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The Bethe-Peierls asymptotic approach which models pairwise short-range forces by contact conditions is
introduced in arbitrary representation for spatial dimensions less than or equal to 3. The formalism is applied in
various situations and emphasis is put on the momentum representation. In the presence of a transverse harmonic
confinement, dimensional reduction toward two-dimensional (2D) or one-dimensional (1D) physics is derived
within this formalism. The energy theorem relating the mean energy of an interacting system to the asymptotic
behavior of the one-particle density matrix illustrates the method in its second quantized form. Integral equations
that encapsulate the Bethe-Peierls contact condition for few-body systems are derived. In three dimensions,
for three-body systems supporting Efimov states, a nodal condition is introduced in order to obtain universal
results from the Skorniakov–Ter-Martirosian equation and the Thomas collapse is avoided. Four-body bound
state eigenequations are derived and the 2D

′
3 + 1

′
bosonic ground state is computed as a function of the mass

ratio.
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I. INTRODUCTION

The nonperturbative zero-range limit of a pairwise in-
teraction was introduced in the context of nuclear physics
for the description of the deuteron [1–3]. In this modeling,
the finite-range pairwise-interacting potential is replaced by
a zero-range potential and a peculiar asymptotic behavior
is imposed on the wave function as the two interacting
particles approach each other. More than 60 years after these
pioneering works, the Bethe-Peierls [1] approach appears to
be especially relevant for modeling pairwise interaction in
few- and many-body systems of ultracold atoms where details
of the interaction are useless for understanding a large class
of low-energy processes [4–17]. This remarkable simplicity
follows essentially from two features: first, the temperature
in these systems is sufficiently low that s-wave scattering is
the dominant process in two-body collisions [18]; second, the
three-dimensional (3D) s-wave scattering length (denoted by
a3) in the two-body scattering can be tuned by use of a magnetic
Feshbach resonance (FR) toward an arbitrary large value with
respect to the range of the interatomic forces (denoted by b3)
and which is of the order of the van der Waals radius [19,20]:

b3 ∼
(

µC6

h̄2

)1/4

, (1)

where C6 is the van der Waals coefficient of the interatomic
potential and µ is the reduced mass of the two interacting
particles. In the vicinity of a broad FR the two-body scattering
cross section 4πa2

3 is very large with respect to the nonresonant
cross section (∼4πb2

3) and this justifies the use of the 3D
Bethe-Peierls approach only parameterized by a3.

Ultracold atoms in reduced geometries are the subject of
intensive experimental and theoretical studies [21]. Decisive
progress has been obtained both in quasi-1D systems (for
example, with the observation of the Tonks Girardeau gas
[22,23]) and in quasi-2D systems. A general review of
low-dimensional systems can be found, for example, in
Refs. [24,25]. Systems in reduced dimensions are achieved

by using very anisotropic trapping potentials leading to a
D-dimensional behavior, where D = 1 (quasi-1D systems)
or D = 2 (quasi-2D systems). In an ideal D-dimensional
atomic waveguide, noninteracting atoms move freely along
D direction(s) while they remain frozen in the lowest state
of the transverse zero-point motion characterized by a length
denoted as atrans. The associated energy Etrans = h̄2/(2µa2

trans)
defines the limit of energy beyond which higher transverse
states are populated and a 3D-like behavior is progressively
recovered for increasing energies. In the actual experimental
state-of-the-art, atomic waveguides have a transverse atomic
length which is large as compared to the 3D potential
radius (b3). Therefore for low-energy processes, i.e., for
collisional energies E such that |E| � h̄2/(µb2

3), the short-
range pairwise-interacting potential can be described through
the 3D Bethe-Peierls approach. For collisional energies much
smaller than Etrans the transverse excited states of the trap are
populated only via virtual processes and for large interatomic
separations r (r � atrans) only the ground transverse state is
occupied. In this regime of collisional energies and in the
free D-dimensional subspace, the scattering process can be
deduced from a D-dimensional effective pairwise interaction
characterized by a finite range denoted bD , which is of
the order of the transverse length atrans. Hence for low-
energy D-dimensional processes where |E| � h̄2/(µb2

D), the
effective low-dimensional interaction can be, analogously to
the 3D case, replaced by a zero-range force. Therefore in
each dimension D less than or equal to 3, a D-dimensional
Bethe-Peierls approach can be relevant and useful as a tool
for exploring the properties of few- and many-body shallow
states. The dimensional reduction of the effective interaction
from 3D to 1D was first achieved in Ref. [4] and from 3D to
2D in Ref. [5].

One of the purposes of this paper is to show that the zero-
range potential approach can be handled in a very simple and
unified way in any dimension D � 3. The key tool used along
these lines is introduced in Sec. II of the paper. It consists of the
general expression of the Bethe-Peierls asymptotic condition
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which can be used in any representation for all dimensions D.
Substitution of the δ-source terms of the zero-range approach
by a family of well-behaved functions of vanishing but finite
support allows one to avoid technical problems concerning
double-limit calculations (i.e., evaluation of infinite series in
the zero-range limit). While used usually in the configuration
space, the zero-range approach can thus be implemented
directly in the momentum representation for translation in-
variant systems. The link between this formulation of the
Bethe-Peierls approach and the � potential introduced in
Ref. [26] is analyzed. The method is illustrated in Sec. III
with the example of the dimensional reduction issue from 3D
toward 1D and 2D. The Bethe-Peierls contact condition is
directly expressed in the functional basis which diagonalizes
the free Hamiltonian and known results are obtained in a
simple manner. For N -body systems, integral equations which
encapsulate the Bethe-Peierls contact condition are obtained
in Sec. IV. It is also shown how to express this zero-range
force approach in a second quantized representation. As an
example, energy theorems [27–31] are derived by using this
last formulation. Section V of the paper is devoted to the three-
and four-body shallow bound state issue. For three identical
bosons in 3D, the original Skorniakov–Ter-Martirosian (STM)
equation [32] appears as a straightforward application of the
results of the preceding section. A nodal condition is imposed
on the three-body wave function in order to avoid the Thomas
collapse [33] while keeping the simplicity of the zero-range
approach [34]. Known results of universal theory [35] are
recovered from the regularized STM equation. For two-mass
component fermionic systems in 3D, critical mass ratios
for the Efimov threshold are given in each partial wave by
using the STM equation. Finally, the formalism is applied to
derive four-body equations in the zero-range limit. In 2D, the
eigenenergy equation for two-mass component tetramers is
studied numerically. The energy of the ground s wave of 3 + 1
bosonic tetramers in the zero-range limit is computed as a
function of the mass ratio.

In this paper the norm of any vector v is denoted by v. For
a unidimensional system (D = 1), v is algebraic and v = |v|
is the absolute value of v.

II. ISOTROPIC CONTACT FORCES

A. Two-body transition matrix and scattering amplitude

This section reviews basic notions of two-body scattering
in D-dimensional spaces which are useful in the formulation
of the Bethe-Peierls approach.

