described here, we demonstrated
coherent control of these ultracold trap-loss collisions [31].
Specifically, we observed significantly different behaviors for
positive and negative linear chirps. The negative chirp is of
particular interest because its radius for resonant excitation
to the attractive molecular potential moves inward with time,
in the same direction as the excited-state wave packet. This
allows multiple interactions between the chirped light and
the excited atom pair [see Fig. 1(b)]. A possible outcome
is coherent collision blocking, where the light coherently
de-excites the wave packet at long range, thereby suppressing
the rate of trap-loss collisions. The experiments described here
extend our earlier work by exerting a further degree of control
over the collisional process. Our previous control parameter
was simply the sign of the linear chirp. Here we actually
change the shape of the chirp by making it nonlinear. In the
regime where coherent collision blocking takes place, we find
a significant dependence on the details of this nonlinearity.
Quantum mechanical simulations of the collisional process
show a similar dependence.

The physics of the trap-loss collisions induced by
frequency-chirped light is shown schematically in Fig. 1. For
a given detuning � (� < 0) below the atomic resonance,
the photon energy matches the energy difference between the
ground-state molecular potential, assumed flat, and the long-
range attractive excited-state potential −C3/R

3 at the Condon
radius RC = [−C3/(h̄�)]1/3. As the laser frequency is chirped,
this excitation radius changes with time, sweeping inward
(outward) for a negative (positive) chirp. After excitation, the
excited-state wave packet quickly accelerates inward where
it can gain sufficient kinetic energy (e.g., by fine-structure
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FIG. 1. Ultracold collisions induced by frequency-chirped light. The ground- and excited-state potentials are shown as well as the excited-
state wave packet and the region of R swept over by the chirp. (a) Positive chirp. The excitation radius (upward arrow) moves outward with
time, while the excited-state wave packet moves inward. (b) Negative chirp. The excitation radius moves inward in time, following the excited
wave-packet trajectory, leading to multiple interactions, which can return a portion of the wave packet to the ground state (downward arrow).

predissociation from a short-range curve crossing [32]) to
escape the trap. The rate constant β for these trap-loss
collisions depends not only on the center frequency of the
chirped pulse �p, but also on the direction of the chirp [31], and
as we show below, on the nonlinearity of the frequency chirp.
The dependence on chirp direction arises from the fundamental
asymmetry in the system: while the excitation radius can move
either inward or outward with time, the excited-state wave
packet always moves inward. Therefore the negative chirp can
provide multiple interactions, while the positive chirp interacts
only once. The dependence on nonlinearity arises from the
details of the excited-state wave-packet evolution.

II. EXPERIMENT

We measure the collisional trap-loss rate constant β via the
density-dependent decay of a sample of ultracold (∼50 µK)
85Rb atoms in a magneto-optical trap (MOT) [29]. Excited-
state trap-loss collisions are induced by 40-ns full-width-at-
half-maximum (FWHM) frequency-chirped Gaussian pulses.
The MOT light is turned off for 150 µs, during which time a
number (typically 60) of frequency-chirped pulses with peak
intensity I = 67 W/cm2 illuminates the atoms at a repetition
rate of 1 MHz. This 1-µs delay between pulses ensures
that each chirped pulse acts independently [30]. The overall
sequence is repeated every 722 µs. The MOT repump light
remains on throughout the cycle to correct for any optical
pumping induced by the frequency-chirped light.

The frequency-chirped light, which sweeps approximately
1 GHz in 100 ns, is produced by rapidly modulating the current
of an external-cavity diode laser (ECDL) with a 240-MHz
arbitrary wave-form generator (Tektronix AFG 3252) [33].
The output of the ECDL injection-locks a free-running diode
laser, and an acousto-optical modulator selects out the desired
portion of the frequency chirp. Smoothed interpolations of the
nonlinear frequency chirps, extracted from optical heterodyne
measurements, are shown in Fig. 2. We restrict the shaping
of the nonlinear chirps (labeled as concave-down, concave-up,

and linear, based on the shapes of the respective frequency
plots) to the duration corresponding to the 40-ns FWHM
of the Gaussian pulse, which is centered at 40 ns (60 ns)
during the negative (positive) chirp. This ensures that the
various nonlinear chirps sweep over the same effective chirp
range. Furthermore, the frequency chirps are tailored such
that their slopes always remain either negative or positive.
The maximum frequency difference between concave-down
and concave-up chirps is ∼400 MHz. This occurs at the peak
intensity of the pulse.

