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Quantum Langevin model for exoergic ion-molecule reactions and inelastic processes
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We present a fully quantal version of the Langevin model for the total rate of exoergic ion-molecule reactions
or inelastic processes. The model, which is derived from a rigorous multichannel quantum-defect formulation of
bimolecular processes, agrees with the classical Langevin model at sufficiently high temperatures. It also gives an
analytic description of ion-molecule reactions and inelastic processes in the ultracold regime where the quantum
nature of the relative motion between the reactants becomes important.
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I. INTRODUCTION

The classical Langevin model for exoergic ion-molecule
reactions [1,2] is one of the most fundamental and powerful
results in the theory of reactions. It has been shown to be
applicable to a variety of systems and over a wide range
of temperatures [2,3]. As a model based on the long-range
interaction, it can be expected to be more accurate as
the temperature gets lower [4], until one reaches a regime
where the quantum effects associated with the relative motion
of the reactants become important.

An experimental study of reactions in this temperature
regime, often referred to as the ultracold regime, has recently
been realized for neutral-neutral reactions in a landmark
experiment by the JILA group [5]. While it is not yet realized
for charge-neutral systems, the growing ability to make cold
molecular samples [6,7] and manipulate cold ions [8–10]
implies that it may soon become a reality. A sample process
would include the type

A+ + B2 → AB + B+, (1a)

→ A + B+
2 , (1b)

→ (AB)+ + B, (1c)

where all reactions can be expected to be exoergic if the
ionization potential of atom A is considerably greater than
that of atom B. They can proceed with substantial rates even
in the limit of zero temperature, as ion-molecule interactions
are generally expected to be barrierless at the short range [11].

The theory presented here, to be called the quantum
Langevin (QL) model, for the total rate of exoergic ion-
molecule reactions or inelastic processes gives a theoretical
prediction as to where and how the quantum effects come into
play and how the resulting behavior deviates from the classical
Langevin model. It is another application of a different
quantum framework for reactions [12] that differs considerably
from existing formulations ( [13] and references therein), and
is used here to further illustrate the concepts behind the theory.

In a conventional quantum theory of reactions [13], little
can be known about a reaction without a detailed knowledge
of the potential energy surface (PES), the accuracy of which
is often insufficient for quantitative predications, especially
at low temperatures. This has been true even for ultracold
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atom-atom and ion-atom interactions, where, to the best of our
knowledge, no ab initio PES for alkali metal systems has ever
been sufficiently accurate to predict the scattering length. All
potentials had to be modified by incorporating a substantial
amount of spectroscopic data (see, e.g., Ref. [14]). The same
issue becomes much more severe for multidimensional PES in
reactions, and will likely remain so for many years to come.
This difficulty, coupled with the exponential growth of the
Hilbert space beyond two-body systems [15], has limited the
conventional approach to a few simple systems such as D + H2,
with little hope for more complex systems.

The multichannel quantum-defect theory for reactions
(MQDTR), as outlined in Ref. [12], with important motivations
and ingredients that came before it [5,16–19], offers a different
perspective on reactions and inelastic processes. It comes from
a broad assertion that much can be known about a quantum sys-
tem, specifically its behavior around a fragmentation threshold,
simply from the types of long-range interactions among its
constituents. Whatever is not yet known can be characterized
by a few energy-insensitive parameters, which can be further
determined from a few experimental measurements without
any knowledge of the short-range interaction, or even the
strength of the long-range interaction. This physical picture,
which goes back to the original quantum-defect theory for
the Coulomb interaction [20,21], has been well established in
recent years for atom-atom ( [22,23] and references therein)
and ion-atom interactions [24], and to a lesser degree for
few-atom [25] and many-atom systems [26,27]. Its realization
for reactions [12], as is further illustrated in this work, frees the
theory from being held hostage by the details of the PES, while
allowing it to take advantage of them when they are available.
It also resolves a conceptual disparity in the existing theories of
reactions. While many classical models [2,4] are based on the
recognition of the importance of the long-range interaction, the
same physical concept gets lost in the conventional quantum
formulations [13]. It is primarily due to this omission that they
have missed the universality and the simplicity in reactions that
have been uncovered in the landmark JILA experiment [5].

II. THE QL MODEL

The QL model for ion-molecule reactions or inelastic
processes, to be presented here, is a special case of a
more general QL model [12] that is formally applicable to
bimolecular processes with an arbitrary −Cn/R

n (n > 2) type
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of long-range interaction in the entrance channel. Other than
the exponent n, the most important characteristic of such a
potential is its length scale βn = (2µCn/h̄

2)1/(n−2), where µ

is the reduced mass in the entrance channel. It determines
the scale parameters for other relevant physical observables,
such as the energy with a scale of sE = (h̄2/2µ)(1/βn)2,
the temperature with a scale of sE/kB , and the rate of
reactions with a scale of sK = πh̄βn/µ [12]. For ion-molecule
interactions, n = 4 and C4 = αq2/2, which corresponds to the
polarization potential, with α being the average polarizability
of the molecule and q being the charge of the ion. The
realization of the QL model for this class of systems is made
possible by a recent reformulation of the quantum-defect
theory (QDT) for the −1/R4 potential [24], which gives,
in particular, analytic results for the quantum transmission
probability to be used in this work.