Two colliding particles are described in their center-of-
mass frame by the relative particle of reduced mass µ and
relative momentum k. They are supposed to interact through
a short-range potential V , and the Hamiltonian for the relative
particle is H = H0 + V , where H0 is the free Hamiltonian.
In what follows, as a consequence of the small collisional
energy, scattering is supposed to only occur in the s-wave
channel of the relative particle. For an incoming atomic wave
of momentum k0 and of collisional energy E = h̄2k2

0/2µ

(measured from the continuum threshold), the scattering state
|�k0〉 of the relative particle verifies the Lippmann-Schwinger

equation:

∣∣�k0

〉 = |k0〉 + 1

E + i0+ − H0
V

∣∣�k0

〉
. (2)

We now turn to the k representation with the convention
〈r|k〉 = exp(ik · r):

〈r|�〉 =
∫

dDk

(2π )D
〈k|�〉 exp(ik · r). (3)

In the k representation, the scattering states in Eq. (2) can be
written as a function of the half on-shell transition matrix (or
t matrix) defined by

〈k|T (E + i0+)|k0〉 = 〈
k|V |�k0

〉
, (4)

so that〈
k
∣∣�k0

〉 = (2π )Dδ(k − k0) + 〈k|T (E + i0+)|k0〉
E + i0+ − h̄2k2

2µ

. (5)

The pairwise interaction is supposed to be short range with
a typical radius bD . For a small energy |E| � h̄2/(µb2

D) and
momentum |k|bD � 1, the half on-shell t matrix only depends
on the collisional energy E and coincides with the low-energy
on-shell t matrix denoted as TD:

〈k|T (E + i0+)|k0〉 � TD(E + i0+). (6)

At the lowest order in energy (implying that |k0|bD � 1), the
expression of TD can be parameterized by the D-dimensional
scattering length aD . It can be written as [36,37]

TD(E + i0+) = �Dh̄2

2µ
×

⎧⎪⎨
⎪⎩

a3/(1 + ia3k0) (D = 3)

−1/ ln(−ia2k0e
γ /2) (D = 2)

−ik0/(1 + ia1k0) (D = 1)

(7)

where �D is the full D-dimensional space angle:

�3 = 4π, �2 = 2π, and �1 = 2. (8)

In Eq. (7) for the two-dimensional case, γ is the Euler’s
constant, and the 2D scattering length a2 is always positive.
The transition matrices in Eq. (7) are the basic objects for
describing low-energy scattering processes in D-dimensional
few- and many-body systems. Scattering properties can be
equivalently described with the D-dimensional scattering
amplitudes defined by

f3(k0) = −a3/(1 + ik0a3), (9)

f2(k0) = 1/ ln(−ik0a2e
γ /2), (10)

f1(k0) = −1/(1 + ik0a1). (11)

The notion of scattering amplitude is often used in the
configuration space where the scattering states for large
relative coordinates (r � bD) are deduced from Eq. (7):

〈
r
∣∣�k0

〉 = eik0·r + fD(k0) ×

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

eik0r

r (D = 3)

iπ
2 H

(1)
0 (k0r) (D = 2)

eik0r (D = 1).

(12)
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In Eq. (12), for D = 2 the outgoing scattering wave function
H

(1)
0 is the Hankel’s function of order zero [38]; for D = 1, f1

is also called the even scattering amplitude [4].

B. Bethe-Peierls asymptotic approach in arbitrary
representation

Surprisingly the zero-range approximation has been es-
sentially used in the configuration space while other repre-
sentations can yield substantial simplifications. For example,
as a consequence of translation invariance, the momentum
representation is very well suited for solving the few-body
problem in homogeneous space. In this section, it is shown how
the zero-range approximation can be formulated in arbitrary
representation.

While for finite-range forces Eq. (6) is only valid for a
small relative momentum k (i.e., for kbD � 1), in the zero-
range potential approximation this equality is extended for
arbitrary large values of k. That way, the short-range pairwise
potential V is replaced by a formal zero-range potential such
that the scattering states in this approximation coincide with
Eq. (5) in the small relative momentum limit (kbD � 1) or
with Eq. (12) for large interparticle distances (r � bD). The
simplest way to implement the zero-range approximation is
to follow the Bethe-Peierls method [1], where for any state
|�〉 described by the Hamiltonian H0 + V , the pairwise short-
range potential V is replaced by a δ-source term |δD〉 with an
amplitude S� ,

V |�〉 −→ S� |δD〉, (13)

and S� is deduced from an asymptotic condition on the state
|�〉. In Eq. (13), |δD〉 is such that the usual δ distribution is
obtained in the configuration space,

〈r|δD〉 = δ(r), (14)

and |δD〉 is also denoted by the formal ket of zero relative
coordinates |0r〉. From Eq. (5) the scattering state |�k0〉 is
written in the zero-range potential approach as∣∣�k0

〉 = |k0〉 + TD(E + i0+)

E + i0+ − H0
|δD〉. (15)

Injecting Eq. (13) in the Lippmann-Schwinger equation (2)
gives ∣∣�k0

〉 = |k0〉 + S�k0

E + i0+ − H0
|δD〉. (16)

Identifying Eqs. (15) and (16) shows that the source amplitude
associated with a scattering state |�k0〉 is nothing but the on-
shell transition matrix: S�k0

= TD(E + i0+). In configuration
space, scattering states in Eq. (15) or in Eq. (12) are singular
for vanishingly small interparticle distances. As shown in
what follows, this singular behavior defines the Bethe-Peierls
asymptotic condition. From Eq. (15) one finds that all the
scattering states for a given dimension D have the same
singular behavior which reduces to

〈r|�〉 =
r→0

A ×

⎧⎪⎪⎨
⎪⎪⎩

(
1
a3

− 1
r

) + O(r) (D = 3)

ln
(

r
a2

) + O(r) (D = 2)(
r − a1

) + O(r) (D = 1).

(17)

In Eq. (17) A is a function of the energy E but does not
depend on r . It is important to note that Eq. (17) is obtained
in the center-of-mass frame, meaning that the limit r → 0 is
taken at fixed value of the center of mass of the two colliding
particles. Conversely, for a given dimension D, Eq. (17)
is the sufficient asymptotic condition which permits one to
obtain the source amplitude S�k0

of a scattering state |�k0〉 at
energy E in Eq. (16). The asymptotic condition in Eq. (17),
referred also as the “contact condition” or the Bethe-Peierls
condition, remains unchanged for any linear combination of
scattering states and can be thus used to find any eigenstate in
the zero-range approximation for a system where an external
potential is included within the free Hamiltonian H0. For a
positive energy E, the Lippmann Schwinger equation is

|�〉 = |�(0)〉 + S�

E + i0+ − H0
|δD〉, (18)

where |�(0)〉 is the complementary solution; i.e., it is an
eigenstate of the free Hamiltonian H0 at energy E (for a
negative energy |�(0)〉 = 0 and the +i0+ prescription in
Eq. (18) is useless). The relation between the number A in
Eq. (17) and the source amplitude S� in Eq. (18) is given by

A = 2µS�

�Dh̄2 . (19)

The crucial point of this section is to show that the asymptotic
condition in Eq. (17) can be expressed in arbitrary represen-
tation. In what follows for convenience, the δ distribution
is represented by the ε → 0 limit of a Gaussian weight:
δD(r) = limε→0〈r|δD

ε 〉 and

〈
r
∣∣δD

ε

〉 = 1

(2πε2)D/2
exp

(
− r2

ε2

)
. (20)

With this particular choice, in the momentum space the
representation of the δ term has the same expression [denoted
χε(k)] for all dimensions:

〈
k
∣∣δD

ε

〉 = χε(k) = exp

(
− k2ε2

4

)
. (21)

Matrix elements and states without index ε are considered
in their zero-range limit which corresponds in this formalism
to the limit ε → 0 (for example, limε→0 |�ε〉 = |�〉. For the
formulation of the zero-range approximation it is also useful
to introduce the “reference state” denoted |φ�

ε 〉 which results
from the action of the two-body Green’s function in free space
on |δD

ε 〉 at the negative energy E�:

∣∣φ�
ε

〉 = 1

E� − H0

∣∣δD
ε

〉
, where E� = −h̄2�2

2µ
< 0. (22)

In Eq. (22) the parameter � is chosen positive (� ∈ R+)
according to the usual prescription in scattering theory. In
the momentum representation,

〈
k
∣∣φ�

ε

〉 = −2µ

h̄2

χε(k)

k2 + �2
. (23)
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In the zero-range limit where ε → 0, in the configuration
space the reference state has the same type of singularity as in
Eq. (17):

〈
r
∣∣φ�

〉 = 2µ

�Dh̄2 ×

⎧⎪⎪⎨
⎪⎪⎩

( − 1
r

+ �
) + O(r) (D = 3)

ln
(

�reγ

2

) + O(r) (D = 2)(
r − 1

�

) + O(r) (D = 1).

