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Rapid nonadiabatic loading in an optical lattice
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We present a scheme for nonadiabatically loading a Bose-Einstein condensate into the ground state of a
one-dimensional optical lattice within a few tens of microseconds, i.e., typically in less than half the Talbot
period. This technique of coherent control is based on sequences of pulsed perturbations, and the experimental
results demonstrate its feasibility and effectiveness. As the loading process is much shorter than the traditional
adiabatic loading time scale, this method may find many applications.
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I. INTRODUCTION

Numerous works related to optical lattice trapping have
been published, especially using coherent atoms or Bose-
Einstein condensate (BEC) [1], since it has various applica-
tions in quantum computation, simulation of basic condensed-
matter physics, atomic clocks, etc. A common concern with
those experiments is how to load a BEC into the lattice without
excitation or heating [2–4]. In most cases, one chooses to turn
on the light field adiabatically and the loading process usually
lasts up to tens of milliseconds, during which one tries to avoid
excitations to higher states. A long loading may be problematic
for quantum computation experiments, as it increases the
time during which decoherence can occur and reduces the
speed when atoms stored in optical lattices are interrogated
and reloaded several times. Furthermore, adiabatic loading is
difficult to obtain near the critical point of phase transitions for
finite temperatures that are even well below the BEC critical
temperature.

An alternative idea is to prepare the BEC in the ground
state of the lattice, and then turn on the lattice suddenly.
This “preparing” process can be much shorter compared to
the adiabatic loading (about 30 µs, as we will see later
in this paper). One way to realize this preparing process
stems from nonholonomic coherent control [5–7]. In this
approach, a sequence of two well-chosen Hamiltonians are
imposed on the system, and the preset duration of each step
is modified according to a defined cost function, in order
to get the desired evolution operator as well as the target
state.

Our proposal for designing and computing the preloading
process is reminiscent of this method, but we focus more on the
feasibility of its experimental implementation, rather than the
stringency or universality of the approach. Experimentally, we
achieve the nonadiabatic loading with very few pulses using
directly the results of our computational design. According
to our analysis, this method would be valid on many other
occasions, such as loading the condensate directly into excited
states of the lattice. We first introduce a general method
for determining the sequence of steps to be applied to
the system before giving an account of our experimental
results.
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II. THEORY AND NUMERICAL METHOD

Suppose that before the sudden loading at time t0 of the
lattice with optical depth V0, m steps have been applied. The
ith step corresponds to a Hamiltonian Ĥi kept constant during
ti . The final state |ψ(t0)〉 is given by

|ψ(t0)〉 =
1∏

i=m

Ûi |ψ0〉, (1)

where Ûi = e−iĤi ti /h̄ is the evolution operator of the ith
process. With |ψa〉 the desired state, which is the ground state
of the lattice in the context of this paper, the total population
of the excited states Ne at time t0 is

Ne = 1 − |〈ψa|ψ(t0)〉|2. (2)

Our goal is to properly choose Ĥi and ti so that Ne is small
enough to be neglected in the experiment, or so that the final
state |ψ(t0)〉 is close enough to |ψa〉.

The target state |ψa〉 can be obtained simply if atomic
interactions are neglected. The effect of the optical lattice on
the atoms corresponds to a stationary periodical potential with
periodicity λL/2, where spontaneous emission is neglected
since the laser used for the lattice is sufficiently far detuned.
So neglecting atomic interactions, the Hamiltonian of the
interaction of atoms with the optical lattice is

Ĥ0 = p̂2

2m
+ V0

2
(1 + cos 2kLx), (3)

where m is the atom mass, kL is the wave number of lattice
light, V0 is the lattice depth, and p̂ is the momentum of
each atom. The corresponding Talbot time [8] is TT = 2π

4ωR
,

where ωR = h̄k2
L

2m
is the one-photon recoil frequency. Because

of the periodicity of the potential, |ψa〉 can be decomposed
over a reduced basis of plane waves |2nh̄kL〉. One obvious
choice for each Ĥi is to take the Hamiltonian corresponding
to the interaction of atoms with a standing wave with the
same periodicity, λL/2, so that the Hilbert space is limited to
the basis of states |2nh̄kL〉. For this purpose, the power of the
same laser as the one used for the final lattice loading is simply
adjusted, and each Hamiltonian Ĥi is obtained from Eq. (3)
after the substitution of V0 by the new lattice depth Vi .