FIG. 2. (Color online) Smoothed interpolations of the nonlinear
frequency chirps (concave-down, concave-up, and linear) extracted
from optical heterodyne measurements for both (a) negative and (b)
positive chirps. The frequencies are relative to the centers of the
linear chirps. The chirps are shaped over an interval corresponding to
the 40-ns FWHM of the Gaussian pulse used to select out the chirp.
During this time, the slope is <0 for negative chirps or >0 for positive
chirps, with a frequency difference of ∼400 MHz between concave-
down and -up chirps at the peak intensity of the pulse (indicated by
the arrow).
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FIG. 3. (Color online) (a) β(�p) for concave-down, concave-up,
and linear negative chirps. In the region of �p where coherent
collision blocking is important, we find a dependence of β on the
details of the nonlinearity of the negative chirp. In particular, the
negative concave-down chirp yields a higher β than those of the linear
and concave-up negative chirps for �p/(2π ) = −750 MHz (circled).
(b) β(�p) for concave-down, concave-up, and linear positive chirps.
We find no significant dependence of β on the nonlinearity, except
possibly at −950 MHz. This is consistent with the fact that the
excited-state wave packet moves inward on the attractive potential
while the Condon radius associated with the frequency chirp sweeps
outward.

III. RESULTS AND ANALYSIS

A. Experimental results

We measure β as a function of the center detuning �p

(with respect to the F = 3 → F ′ = 4 transition) of our
frequency-chirped pulse in the region of detunings where
coherent collision blocking takes place. Our results comparing
the various nonlinear negative chirps are shown in Fig. 3(a).
As can be seen from the data, there is a dependence of
β on the nonlinearity of the negative chirp. We find that
the concave-down negative chirp yields a value of β that is
50(20)% larger that those of the linear and concave-up chirps at
�p/(2π ) = −750 MHz. A similar behavior is seen at �p/(2π )
= −950 MHz. This difference is not due simply to the fact that
the frequency at which the pulse intensity peaks is different for
the various chirp shapes. The linear and concave-up negative
chirps yield similar values of β, supporting the idea that the
details of the frequency chirp shape are important. Since
coherent collision blocking is important in this region, this
is a demonstration of the coherent control of the collisional
process through shaping of the frequency chirp. We should not
be surprised that our simple shaping does not yield as large a
difference (a factor of 2.3) in β as is seen when comparing the
positive and negative linear chirps at �p/(2π ) = −750 MHz,
since reversing the sign of the chirp is a more extreme change
than the concavity added to the negative chirps.

At �p/(2π ) = −550 MHz, we believe that incoherent flux
enhancement starts to become more important, resulting in an

increase of β. This flux enhancement is due to spontaneous
emission, followed by reexcitation at shorter range, during
the chirp. It was previously observed, in both the data and in
classical Monte Carlo simulations, for similar detunings [31].

We compare the above results to those of the shaped
positive chirps, which are shown in Fig. 3(b). As can be seen
from the data, as expected, we find no significant difference
in β due to shaping the positive chirps, except possibly at
�p/(2π ) = −950 MHz. Again, this is because the excitation
(Condon) radius associated with the positive chirp sweeps
away from the evolving excited-state wave packet. This is
important because it verifies that the effective chirp range
seen by the atom pair is the same for positive concave-down,
concave-up, and linear chirps. Therefore we can confidently
say that the difference in β observed for negative chirps in
the region where coherent collision blocking takes place is
solely due to the details of the nonlinearity of the negative
chirp. The values of beta increase for less negative detunings,
because there are more atom pairs available for excitation at
the corresponding larger values of R.

Finally, we examine the effect of the nonlinearity of the
negative chirp on β for larger negative detunings. For this data
set, β is measured for concave-down and concave-up negative
chirps for −550 MHz � �p/(2π ) � −1550 MHz, as shown
in Fig. 4, where the data are scaled by 1.55 to match with
the data presented earlier. This scaling is consistent with the
fact that absolute values of β are uncertain within a factor
of ∼2 due to uncertainties in the atomic density calibration
which can vary from run to run. With this scaling, the two data
runs agree rather well for �p/(2π ) � −950 MHz. Again, we
see a difference in β for the two chirp shapes at �p/(2π ) =
−750 MHz: the negative concave-down chirp yields a larger
β than that of the negative concave-up chirp.

For �p/(2π ) < −950 MHz, we find that the concave-down
and concave-up negative chirps yield the same dependence of
β on �p. Specifically, values of β for the two chirp shapes
converge for �p/(2π ) < −950 MHz, and they both decrease
with larger negative values of �p. This same phenomenon
was observed in the data and simulations (both classical and
quantum mechanical) for positive and negative linear chirps
[31]. This is because the wave packet accelerates so quickly
on the steep potential that the negative frequency chirp cannot
“catch up” with it after the initial excitation. This mismatch of
time scales between the chirp and the internuclear dynamics
yields a rate of trap-loss collisions that is independent of the
sign of the chirp. For the same reason, the shaped chirps
used here yield the same collisional loss rates for large red
detunings. This is also further evidence that the effective chirp
range seen by the atom pair is the same for the concave-down
and concave-up chirps. Also, in agreement with our previous
observations for linear positive and negative chirps [31], β

decreases as the center detuning becomes more negative. This
is because the excitation is occurring at shorter range, where
fewer atom pairs are available.