(24)

The contact condition in Eq. (17) can then be written in terms
of the reference state as

lim
r→0

lim
ε→0

〈
r
∣∣�ε − S�φ�

ε

〉 = S�

TD(E�)
. (25)

In the configuration space, the state |�ε − S�φ�
ε 〉 is a smooth

function for (r,ε) close to (0,0). It is thus possible to commute
the r → 0 and ε → 0 limits in Eq. (25):

lim
r→0

lim
ε→0

〈
r|�ε − S�φ�

ε

〉 = lim
ε→0

lim
r→0

〈
r
∣∣�ε − S�φ�

ε

〉
. (26)

For particles moving in the presence of an external potential,
the source amplitude in configuration space depends on the
center-of-mass coordinates of the interacting pair. Hence, in
general situations the source amplitude is replaced by a state
associated with the center of mass of the interacting pair:

S� −→ |S�〉. (27)

Finally, the Bethe-Peierls condition can be written without
specifying any representation as

lim
ε→0

〈
0r

∣∣�ε − S�φ�
ε

〉 = |S�〉
TD(E�)

. (28)

Equation (28) is, by construction, invariant in a change of
� ∈ R+: as is shown in the next section, one recovers the so-
called � freedom of the � potential [26]. This freedom permits
one to simplify exact calculations without introducing any
approximation, or also to improve approximate schemes [26,
40,41]. Moreover, the ε → 0 limit can be taken equivalently
as follows,

lim
ε→0

〈
δD
ε

∣∣�ε − S�φ�
ε

〉 = |S�〉
TD(E�)

, (29)

or also by substituting the ket in the left-hand side of Eq. (29)
by its ε → 0 limit:

lim
ε→0

〈
δD
ε

∣∣� − S�φ�
〉 = |S�〉

TD(E�)
. (30)

The contact conditions in Eqs. (28)–(30) can be expressed in
any desired representation by inserting a closure relation in the
scalar product concerning the relative particle. For example
in the momentum representation, one can insert the closure
relation ∫

dDk

(2π )D
|k〉〈k| = I (31)

at the right of the bra 〈δD
ε | in Eq. (30), and this gives

lim
ε→0

(∫
dDk

(2π )D
χε(k)〈k|� − S�φ�〉

)
= |S�〉

TD(E�)
. (32)

In the next sections, it is shown that Eqs. (28)–(30) allow one to
obtain in a simple way the standard integral equations of few-
body problems in the zero-range limit and also to compute the
induced scattering resonances and related scattering problems
in the presence of a harmonic transverse confinement. As a
conclusion of this part, it is interesting (and useful) to note that
for D = 3 or D = 1, it is possible to eliminate the presence of
the reference function in the contact condition by performing a
specific limit on �. For D = 3, in the � → 0 limit the contact
condition can be written as

lim
ε→0

∂ε

(
ε
〈
δD=3
ε

∣∣�〉) = µ|S�〉
2πh̄2a3

. (33)

Equation (33) can be written in the following alternative form:

Reg
ε→0

〈
δD=3
ε

∣∣�〉 = µ|S�〉
2πh̄2a3

, (34)

where Reg
ε→0

extracts the regular part of 〈δD=3
ε |�〉 in the limit

where ε → 0. For D = 1, elimination of the reference function
occurs in the limit where � tends to ∞. One obtains

lim
ε→0

〈δD=1
ε |�〉 = −µa1

h̄2 |S�〉. (35)

C. Link with the s-wave � potential

A zero-range s-wave pseudopotential was introduced by
Fermi [42] in order to perform calculations in the first-order
Born approximation. Thus, the Fermi pseudopotential cannot
be used for a nonperturbative approach (for large values of a3,
for example). In the modern formulation of the zero-range
pseudopotential, the Bethe-Peierls condition is included in
the Schrödinger equation via the zero-range pseudopotential
itself [2,3]. It has been shown in the configuration space
that there exists in each dimension D a family of zero-range
potentials: the so-called � potentials [26]. This section links
the Bethe-Peierls approach and the � potential in arbitrary
representation. For this purpose, a family of operators R�

ε is
introduced. They act on a state |�ε〉 as

R�
ε |�ε〉 = ∣∣δD

ε

〉
lim
ε→0

〈
δD
ε

∣∣�ε − S�φ�
ε

〉
. (36)

For a state verifying the contact condition in Eq. (29) one has

R(1/ãD )
ε |�ε〉 = 0, (37)

where ãD is related to the scattering length aD as

ãD =
{

aD for D = 3 or D = 1,

a2e
γ /2 for D = 2.

(38)

These regularizing operators satisfy two other properties:(i)for
a regular state (S� = 0), thus R�

ε |�〉 = |δD
ε 〉〈0r|�〉, and (ii)

R�
ε |φ�

ε 〉 = 0.
Explicit expressions for R�

ε can be found without specify-
ing any representation as follows:

R�
ε

∣∣�ε

〉 = |δD
ε

〉
lim
ε→0

r�
ε

[〈δD
ε

∣∣�ε

〉]
, (39)
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where r�
ε is an operator defined in each dimension as

r�
ε [ · ] =

⎧⎪⎪⎨
⎪⎪⎩

[(
∂ε + √

π
2 �

)
ε · ]

(D = 3)[(
1 + ε

2 ln(eγ �2ε2/2)∂ε

) · ]
(D = 2)[(

1 + √
π
2

1
�

∂ε

) · ]
(D = 1).

(40)

Expressions of r�
ε in Eq. (40) depend on the choice made

for the short-range functions 〈r|δD
ε 〉, given here by Eq. (20).

The source term in the stationary Schrödinger equation can be
expressed in terms of R�

ε by using Eqs. (28) and (36):

(H0 − E) |�ε〉 + TD(E�)R�
ε |�ε〉 = 0. (41)

In the limit ε → 0, the pseudopotential in this equation
coincides exactly with the � potential introduced in Ref. [26],
where the coupling constant g� is nothing but the transition
matrix at energy E�:

g� = TD(E�). (42)

D. Context of resonant scattering

The zero-range approximation is especially interesting in
the regime of parameters where the pairwise potential leads to
a resonant scattering at low collisional energy. In this regime,
the cross section proportional to |fD|2 has a large value
at small relative momentum (k0bD � 1) and expressions in
Eqs. (9)–(12) are good approximations. For D = 3, this
corresponds to the regime where the scattering length a3 is
large in absolute value as compared to the potential radius b3

and the maximum is at k0 = 0. This regime can be achieved by
using the FR mechanism (see Ref. [20] for a general review of
FR in ultracold atoms). The FR involves the coupling between
atoms (in the “open channel”) and a molecular state (in the
“closed channel”) characterized by a size of the order of
the potential range b3. This two-channel description provides
the expression of the scattering length (a3) as a function
of the external magnetic field B in the vicinity of a given
resonance located at B = B0 which can be modeled by the
formula [43]

a3 = abg

(
1 − �B

B − B0

)
. (43)

In Eq. (43), �B is the width of the magnetic FR and abg is
the “background” scattering length, i.e., the scattering length
away from the FR. The magnetic width (�B) can be also
characterized by the “width radius” R� defined by

R� = h̄2

mabgδµ�B , (44)

where δµ is the difference of magnetic moment for an atomic
pair in the open- and the closed-channel [20,44]. In the vicinity
of a broad resonance, R� is of the order of (or smaller than) b3,
the 3D scattering amplitude can be approximated by Eq. (9) in
a large interval of momentum where |k0|b3 � 1.