More precisely, as Ĥi has spatial periodicity, we get its
eigenstates by solving the equation Ĥi |n,q〉 = En,q |n,q〉 [9],
where |n,q〉 is a Bloch state, with the band index n and
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the quasimomentum q, and where En,q is the corresponding
eigenenergy. We use the notation |n,q,Vi〉 for denoting the
Bloch states for a Vi lattice depth. Since only the Bloch state
with q = 0 is populated initially, no other quasimomenta can
be populated during the sequence of pulses. Thus the state of
the system can be spanned over the momentum eigenstates
basis |2�h̄kL〉, independent of the potential depth Vi , and the
evolution operator can be written as the following matrix:
Ui(Vi,ti) = C(Vi)E(Vi,ti)C(Vi)†, where C(Vi) is the unitary
matrix of transition between the Bloch states basis and the
momentum eigenstates basis with matrix elements C(Vi)�n =
〈2�h̄kL|n,q = 0,Vi〉 and where E(Vi,ti) is a diagonal matrix
with elements E(Vi,ti)nn = exp[−iEn,q=0(Vi)ti/h̄]. Because
of the simple form of the potential, these matrices are easily
obtained and from those the wave-function evolution is solved
numerically.

A traditional simple approximation to solve this problem
of a standing wave of light pulse interaction with atoms is to
omit the effect of kinetic energy. As shown in the works [8,10],
the motional term in the Hamiltonian may be neglected. For
a square pulse, when the depth of the standing-wave potential
is V and the duration of the pulse is t , the wave function after
the pulse can be expressed as ψ(t) = ψ(0)e−i V ·t

2h̄ cos 2kLx and
decomposed over different momentum states |2nh̄kL〉 using
the Bessel functions. This approximation is valid only in the
Raman-Nath regime, when the pulse is short enough that the
displacement of the atoms is much smaller than the lattice
period. From Refs. [11,12], we can see experimental data
deviate distinctly from the Bessel functions when the pulse
duration is longer. For multipulse cases, the motion term may
be neglected during each pulse, but taken into account during
the intervals between pulses. This approximation is valid only
when the sum of all the pulses’ durations is far less than the
Talbot time TT . In [8], TT = 10 µs, and two 100-ns pulses were
applied, while the interval time can be up to 10 µs. However, as
the total pulse duration of 200 ns is far less than TT , the whole
process is still in the Raman-Nath regime, and we can see that
the theoretical prediction agrees well with the experimental
results.

We compare in Fig. 1 the results of the two methods with
our experimental data for the case of a single square pulse
applied to the system. In our experiment, we first prepare a
BEC of about 2 × 105 87Rb atoms in the |F = 2,mF = 2〉
hyperfine ground state in the magnetic trap, with longitudinal
length L = 100 µm and width l = 10 µm [13]. The BEC
is then loaded into a one-dimensional optical lattice with
light wavelength λL = 852 nm, along its axial direction. We
suddenly turn on the standing-wave potential to a specific
depth, hold the lattice for different durations t , release the
condensate, and measure the relative atom number N0 in
p = 0h̄kL mode. Without considering the atomic motion,
the Bessel function (red dashed-dotted line) fails to fit the
experimental data when t is larger than about 10 µs. However,
the numerical solution taking the motional term into account
(blue dashed line) predicts the experiment accurately up to
60 µs, although some other effects have been neglected, such
as the interaction between atoms and nonzero momentum
width of the condensate. As a result, we will use the general
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FIG. 1. (Color online) Relative atom number N0 in p = 0h̄kL

mode vs the pulse duration t of a single standing-wave pulse applied
to the system. The black points with error bars are experimental data
and the red dashed-dotted line is calculated using the simple method
where the kinetic energy is neglected, while the blue dashed line is
given by the general method (see text).

method, as it will impose less restrictions on our sequence
design. Note that TT ≈ 79 µs in our configuration and the
fitted potential depth is 18ER , where ER = (h̄kL)2/2m is the
one-photon recoil energy.