In Ref. [12], we have shown that under the Langevin
assumption, corresponding to the assumption of no reflection
by the inner potential, the total rate of reactions and inelastic
processes follows a universal behavior uniquely determined
by the exponent n characterizing the type of long-range
interaction in the entrance channel. Different systems with the
same type of potentials differ from each other only in scaling.
Specifically, the rate constant for the total rate of reactions and
inelastic processes can be written as

K(T ) = sKK(n)(Ts), (2)

where sK is the rate scale defined earlier, and K(n)(Ts) is a
universal function of the scaled temperature, Ts = T/(sE/kB),
given by

K(n)(Ts) = 2√
π

∫ ∞

0
dx x1/2e−xW (n)(Tsx). (3)

Here W (n)(εs) is a scaled total rate before thermal averaging. It
depends on energy only through the scaled energy εs = ε/sE ,
and has contributions from all partial waves,

W (n)(εs) =
∞∑
l=0

W (n)
l (εs), (4)

where W (n)
l is a scaled partial rate given by

W (n)
l (εs) = (2l + 1)T c(n)

l (εs)/ε
1/2
s , (5)

in which T c(n)
l (εs) = |t (oi)

l (εs)|2 is the quantum transmission
probability through the long-range potential at the scaled
energy εs and for partial wave l [23].

For n = 4, which corresponds to the ion-molecule inter-
action, the quantum transmission probability T c(4)

l (εs), which
is the only quantity required to determine the universal rate
function in the QL model, can be found analytically as a part
of the QDT for the −1/R4 potential [23,24]. The result is

T c(4)
l (εs) = 2M2

εs l
[1 − cos(2πν)]

1 − 2M2
εs l

cos(2πν) + M4
εs l

, (6)

where ν is the characteristic exponent and Mεsl is one of the
universal QDT functions for the −1/R4 potential, both of
which are as given in Ref. [24].

Figure 1 illustrates the resulting scaled partial ratesW (n)
l for

n = 4. Figure 2 shows the corresponding total rate W (n). We
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FIG. 1. (Color online) The scaled partial rates W (n)
l (εs) for

n = 4, corresponding to the −1/R4 type of interaction in the entrance
channel.

note that the oscillatory structure in the total rate is neither a
resonance nor an interference phenomenon. It is instead a result
of the quantization of angular momentum, with contributions
from a discrete set of partial waves peaking at different
energies, as illustrated in Fig. 1. The W (n) is related to the total
reactive and inelastic cross section σur by σur = (πβ2

n)�(n)
ur (εs),

in which �(n)
ur (εs) = W (n)/ε

1/2
s is the scaled total inelastic and

reactive cross section. We note that the oscillatory structure
in W (n) is much less visible in the cross section, making it
difficult to detect experimentally.

Figure 3 illustrates the universal rate function K(n)(Ts) for
n = 4, which is the thermal average of the total rate shown
in Fig. 2. In the ultracold regime of Ts � 1, simpler analytic
formulas for rates and cross sections can be derived using
the QDT expansion [28] of the transmission probability. For
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FIG. 2. (Color online) The scaled total rate W (n)(εs) for
n = 4, corresponding to the −1/R4 type of interaction in the entrance
channel.
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FIG. 3. (Color online) The universal rate functionK(n)(Ts) for the
−1/R4 type of interaction in the entrance channel (solid line). The
dash-dotted line represents the prediction of the classical Langevin
model, as given by Eq. (12). The dashed line represents the QDT
expansion, as given by Eq. (11).

small scaled energies εs , it can be shown from the QDT for
n = 4 [24] that

T c(4)
l=0 = 4ā

(4)
sl=0ε

1/2
s(

1 + ā
(4)
sl=0ε

1/2
s

)2 + O
(
ε5/2
s

)
, (7)

T c(4)
l=1 = 4ā

(4)
sl=1ε

3/2
s(

1 + ā
(4)
sl=1ε

3/2
s

)2 + O
(
ε7/2
s

)
, (8)

and

T c(4)
l�2 = 4ā

(4)
sl εl+1/2

s + O
(
εl+5/2
s

)
, (9)

where

ā
(4)
sl = (2l + 1)2

[(2l + 1)!!]4
(10)

is called the scaled mean scattering lengths for a −1/R4

potential, after similar quantities for the −1/R6 potential [28].
We note that such analytic expansions could not have been
derived from either the WKB theory [29], or the top-of-barrier
analysis [30], as discussed in more detail elsewhere [31].
Substituting Eqs. (7)–(9) into Eqs. (3)–(5) gives the expansion
of K(4)(Ts) in the ultracold regime of Ts � 1,

K(4)(Ts) = 4ā
(4)
sl=0 − 16

(
ā

(4)
sl=0

)2

√
π

T 1/2
s

+18
[(

ā
(4)
sl=0

)3 + ā
(4)
sl=1

]
Ts + O

(
T 2

s

)
. (11)

Here, ā
(4)
sl=0 = 1 and ā

(4)
sl=1 = 1/225 are the scaled mean

scattering lengths for l = 0 and l = 1, respectively. A com-
parison of this QDT expansion with the exact result is shown
in Fig. 3.