As shown in the next section, the resonant behavior in the
low-dimensional atomic waveguide can be reached by tuning
the length atrans of the transverse confinement and/or the 3D
scattering length. For D = 1 the resonant regime occurs in the
limit where the 1D-scattering length a1 is small with respect to

the transverse length (i.e., |a1| � b1) and also for a vanishing
relative momentum k0 → 0. In 2D, the maximum in |f2|2
occurs at the momentum k0 = 2/(eγ a2) (where |f2| = 2/π )
and the resonant regime is thus reached at low-energy if and
only if the 2D scattering length is large as compared to the
transverse length (i.e., a2 � b2).

In the resonant regimes defined above, the probability
of scattering for two colliding particles is large so that the
pairwise short-range potential affects the form of the wave
function at interparticle distances which are large with respect
to the potential radius bD . More precisely, the scattering states
in Eq. (5) can be decomposed in an incoming part |φinc〉 = |k0〉
and a scattered part |φscatt〉. At large distance and in the resonant
regime,

∣∣∣∣ 〈r|φscatt〉
〈r|φinc〉

∣∣∣∣ =
r�bD

⎧⎪⎪⎨
⎪⎪⎩

|a3|/r (D = 3)
√

eγ a2/
√

πr (D = 2)

1 (D = 1).

(45)

For D = 3 or D = 2 this ratio is greater than or of the
order of unity for bD � r < |aD|, where |aD| is arbitrarily
large and is equal to unity for arbitrary large distance in
one-dimensional systems (D = 1). The zero-range potential
approach is a formalism which permits one to evaluate
accurately the wave function in configurations where particles
are outside the potential radius while configurations where
two or more particles are inside the potential radius are not
reliably described. Consequently, the Bethe-Peierls asymptotic
approach is very well suited for studying systems in the
resonant regime where the wave function is modified by
the interaction at interparticle distances which are large as
compared to the potential radius.

In the 3D space and for a positive scattering length, the on-
shell transition matrix T3 in Eq. (7) has a real pole at negative
energy E2 = −h̄2/(2µa2

3). In the resonant regime, this pole
is associated with the existence of a shallow dimer which
is thus very well described in the zero-range approach (the
probability that the relative pair has a radius greater than the
potential radius b3 is exp(−2b3/a3) ∼ 1). For D = 2, the pole
is at E2 = −2h̄2/[µa2

2 exp(2γ )], and in the resonant regime it
is also the signature of the existence of a shallow dimer. For
D = 1, in the resonant regime (a1 → 0) the approximation
of the transition matrix in Eq. (7) doesn’t possess a negative
low-energy pole and next-order terms in the energy expansion
are needed to find the pole corresponding to the lowest bound
state [45].

III. DIMENSIONAL REDUCTION

In this section, the dimensional reduction issue is solved
by using the zero-range approximation with the Bethe-Peierls
condition expressed through Eq. (34). This section gives
alternative derivations of the results given in Refs. [4–7].
The problematic of the 3D→1D (respectively, 3D→2D)
dimensional reduction is as follows: two particles move freely
in 1D (respectively, 2D) while they are confined in the
transverse direction by an atomic waveguide built from a 2D
(respectively, 1D) trapping potential. The collisional energy
is such that at large interatomic distances, the particles are
confined in the ground state of the trapping potential. Solving
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the issue amounts to finding the low-energy transition matrix
of this low-dimensional quasi-2D (respectively, quasi-1D)
scattering process as a function of the waveguide parameters
and of the 3D scattering length a3. In what follows only
the case of harmonic trapping where the center of mass and
relative motions decouple is considered. In the center-of-mass
frame the source amplitude S� is constant and the scattering
state can be written as

|�〉 = |�(0)〉 + |� int〉, (46)

where |�(0)〉 is the incoming wave and the “interacting part”
is

|� int〉 = S�

E + i0+ − H0
|0r〉. (47)

In Eq. (47), the source amplitude S� is found from the Bethe-
Peierls condition by solving the equation

〈0r|�(0)〉 + Reg
ε→0

〈
δD=3
ε

∣∣� int〉 = µS�

2πh̄2a3
. (48)

These quasi-1D and quasi-2D scattering problems have been
initially solved by using the Bethe-Peierls method in the
configuration space in Ref. [4] and Refs. [5,6]. In this section,
an alternative derivation is given in order to illustrate the
formalism introduced in the previous section.

A. Linear atomic waveguide

The 3D→1D reduction problem is considered here in the
case where the two colliding atoms are confined in an isotropic
two-dimensional harmonic trap while they move freely along
the third direction (z). In this case, the problem can be
solved in the center-of-mass frame where the noninteracting
Hamiltonian is

H0 = − h̄2

2µ
∂2
z + H2D, (49)

and H2D is the Hamiltonian for the transverse motion:

H2D = − h̄2

2µ

(
∂2
x + ∂2

y

) + 1

2
µω2

⊥(x2 + y2) − h̄ω⊥. (50)

The linear atomic waveguide is characterized by the transverse
length,

a⊥ =
√

h̄

µω⊥
, (51)

and the zero-range approximation of the D = 3 pairwise
potential is justified in the limit where a⊥ � b3. In Eq. (50),
the zero-point energy has been subtracted. That way, the
energy E of the scattering states is measured with respect to
the continuum threshold. In this quasi-1D scattering problem
at energy E = h̄2k2

0/2µ, the incoming wave for the relative
particle (state |�(0)〉) in Eq. (46) has a momentum k0 along z

and is in the ground state of the transverse 2D oscillator:

|�(0)〉 = |nx = 0〉|ny = 0〉|kz = k0〉, (52)

where nx and |nx〉 (respectively, ny and |ny〉) are the quantum
number and eigenstate of the 1D harmonic oscillator of atomic

frequency ω⊥ and mass µ along x (respectively, y). The system
is quasi-1D for collisional energies such that

E < E1D
trans, (53)

where E1D
trans = 2h̄ω⊥. Equation (53) defines the monomode

regime of the atomic waveguide such that outgoing particles
are trapped at large relative distances in the ground state of
the transverse trap. The contribution of the incoming wave in
Eq. (48) is

〈
0r

∣∣�(0)
〉 = φ0(0)2 = 1√

πa⊥
, (54)

where φn(x) = 〈x|n〉 is given by

φn(x) =
exp

(
−x2

2a2
⊥

)
π1/4√a⊥

Hn

(
x

a⊥

)
. (55)

In the calculation of 〈δD=3
ε |� int〉, the quantum numbers of

the noninteracting Hamiltonian are introduced directly by
inserting the closure relation:∫ +∞

−∞

dkz

2π
|kz〉〈kz|

∞∑
nx=0

|nx〉〈nx |
∞∑

ny=0

|ny〉〈ny | = I. (56)

Only even values of nx and ny give a nonvanishing contribu-
tion, and one obtains

〈
δD=3
ε

∣∣� int
〉 = S�

h̄ω⊥

∫ +∞

−∞

dkz

2π

∞∑
p,q=0

exp

(
− k2

z ε
2

4

)

×
〈
δD=1
ε

∣∣2p
〉〈
δD=1
ε

∣∣2q
〉
φ∗

2p(0)φ∗
2q(0)