In our initial attempt to design the time sequence, we use
four steps, each corresponding to the application of a potential
with depth Vi and duration ti , as shown in Fig. 2(a). Thus, from
these eight free parameters (Vi,ti), with i = 1–4, we can obtain
the evolution operators Ui and the exciting rate Ne according
to our previous analysis. If we want to get the minimum of
Ne, it requires the testing of all the combinations of the eight
free parameters which demands too much computing time.
However, we find that the convergence to a local minimum
is easy to obtain. For this purpose, we modify the parameters
step by step, with a small change of one parameter every
step, in order to get a smaller Ne. If no smaller result for
Ne can be obtained by changing any of these parameters,
the minimization of Ne is stopped and the corresponding
combination of parameters is the result of our design. Note
that different initial values of the parameters may result in
different local minima. Actually we try more than one group
of initial parameters in order to get a better result, although
the optimized pulse sequences obtained for different and often
lower lattice depths are already good input values. As shown
in Fig. 2(c), the exciting rate Ne remains lower than 0.1%. In
contrast, if we turn on the lattice abruptly without the preparing
process, the exciting rate would be two or three orders higher.
The whole preloading process lasts for about 30 µs, which is
beyond the Raman-Nath regime, but still within the limit of
our method.

Nevertheless, it is not easy for this scheme to be experimen-
tally implemented. As the lattice depth varies with time, we
need a feedback loop to control the laser power to get a stable
optical lattice, as the atoms are very sensitive to fluctuation of
the laser power. We also need sharp rising and falling edges to
ensure each step duration is sufficiently similar to the designed
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FIG. 2. (Color online) Two schemes for the nonadiabatic loading.
(a) Four-step preloading sequence with both the potential depth
and the duration of each step set as free parameters. (b) Four-step
preloading sequence with fixed potential depth and variable duration
in each step. (c) Corresponding relative population Ne in excited
Bloch states as a function of lattice depth, with red circles for scheme
(a) and blue points for scheme (b). The black triangles show Ne in
the case where we abruptly turn on the lattice without the preparing
process illustrated in (a) or (b). Logarithmic scale for the vertical axis
is used in order to present data.

one. If 0.5 µs is set for the upper limit of each rising and falling
edge, the bandwidth of the power-controlling loop should be
larger than 1 MHz, which is hard to achieve. We would rather
choose the scheme illustrated in Fig. 2(b), where the steps V1

and V3 are fixed at V0, and the steps V2 and V4 are fixed at
0, with ti still being free parameters. This means no feedback
loop but only a switch is needed so that the rising and falling
time can be decreased to 200 ns easily. In Fig. 2(c), we can
see the exciting rate is still lower than 0.1% for most lattice
depths lower than 20ER , although some degrees of freedom
of our sequence of pulses are locked. In Table I, we show the
designed time sequences for several lattice depths.

Furthermore, we can transfer the state |ψa〉 back to the
initial state |ψ0〉 after releasing the lattice, using a similar
process. Table I gives also the designed sequence, with time
durations t5 to t8 and corresponding potentials V5 and V7 being
set to 0, while V6 and V8 are equal to V0 [see Fig. 3(b)].
The exciting rate Ne after such a designed process is usually
less than 0.2% according to our calculations. Note that this
sequence is equivalent to the timely inverted preloading
sequence if we ignore some minor deviations.

TABLE I. Duration of each step ti (µs) for different lattice depths
V0 (units of ER).

V0 t1 t2 t3 t4 t5 t6 t7 t8

4 10 9.5 4 5 6 5 9 9
8 6.5 10.5 5 6 6 4.5 10.5 7
12 5 11.5 4.5 6 5.5 4 11.5 5.5
16 4.5 12 3.5 6 5 4 12.5 4.5
20 3.5 13 3.5 5.5 6 3.5 12.5 3.5

III. EXPERIMENTAL RESULT

To demonstrate the feasibility of our proposal, we did
the experiment according to three different schemes. In the
first scheme [Fig. 3(a)], we nonadiabatically load the BEC
into the lattice according to the designed process, hold it in
the lattice for th = 10 ms, and release the atoms. We can
see the interference peaks, similar to the familiar pattern
observed in adiabatic loading experiments, which indicates a
successful loading without significant excitation and heating.
We measure the ratio of atom number between |p = 2h̄kL〉
and |p = 0h̄kL〉 modes, and get 0.134 for V = 8ER and 0.183
for V = 12ER , while the theoretical results are 0.143 and
0.223, respectively. The deviation is likely to be caused by
s-wave scattering and the nonzero temperature of the BEC,

tt1 t2 t3 t4 th = 10ms

 (a)

tt1 t2 t3 t4 th = 10ms t5 t6 t7 t8

 (b)

tth = 10ms

 (c)