B. Quantum-mechanical simulations

The theory behind the quantum-mechanical simulations
is described in detail in Ref. [31] and references therein,
and the results of the simulations for the present experiment
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FIG. 4. (Color online) β(�p) for concave-down and concave-up
negative chirps for large �p . An additional set of data was taken
for negative concave-down and concave-up chirps for −1550 MHz
� �p � −550 MHz (run 2) to determine the behavior of β at large red
detunings. When this data is multiplied by a factor of 1.55, it agrees
well with the nonlinear negative chirp data previously presented (run
1). For �p < −950 MHz, there is no difference in β(�p) between
negative concave-down and -up chirps. This is consistent with the fact
that the dynamics of the excited-state wave packet evolve too quickly
for the shaped negative chirps to follow. Multiple interactions are
thereby avoided.

(shown in Fig. 5) and their interpretation are described in more
detail in Ref. [34]. Briefly, the time-dependent Schrödinger
equation is solved numerically for the ground and excited
(0+

u ) internuclear radial wave functions of an atom pair in
the presence of the chirped laser pulse. The initial state is
assumed to be the zero-energy s-wave scattering state for
either the singlet or triplet ground state. Any excited-state
flux crossing a short-range (R = 100 a0) absorbing boundary
is assumed to give rise to an inelastic trap-loss collision.
Spontaneous emission is included as an artificial sink channel
for the excited state. The model therefore does not allow
for reexcitation following spontaneous emission (e.g., flux
enhancement) or incoherent high-field effects. The overall
trap-loss rate constant is taken as a weighted average over
the singlet and triplet ground states.

Focusing on the results of the quantum-mechanical simu-
lations for the nonlinear negative chirps first [Fig. 5(a)], we
see that at �p/(2π ) = −550 MHz, the various chirps yield
the same β, which is the case in the experiment. However,
flux enhancement is not included in the quantum-mechanical
simulations [34], and therefore β at −550 MHz is lower
than the values for �p/(2π ) � −750 MHz. At �p/(2π ) =
−750 MHz, βneg

down > β
neg
up � β

neg
lin for concave-down, concave-

up, and linear chirps, respectively, as is seen in the experiment.
From the dynamics provided by the quantum-mechanical
simulations [34], we see that a larger portion of the wave packet
created by the concave-down chirp is able to more quickly
accelerate on the excited-state potential than the wave packets
of the concave-up and linear chirps near the beginning of the
shaped portions of the chirps. It appears that this decreased

ability to match the excited-state wave-packet dynamics
may lead to a larger β for the concave-down chirp. For
�p/(2π ) = −950 MHz, the values of β for the various
chirp shapes begin to converge, although the trend seen at
−750 MHz is maintained.

The results of quantum-mechanical simulations for the
nonlinear positive chirps, shown in Fig 5(b), yield values of
β for the various chirp shapes that are similar at a given �p.
Therefore, there is little dependence of β on the details of the
nonlinearity of the positive chirp, as expected, and as seen in
the experiment. These results for the nonlinear positive chirps
are consistent with the fact that the excitation radius of the
positive chirp sweeps outward, away from the excited-state
wave-packet trajectory. As noted previously [31], we see that
the positive chirp generally gives larger values of β than the
negative chirp, both in the data (Fig. 3) and in the simulations
(Fig. 5). This is attributed to efficient adiabatic excitation, with
no further interactions, for the case of the positive chirp.

IV. CONCLUSION

We have shown experimental results that demonstrate
coherent control of atomic trap-loss collisions with nonlinearly
frequency-chirped light on the nanosecond time scale. In
particular, we find a dependence of the collisional loss
rate constant β on the details of the nonlinearity of the
negative chirp. For center detunings �p where coherent
collision blocking takes place, the concave-down negative
chirp yields higher values of β than those of the concave-up
and linear negative chirps. For more negative �p, which
corresponds to excitation at shorter range, β for the negative
chirp becomes independent of the nonlinearity because the
excited-state wave function accelerates more rapidly on the
steep attractive potential. In general, for positive chirps we
find no significant dependence of β on the nonlinearity. Our
experimental results are supported by quantum-mechanical

FIG. 5. (Color online) Results of quantum-mechanical simula-
tions of β(�p) for nonlinear negative (a) and positive (b) chirps. The
largest variation with shape occurs for the negative chirp at −750 MHz
(circled), as in the experiment [Fig. 3(a)].
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simulations of the collisional process. Together, the experiment
and the simulations highlight the importance of matching the
chirp and the excited-state wave-function evolution. Our work
demonstrates that the shaping of frequency-chirped pulses on
the nanosecond time scale is a viable technique for coherently
controlling interactions between ultracold atoms. Since a
negative chirp can excite a wave packet at long range and
de-excite it at short range, these coherent interactions may
allow enhancement of photoassociative molecule formation.
Our recent observation of ultracold molecules formed using

frequency-chirped pulses [35] is encouraging in this regard.
The use of faster and better-controlled chirps [36] will facilitate
these efforts.
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