τ − k2
z a

2
⊥

4 − p − q
, (57)

where the dimensionless energy variable τ is defined by

τ = E

2h̄ω⊥
+ i0+. (58)

The behavior of 〈δD=3
ε |� int〉 in the limit where ε vanishes

is more easily obtained in the domain of negative collisional
energies (τ < 0) than in the domain of positive collisional
energies E > 0 and are related the each to the other by
analyticity. For τ < 0 one can use the identity

1
k2
z a

2
⊥

4 + n + p − τ
=

∫ ∞

0
due

−u

(
k2
z a2⊥

4 +n+p−τ

)
, (59)

which allows one to decouple the discrete summations from
the integration over kz in Eq. (57). From Eq. (55), one can
deduce the following limit:

lim
ε→0

∞∑
p=0

〈
δD=1
ε

∣∣2p
〉
φ∗

2p(0)e−pu = |φ0(0)|2√
1 − e−u

. (60)

Using Eq. (60) and integrating over kz in Eq. (57) gives

〈
δD=3
ε

∣∣� int
〉 =
ε→0

−µS�

2π3/2h̄2a⊥

∫ ∞

0

du√
u + ε2

a2
⊥

euτ

1 − e−u
. (61)
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In the limit where ε → 0, this expression diverges as 1/ε and
its regular part coincides with a Hadamard’s finite part [46,47]:

Reg
ε→0

〈
δD=3
ε

∣∣� int
〉 = µS�

2π3/2h̄2a⊥
Pf

∫ ∞

0

du√
u

euτ

1 − e−u
. (62)

One recognizes in Eq. (62) an expression similar to the integral
representation of the Hurwitz ζ function ζ (s,z) defined for
Re(s) > 1 and 0 < z < 1 by [48]

ζ (s,z) = 1

�(s)

∫ ∞

0
dt

ts−1e−tz

1 − e−t
. (63)

However, in Eq. (63) the integral diverges for s = 1/2. The
Hadamard’s finite part in Eq. (62) permits one to achieve a
meromorphic continuation in the variable s of Eq. (63) and to
identify the function ζ (1/2,z) [49]. Hence,

S� = 2π1/2h̄2

µ
[
ζ

(
1
2 , − τ

) + a⊥
a3

] . (64)

For positive energies and in the monomode regime
(0 < E < 2h̄ω⊥), the scattering state written in the con-
figuration representation in Eq. (46) has a nonevanescent
contribution at large relative length z � a⊥, in the subspace
of the transverse ground state only. This property allows one
to identify a quasi-1D scattering process with

〈z,nx = 0,ny = 0|�〉
=

|z|�a⊥
exp(ik0z) − iµS�√

πh̄2a⊥k0
exp(ik0|z|), (65)

and a⊥ plays the role of a 1D potential radius (i.e., b1 ∼ a⊥).
The low-energy scattering amplitude f 3D→1D of this quasi-1D
system is thus

f 3D→1D(k0) = − iµS�√
πh̄2a⊥k0

. (66)

In the |kz〉 representation, the scattering states read

〈kz,nx = 0,ny = 0|�〉
= (2π )δ(kz − k0) + S�

√
πa⊥

(
E + i0+ − h̄2k2

z

2µ

) , (67)

so that the quasi-1D scattering transition matrix T 3D→1D can
be expressed as

T 3D→1D = S�√
πa⊥

. (68)

Finally, from Eqs. (64) and (68) one obtains

T 3D→1D = 2h̄2

µa⊥
× 1

ζ
(

1
2 , − τ

) + a⊥
a3

. (69)

In the low-energy limit (k0a⊥ � 1),

ζ

(
1

2
, − τ

)
�

τ→0

1√−τ
+ ζ

(
1

2

)
, (70)

and for positive energies
√−τ = −ik0a⊥/2. From Eq. (7),

one can then identify a 1D scattering length which is a

function of the transverse length a⊥ and of the 3D scattering
length a3 [45]:

a1 = −a⊥
2

[
a⊥
a3

+ ζ

(
1

2

)]
. (71)

B. Planar atomic waveguide

In the 3D→2D reduction problem, the two colliding
particles are confined in a planar harmonic waveguide of
frequency ωz along the z direction while they move freely
in the two other directions. The noninteracting Hamiltonian in
the center-of-mass frame reads

H0 = − h̄2

2µ

(
∂2
x + ∂2

y

) + Hz, (72)

with the 1D-harmonic trap along z,

Hz = − h̄2

2µ
∂2
z + µ

2
ω2

zz
2 − h̄ωz

2
. (73)

In Eq. (73) the zero-point energy of the transverse trap has been
subtracted, so that, similarly to the previous 3D→1D reduction
problem, the energy of an eigenstate is measured with respect
to the continuum threshold and coincides with the collisional
energy. In what follows, |nz〉 is the eigenstate of quantum
number nz for the 1D harmonic oscillator of frequency ωz and
mass µ. The subsequent derivation supposes that the 3D zero-
range approximation is justified, i.e., that the atomic waveguide
is such that

az � b3, (74)

where az is the characteristic length of the atomic waveguide,

az =
√

h̄

µωz

. (75)

In the quasi-2D scattering problem the incoming state is

|�(0)〉 = |k2D = k0〉|nz = 0〉, (76)

where k0 is the 2D wave relative wave-vector of the incoming
wave and k2D = kx êx + ky êy is the 2D collisional relative
momentum. The collisional energy is E = h̄2k2

0/2µ and the
monomode regime condition is given by

E < E2D
trans, (77)

where E2D
trans = h̄ωz. Equation (77) ensures that the system

is quasi-2D; i.e., the colliding particles are asymptotically
trapped in the ground state of the transverse trap. The behavior
of 〈δD=3

ε |� int〉 in the limit where ε → 0 is obtained by using
the same techniques as for the 3D→1D reduction problem.
The quantum numbers of the free Hamiltonian are introduced
by insertion of the closure relation:

∫
d2k2D

(2π )2
|k2D〉〈k2D|

∞∑
nz=0

|nz〉〈nz| = I. (78)
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In the 3D Bethe-Peierls asymptotic condition, only even values
of nz contribute and one obtains

〈
δD=3
ε

∣∣� int
〉 = µS�a2

z

4πh̄2

∫ ∞

0
k2Ddk2D

×
∞∑

p=0

exp
(− k2

2Dε2

4

) 〈
δD=1
ε

∣∣2p
〉
φ∗

2p(0)

τ − k2
2Da2

z

4 − p
,

(79)

where the dimensionless energy variable τ is defined by

τ = E

2h̄ωz

+ i0+. (80)

The discrete summation in Eq. (79) is performed in the domain
τ < 0 by using the transformation of Eq. (59) together with
the identity of Eq. (60). After integration over k2D, the regular
part of 〈δ3

ε |� int〉 can be expressed in the limit where ε → 0 as

Reg
ε→0

〈
δ3
ε

∣∣� int
〉 = − µS�

2πh̄2 |φ0(0)|2J (τ ), (81)

where the function J (τ ) is defined in the domain τ < 0 by

J (τ ) = Pf

∫ ∞

0

du

u

exp(τu)√
1 − exp(−u)

. (82)

From Eq. (48), one finally obtains

S� = 2πh̄2φ0(0)

µ
[

1
a3

+ |φ0(0)|2J (τ )
] . (83)

Projection of the wave function on the ground -state of the
1D transverse harmonic oscillator 〈k2D,nz = 0|�〉 gives the
quasi-2D transition matrix:

T 3D→2D = − πh̄2

µ
[√

πaz

2a3
+ J (τ )

2

] . (84)

In the domain of positive energy Eq. (80) is continued
analytically from the identity

J (τ ) = ln

(
− B

2πτ

)
+

∞∑
n=1

ln

(
n

n − τ

)
(2n − 1)!!