At high temperatures as characterized by Ts � 1, it is
straightforward to show from the semiclassical limit of the
transmission probabilities [23] that

K(4)(Ts) ∼ 2, (12)

TABLE I. Sample scale parameters for ion-molecule reactions
and inelastic processes. The β4 = (2µC4/h̄

2)1/2 is the length scale
associated with the polarization potential −C4/R

4, where C4 =
αq2/2 with α being the average polarizability of the molecule.
sE/kB = (h̄2/2µ)(1/β4)2/kB is the corresponding temperature scale.
sK = πh̄β4/µ is the rate scale corresponding to β4. It is given here in
units of 10−9 cm3 s−1.

System α (a.u.) β4 (a.u.) sE/kB (K) sK

D+–1H2 5.41a 99.7 8.65 × 10−3 1.05
1H+–7Li2 216b 608 2.49 × 10−4 6.83
7Li+–87Rb2 553b 2610 1.90 × 10−6 4.08
138Ba+–87Rb2 553b 8800 1.45 × 10−8 1.21
40Ca+–133Cs2 675b 6540 5.83 × 10−8 1.99
40Ca+–40K87Rb 526b 5400 9.78 × 10−8 1.88

aFrom Ref. [32].
bFrom Ref. [33,34].

which is in agreement with the classical Langevin model
[1,2]. Figure 3 shows that the transition from quantum to
semiclassical behavior occurs over a temperature range of
sE/kB , which we generally refer to as the van der Waals
temperature scale. The rate goes from 4sK at the threshold
to approximately the Langevin rate of 2sK beyond sE/kB .
Figure 3 also shows that the oscillatory structure present in
W (n) has mostly been washed out by thermal averaging.

All scaled results can be put on absolute scales using a single
parameter, which is the average polarizability of the molecule
α. It determines both the rate scale sK and the temperature
scale sE/kB . Sample scale parameters are given in Table I.
They are chosen to illustrate that the meaning of the ultracold
regime, if defined as the range of temperatures over which the
quantum effects are important, is very different for different
systems. It covers a much broader temperature range for lighter
systems than for heavier ones. They are also chosen to imply
that we expect the QL model to be applicable not only to
nonpolar molecules, but also to small polar molecules such as
KRb [5], with the main difference being that its upper range of
applicability will be more limited. It is interesting to note from
the table that despite wide variations of temperature scales
for different systems, the rate scales are of the same order of
magnitude, ∼10−9 cm3 s−1, which is roughly 100 times greater
than those for neutral-neutral reactions [12].

III. CONCLUSIONS

In conclusion, we have presented a fully quantal version of
the Langevin model for exoergic charge-neutral reactions and
inelastic processes. It is a universal model in which different
systems differ only in scaling, further illustrating the concept
that even in a purely quantum theory, there are important
aspects of reactions that can be understood without detailed
knowledge of the PES at the short range. Such aspects include
not only the total rate of reactions and inelastic processes,
as presented here, but also the elastic cross section and the
total cross section. For a state-to-state partial cross section, it
can be shown from the underlying MQDTR [12] that while
its absolute value requires the short-range PES, its energy
dependence can still be parametrized using the same universal
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transmission probabilities T c(n)
l (εs). We point out that the QL

model is applicable not only to molecules in the ground or
low-lying states, but also to molecules in vibrationally highly
excited states and to atoms in selective Rydberg states (ones
with significant quantum defect). In such applications, the
theory connects with quantum few-body physics ( [35,36] and
references therein), and provides a description of their behavior
outside of the so-called universal regime, which is a region
that has been difficult to treat using other methods because
of the large number of open channels. In a mathematical
abstraction with even broader implications, the QL models
presented here and earlier in Ref. [12] represent one type of
universal behavior that can emerge whenever the number of
open channels in a set of coupled channel (or close-coupling)
equations becomes large. It is our belief that uncovering and
taking advantage of such universal behaviors will be the key

to a more systemic understanding of quantum systems beyond
two-body systems.

At higher temperatures, where the molecules start to
explore interactions of shorter ranges, the universal behavior
as represented by the QL model will be broken and replaced
by more system-specific behaviors that will distinguish, e.g.,
between a polar and a nonpolar molecule. Extracting universal
behaviors at such shorter length scales will require explicit
treatment of anisotropic interactions, such as charge-dipole
for a polar molecule, within the MQDTR framework, and will
be the next challenge for the theory.
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Lett. 102, 223201 (2009).

[9] C. Zipkes, S. Palzer, C. Sias, and M. Köhl, Nature (London)
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