V0 = 8ER V0 = 12ER

V0 = 8ER V0 = 12ER

V0 = 8ER V0 = 12ER

FIG. 3. (Color online) Absorption images for three different time
sequences. As the condensate is released from both the lattice
potential and the magnetic trap, it expands freely for 30 ms and
then an absorption image is taken. For each time sequence, we show
the results for two lattice depths of 8ER and 12ER .
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FIG. 4. (Color online) Evolution of the different momentum
components of the wave function. (a) Amplitude and (b) phase for
the p = 0h̄kL, ±2h̄kL, and ±4h̄kL modes are shown with blue solid
lines, red dashed lines, and green dashed-dotted lines, respectively.
The black dotted lines in both figures indicate the corresponding time
sequence of the standing-wave potential.

which blur the interference pattern. In the second scheme
[Fig. 3(b)], after the same loading and holding process,
we use two additional pulses to transfer the atoms back to the
original state |ψ0〉. Compared with the third scheme [Fig. 3(c)],
where we directly turn on and off the lattice light without the
preloading or postreleasing processes to prevent excitation but
hold for the same period, the second scheme has little heating
or disturbing effect on our BEC, which proves the effectiveness
of our preparing process of the lattice ground state. A small
heating may still be observed at 12ER , which may be due
to the interaction between atoms which are not included in
our model. We also have neglected magnetic trapping in the
design, but because the extra phase evolution at each lattice site
due to the external confinement by the magnetic trap during
the holding time (10 ms) is very small, our results should not
be sensitive to differences between the designed state and the
ground-state wave function in the combined trap.

IV. DISCUSSION AND CONCLUSION

Figure 4 shows the evolution of the wave function under the
pulsed scheme shown in Fig. 2(b). We can see that atoms can
be transferred between different momentum orders only when
the pulse is on. In the intervals, the amplitudes of different
components keep constant, while the phases vary linearly. The

phase of the ±4h̄kL order evolves four times faster than that
of ±2h̄kL, as the kinetic energy is four times larger. After
switching on the optical lattice (t = 0 µs), the amplitude and
phase of all components stay almost unchanged as the wave
function is in the ground state of the lattice. Note that the phase
jump of the nonzero momentum components at t = −27 µs
is not significant, since the amplitude of these components
before that time is zero.

By simply replacing the initial state |ψ0〉 and the desired
state |ψa〉, our pulse sequence design is also applicable to other
situations. For example, by setting |ψ0〉 = |n = 0,q = 0,V1〉
and |ψa〉 = |n = 0,q = 0,V2〉, we can get a process that can
change the lattice depth from V1 to V2 nonadiabatically without
excitation. We can also load the BEC directly to symmetric
excited states such as |n = 2,q = 0〉 by setting them as |ψa〉.
Our numerical simulation shows that when V0 is around 12ER ,
there exists the theoretical possibility of loading more than
99% of the atoms to |n = 2,q = 0〉. This state can be used
for studying the spontaneous transition from high-lying Bloch
bands to lower bands experimentally. If the optical lattice is
accelerated, antisymmetric states and states with q �= 0 could
also be loaded.

In general, our method can be used to produce states
whose momentum components are discrete and separated
equally by 2h̄kL. For example, we can divide one BEC into
two momentum modes | ± 2mh̄kL〉 equally, with negligible
population in other orders. This technique is useful in atom
interferometry (and its theory has been developed in Ref. [10])
while neglecting the motional term in the Hamiltonian, as
discussed earlier in this article. Our method is not restricted
by the Raman-Nath regime, and thus gives more freedom for
designing the pulse sequence.

In conclusion, we proposed a method reminiscent of the
nonholonomic coherent control technique for loading the BEC
into a one-dimensional optical lattice nonadiabatically, within
a much shorter loading time (usually less than TT /2) than the
commonly applied adiabatic method (which is much longer
than TT ). Our experimental results demonstrate the validity
of this method. We claim that this numerical design process
can be applied to various topics related to the interaction of a
standing wave of light with ultracold gases.
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