(2n)!!
, (85)

where B � 0.9049 is defined by [39]

ln

(
Beγ

2π

)
=

∫ ∞

0
du

(
u−1

√
1 − e−u

− 1

u3/2
− 1

1 + u

)
(86)

and γ = 0.5772 . . . is the Euler’s constant. The 2D low-energy
condition is given by

|E| � h̄ωz (87)

and az plays the role of a 2D-potential radius, i.e., b2 ∼ az.
Only the first logarithmic term in Eq. (85) contributes at the
lowest order in the limit of Eq. (87), and one can identify the
resulting expression of the quasi-2D transition matrix T 3D→2D

with the 2D low-energy transition matrix T2 in Eq. (7). The
2D scattering length a2 of this quasi-2D scattering problem
can thus be expressed in terms of az and of the 3D scattering
length a3 [6,7,41] as

a2 = aze
−γ

√
2π

B
exp

(
− az

√
π

2a3

)
. (88)

It is interesting to discuss a little bit further the condition
for having a low-energy resonant behavior in this quasi-2D
system. The 2D cross section (this is a length) is proportional
to |T 3D→2D(k0)|2/k0 and a maximum occurs in the low-energy
regime Eq. (87) for

az

a3
= 1√

π
ln

(
πE

Bh̄ωz

)
. (89)

The right-hand side of Eq. (89) is large and negative which
shows that the resonance occurs for sufficiently large values of
|a3| with respect to az in the domain of negative 3D scattering
lengths (a3 < 0). At fixed value of the collisional energy E

and of the 3D scattering length, the resonance can be reached
by tuning the harmonic frequency of the atomic waveguide:
this is the so-called quasi-2D confined induced resonance first
found in Ref. [5].

IV. FORMALISM FOR N-BODY SYSTEMS

A. k representation

In this section the Bethe-Peierls method is applied to few-
and many-body systems in the k representation. The system is
composed of N particles of respective masses m1,m2, . . . ,mN

and of momenta k1,k2, . . . ,kN . For convenience the set of
momenta is denoted by the short-hand notation {k}. The
relative and total momenta of a given pair of particles (ij )
are denoted by

kij = mj ki − mikj

mi + mj

, K ij = ki + kj , (90)

and the reduced mass of the pair (ij ) is denoted µij :

µi,j = mimj

mi + mj

. (91)

It is also convenient to introduce the set of momenta denoted
{ξ ij } with {ξ ij } = ξ

ij

1 ,ξ
ij

2 , . . . ,ξ
ij

N , where

ξ ij
n =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

K ij

√
mi

2(mi+mj ) for n = i

K ij

√
mj

2(mi+mj ) for n = j

kn otherwise,

(92)

This last notation permits one to isolate in the kinetic energy
the contribution of the relative particle (ij ) from the N − 1
other momenta:

N∑
n=1

k2
n

mn

= k2
ij

µi,j

+
N∑

n=1

(
ξ

ij
n

)2

mn

. (93)

A nonvanishing source amplitude |Si�j

� 〉 is associated with
any pair of particles interacting via the short-range pairwise
potential in the many-body state |�ε〉. In the case where the
system is composed of particles with spin, in what follows
|�ε〉 denotes the projection over a given spin configuration
of the many-body state including the symmetry imposed by
the quantum statistics. The free Hamiltonian of the system
(which may include an external potential) is denoted H0, and
the N -body stationary state at energy E verifies

(H0 − E)|�ε〉 = −
∑
i<j

∣∣(ij ) : δD
ε

〉∣∣Si�j

�

〉
. (94)
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In Eq. (94), |(ij ) : δD
ε 〉 is the state |δD

ε 〉 for the relative particle
(ij ) of momentum kij , and the source amplitude |Si�j

� 〉 is a
state for the N − 1 other particles of momenta {ξ ij }. If the pair
(ij ) does not interact, then |Si�j

� 〉 = 0; otherwise it satisfies
the Bethe-Peierls contact condition,

lim
ε→0

〈
(ij ) : δD

ε

∣∣(|�〉 − |(ij ) : φ�〉∣∣Si�j

�

〉) =
∣∣Si�j

�

〉
TD(E�)

, (95)

where the reference state |(ij ) : φ�
ε 〉 is defined in the k

representation as

〈kij |(ij ) : φ�
ε 〉 = −2µi,j

h̄2

χε(kij )

k2
ij + �2

. (96)

In what follows Eqs. (94) and (95) are used in the case
where there is no external potential and |�(0)〉 denotes
the complementary solution of Eq. (94) which satisfies the
boundary conditions of the problem considered (for example,
an incoming plane wave for a scattering problem). The
many-body wave function can then be written as

〈{k}|�ε〉 = 〈{k}|�(0)〉 + GE({k})
∑
i<j

χε(kij )〈{ξ ij }|Si�j

� 〉,

(97)

where GE({k}) is the N -body Green’s function in the
k representation:

GE({k}) = 1

E + i0+ − ∑N
n=1

h̄2k2
n

2mn

. (98)

For each interacting pair, the contact condition Eq. (95)
gives in the k representation an integral equation in terms
of the source amplitudes and of the complementary solution
|�(0)〉. Interestingly, one can extract the contribution of the
interacting pair (ij ) in the contact condition Eq. (95) without
any integration by using the fact that this equation is invariant
in a change of � ∈ R+ (i.e., by using the � freedom). To this
end, one expresses the Green’s function in Eq. (97) as

GE({k}) = 1

E
(ij )
col + i0+ − h̄2k2

ij

2µi,j

, (99)

where E
(ij )
col is the collisional energy of the pair (ij ) defined by

E
(ij )
col = E −

N∑
n=1

h̄2
(
ξ

ij
n

)2

2mn

. (100)

It is the energy of the pair (ij ) in its own center-of-mass frame
while the other particles do not interact for a given set of
momenta {k} and a total energy E.

For a negative energy (E < 0) in which case |�(0)〉 = 0,
without loss of generality one can make the particular choice
�2 = −2µi,jE

(ij )
col /h̄2 in Eq. (95). That way, the term involving

the reference state φ� exactly cancels with the term associated
with the source amplitude of the pair (ij ) (|Si�j

� 〉). By
analytical continuation, the same integral equation holds for
E > 0 (in which case |�(0)〉 �= 0). Finally, assuming that the

ε → 0 limit is well defined, for each interacting pair one
obtains the following integral equation:

∑
n<p

(n,p)�=(i,j )

∫
dDkij

(2π )D
GE({k})〈{ξnp}∣∣Sn�p

�

〉

=
〈{ξ ij }∣∣Si�j

�

〉
TD

(
E

(ij )
col + i0+) −

∫
dDkij

(2π )D
〈{k}|�(0)〉. (101)

One has to notice that the integrals in the first line of Eq. (101)
are performed with the constraint that {ξ ij } is held fixed (but
{ξnp} is not !).

B. Second quantization

In this section only fermionic particles of the same mass m

and two spin-components are considered. Generalization to
other systems gives similar equations. The creation and
annihilation operator of an atomic wave of momentum k
for a spin σ are denoted a

†
k,σ and ak,σ with the standard

anticommutation rule: {ak,σ ,a
†
k,σ ′ } = (2π )3δ(k − k′)δσσ ′ and

{ak,σ ,ak,σ ′ } = 0.

The general expression of the � potential is a simple way to
write the Hamiltonian in its second quantized form. Using the
definition of the � potential for finite values of ε in Eq. (41),
the Hamiltonian can be expressed as

Hε =
∫

dDk

(2π )D
∑

σ

h̄2k2

2m
a
†
k,σ ak,σ + TD(E�)

2

∫
dDK

(2π )D

×
∫

dDk′

(2π )D
χε(k′)a†

1
2 K−k′,↑a

†
1
2 K+k′,↓

(102)

× lim
ε→0

r�
ε

[ ∫
dDk

(2π )D
χε(k)a 1

2 K−k,↓a 1
2 K+k,↑ ·

]
,

where the dot (·) after the annihilation operator a 1
2 K+k,↑

reminds that the limit ε → 0 depends on the many-body state
on which Hε applies.

In the hypothesis where the few- or many-body state |�ε〉
is well defined in the zero-range limit (where only the Bethe-
Peierls contact condition is used), the mean energy of the
system 〈�ε |Hε |�ε〉 is a regular function of ε and the energy
theorem [27–31] follows from the identity:

lim
ε→0

r (1/ãD )
ε [〈�ε |Hε |�ε〉] = 〈H 〉. (103)

The state |�ε〉 verifies the contact condition for each inter-
acting pair; thus using the property in Eq. (37), the action
of the operator limε→0 r

(1/ãD)
ε [·] on the interacting term in

〈�ε |Hε |�ε〉 gives exactly zero and

〈H 〉 = lim
ε→0

r (1/ãD)
ε

[ ∫
dDk

(2π )D
∑

σ

h̄2k2

2m

〈
a
†
k,σ ak,σ

〉
ε

]
. (104)

The energy of the system can be thus expressed in terms of the
one-body density:

nk,σ = lim
ε→0

〈
a
†
k,σ ak,σ

〉
ε
. (105)
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In the limit where ε → 0, one obtains from Eq. (97) the high-
momentum behavior of nk,σ :

nk,σ =
k→∞

S

k4
+ O

(
1

k6

)
, (106)

where S is spin independent since the interaction only occurs
between particles of different spin. Hence, the integrand in
Eq. (104) behaves as 1

k2 at high momentum and the action of
the regularizing operator gives

〈H 〉 =
∫

dDk

(2π )D
∑

σ

[
h̄2k2

2m
nk,σ − h̄2Sã2

D

2m
(
1 + k2ã2

D

)]
, (107)

where the use of the length ãD defined in Eq. (38) permits one
to gather in a single form the energy theorems for the three
different dimensions.

V. FEW-BODY BOUND STATES

A. Efimov states

In this section, the generic case where the Efimov effect
occurs is considered: three identical bosons of mass m interact
in 3D with a pairwise interaction of vanishing range with
respect to the 3D scattering length a3 [50,51]. These states have
been observed for the first time in ultracold atoms [52–55]. In
what follows, some universal properties of Refs. [35,50,51] are
recovered from the STM equation by using the nodal condition
introduced in Ref. [34]. However, it is worth pointing out that
deviations from universal predictions which are observed in
experiments can be taken into account through finite-range
models [56–59]. The energy of a trimer E = E3 in its center-
of-mass frame is negative (and less than the dimer’s energy E2

if it exists) so that the complementary solution in Eq. (101) is
zero (|�(0)〉 = 0). The binding wave number q > 0 of a trimer
is defined from

E3 = −h̄2q2

m
. (108)

The Bose statistics imposes that the source amplitudes for each
pair of particles coincide with the same function:〈{ξ 12}∣∣S1�2

�

〉 = 〈{ξ 13}∣∣S1�3
�

〉 = 〈{ξ 23}∣∣S2�3
�

〉
. (109)

As a consequence of translation invariance, the source ampli-
tudes in the center-of-mass frame can be written as〈{ξ 12}∣∣S1�2

�

〉 = (2π )3δ(k1 + k2 + k3) F(k3). (110)

The integral eigenequation, Eq. (101), takes the form

F(k)

f3
(
i

√
q2 + 3k2

4

) = 8π

∫
d3u

(2π )3

F(u)

u2 + k2 + k.u + q2
.

(111)

Equation (111) is the so-called STM equation [32]. This
equation is rotationally invariant and can thus be studied in
each momentum sector. In Ref. [60], Danilov showed that as
it stands Eq. (111) is ill defined: it supports a continuum of
negative energy solutions in the s-wave sector of F (k). Hence,
the Bethe-Peierls asymptotic method, which is at first sight
adapted for modeling the three-boson resonant problem, does
not permit one to derive a well-defined eigenequation. The

s-wave component of the source amplitude F(k) is denoted as,∫
d�

4π
F(k) = φ(k), (112)

and φ(k) verifies the integral equation,

φ(k)

f3
(
i

√
q2 + 3k2

4

) = 2

π

∫ ∞

0
du φ(u)Kq(k,u), (113)

where the s-wave kernel of the STM equation is given by

Kq(k,u) = u

k
ln

(u2 + k2 + q2 + ku

u2 + k2 + q2 − ku

)
. (114)

The fact that there exists a continuum of negative energy
solutions means that the Bethe-Peierls model is not self-adjoint
for the three-boson problem. Danilov found a way to restore
the self-adjointness by introducing a supplementary condition
on the high-momentum asymptotic behavior of the function
φ(k) [60]. The method of Danilov is based on the fact that, for
all values of q and a �= 0, Eq. (113) supports solutions with
the asymptotic behavior:

φ(k) ∼
k→∞

Akis0−2 + Bk−is0−2, (115)

where A and B are two constants and s0 solves the equation
sin(πs0/6) = √

3s0 cos(πs0/2)/8 (s0 � 1.00624 . . . ). The
zero-range approach is made self-adjoint if one fixes the
asymptotic phase shift between the two conjugate behavior
k±is0 for all values of a and q. However, Minlos and
Fadeev showed that even with this supplementary phase-shift
condition the spectrum is not bounded from below [61]: this
is the so-called Thomas collapse which is characteristic of
zero-range forces [33]. In 1970, Efimov solved the three-boson
problem in the resonant regime by introducing the notion of
a three-body parameter which is also in the zero-range limit,
a way to fix the asymptotic phase-shift in Eq. (115). In the
k representation it is referred in what follows as κ� and is
defined through the asymptotic behavior of φ(k):

φ(k) ∝
k→∞

1

k2
sin

[
s0 ln

(
k
√

3

κ�

)]
. (116)

By construction the three-body parameter is not unique
[Eq. (116) is invariant in a change κ� → κ� exp(π/s0)]. At
unitarity (i.e., |a| → ∞ and b3 → 0), Efimov showed that the
spectrum of trimers is characterized by an accumulation point
at zero energy: binding wave numbers of the trimers are related
the each to the others by a scaling factor,

qn = qpe−(n−p)π/s0 , (117)

where (n,p) ∈ Z2. Interestingly, in Ref. [62] the analytical
expression for the source amplitude of the trimers has been
found at unitarity:

φ(k) = 1

k

√
q2 + 3k2

4

sin

[
s0 arcsinh

(
k
√

3

2q

)]
. (118)

In particular, this result shows that the choice made for the
definition of κ� in Eq. (116) is such that the spectrum of
the zero-range theory at unitarity is qn = κ� exp(nπ/s0) with
n ∈ Z. The shape of the function k2φ(k) of Eq. (118) is
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0

FIG. 1. Shape of the expession of k2φ(k) in Eq. (118) plotted in
a semi-log plot as a function of k/q.

given in Fig. (1). For increasing values of k starting from
k = 0, the first zero of φ(k) is located at the momentum
k = 2q√

3
sinh(π/s0). Using, this property, it is possible to filter a

set of solutions of Eq. (113) satisfying Eqs. (116) and (117) for
sufficiently high quantum numbers (shallow states) and with
a spectrum bounded from below. This is done by imposing a
nodal condition on the eigenstates,

φ
(
kreg
p

) = 0, (119)

where the node k
reg
p is chosen among the set:

kreg
p = κ�

√
3
epπ/s0 p ∈ Z. (120)

The position of the node in Eq. (120) fixes the min-
imum energy of the spectrum. For example if one
chooses the nodal condition for p = 2, using the fact that
exp(π/s0) � 2 sinh(π/s0), the minimum energy E0 is al-
most equal to −h̄2κ�2 exp(2π/s0)/m [with a relative error
2 exp(−2π/s0) � 3.8 × 10−3] and the spectrum at unitarity
is asymptotically (i.e., for large values of n) given by

En = −h̄2κ�2

m
exp

[−2(n − 1)π

s0

]
, n ∈ N. (121)

For a finite scattering length a3 and for k|a3| � 1, the
eigenfunctions φ(k) of Eq. (113) have the same behavior as
the unitary solutions of Eq. (118), so that Eq. (119) can be also
used as a filtering condition and permits one to recover the
universal spectrum of the zero-range theory for energies much
larger than E0. In principle, the zero-range theory also called
“universal theory” in the literature is recovered by imposing the
filtering condition at an arbitrary large node k

reg
p . To summarize

this discussion, the nodal condition in Eq. (119) has two
roles: first, it imposes the Danilov’s asymptotic phase shift
for states of sufficiently high quantum number, and second,
it imposes a minimum energy to the spectrum. For a realistic
finite-range force, the possible values of the binding wave
numbers obtained from the zero-range theory in Eq. (117) are
such that qnb3 � 1, the ground-state energy in Eq. (121) has
thus to be chosen higher than −h̄2/(mb2

3).

The nodal condition in Eq. (119) applied in Eq. (113) can
be transformed into an integral condition:

0 = − 2

π

∫ ∞

0
du φ(u)Kq

(
kreg
p ,u

)
. (122)

Subtracting Eq. (122) from Eq. (113) gives a regularized STM
equation [34]:

φ(k)

f3
(
i

√
q2 + 3k2

4

)
= 2

π

∫ ∞

0
du

[
Kq(k,u) − Kq

(
kreg
p ,u

)
]φ(u), (123)

which encapsulates the nodal condition. The Danilov-Efimov
contact condition (116) is implemented exactly in the STM
equation in the limit where the integer p tends to infinity
in Eq. (123). Numerical solutions of Eq. (123) are obtained
by introducing an ultraviolet cutoff Q in the integral. One
can verify that results are insensitive to the choice made on
the cutoff for Q � k

reg
p . For instance, considering the unitary

limit, taking the nodal condition at k
reg
1 and an uv cutoff at

5 × 102 × κ�, one finds the relative error for the ground state
equals 3.8 × 10−3 � 2 exp(−2π/s0) and for the first excited
states (n � 8) one finds a relative error less than 10−4. In
practice, the value of the scaling factor exp(2π/s0) � 515 is
relatively large, so that for the nodal condition at k

reg
2 the

spectrum is very close to the universal spectrum beginning
from the second branch (n � 1) and for an inverse scattering
length 1/|a3| smaller or of the order of κ�.

In Fig. 2, the second Efimov branch of the regularized STM
Eq. (123) with the nodal condition at k

reg
2 has been plotted as

a function of (1/a3). As in Ref. [35], the thresholds for the
appearance of the trimers are denoted by a� at the atom-dimer
continuum limit and by a´� at the three-atom continuum limit.
As a consequence of the choice of the nodal condition at k

reg
p

for a finite p, results slightly differ from the zero-range theory
in Ref. [35].

The atom-dimer scattering problem (regime where a3 > 0)
can be also solved by using the same filtering technique. The
atom-dimer scattering length is computed as a function of the
atomic scattering length a3 for a given value of the three-body
parameter κ�. To this end, the atom-dimer collisional energy
is set to zero q = 1/a3 and the ansatz for the source amplitude
is [32]

φ(k) = 2π2 δ(k)

k2
+ 4π

g(k)

k2
. (124)

Using the regularized STM equation one obtains

3g(k)a3

8
[
1 +

√
1 + 3

4 (ka3)2
]

= a2
3

1 + (ka3)2
− a2

3

1 + (
k

reg
p a3

)2

+
∫ ∞

0

du

πu2

[
K1/a3 (k,u) − K1/a3

(
kreg
p ,u

)]
g(u). (125)

The atom-dimer scattering length denoted (aad) is the zero-
momentum limit of the function g(k) and is plotted in Fig. 3
for the nodal condition taken at k

reg
2 . Figure 3 is limited to
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FIG. 2. Solid line: Second branch of the trimer’s spectrum ob-
tained with the nodal condition at k

reg
2 . Vertical dashed line: Trimer’s

appearance thresholds. Oblique dashed line: Atom-dimer continuum
limit. The values of the scattering length at the trimer’s appearance
threshold, a� � −1.51/κ� and a’∗ � .0713/κ�, are close to the results
of the “universal theory” in Refs. [35,62], a∗ � −1.507/κ� and
a’∗ � .0707/κ�. The difference is due to the fact that the zero-range
theory is recovered only for a nodal condition at an arbitrarily large
k

reg
p .

atomic scattering lengths a3 much smaller than 1/k
reg
2 , i.e., in

a regime where the nodal condition permits to recover the
universal theory with high accuracy. The scattering length
aad diverges at the threshold of appearance of an Efimov’s
trimer [a3 � a∗ exp(nπ/s0), n ∈ N] and thus exhibits the log
periodicity which is a characteristics of the Efimov physics.

In Ref. [63] another regularizing technique of the STM
equation was derived in the framework of the effective field
theory. In this last formulation, the role of the integral
counterterm explicitly depends on the uv integral cutoff of
the integral (Q) in such a way that the three-body parameter
has a fixed value for all Q. In Refs. [64,65] a subtraction
technique has been also introduced in order to regularize
the atom-dimer scattering problem. In these last references,
the subtraction is made at zero momentum and therefore
imposes the exact value of the atom-dimer scattering length.

FIG. 3. Atom-dimer scattering length aad computed with the
nodal condition at k

reg
2 and plotted in a semi-log scale as a function

of κ�/a3 for a3k
reg
2 � 1.

FIG. 4. Schematic representation of the momentum coordinates
used for the source amplitude associated with the contact condition
between particles 1 and 3.

Thus, this regularization scheme does not correspond to the
nodal condition of Eq. (119). It is interesting to write down
the equation for the atom-dimer scattering amplitude g(k)
obtained within this scheme,

3g(k)a3

8
[
1 +

√
1 + 3

4 (ka3)2
] − 3aada3

16

= a2
3

1 + (ka3)2
− a2

3

+
∫ ∞

0

du

πu2

[
K1/a3 (k,u) − 2u2a2

3

1 + u2a2
3

]
g(u), (126)

and to compare it with Eq. (125).

B. Heteronuclear trimers

As a consequence of interesting predictions [8,16,17,66–
73], heteronuclear systems play an important role in ultracold
physics. In this section, the eigenequation for heteronuclear
trimers is considered without external potential. However, it
is worth noticing that an external potential can deeply change
the physical properties of the system as it is the case, for
example, in systems of mixed dimensions [69,70]. Particles
(labeled by i) can be either bosons or fermions and have
a mass mi which can take two possible values: mi = m

or mi = M . Bosons (respectively, fermions) of mass M

are denoted by B (respectively, by F ) while bosons (re-
spectively, fermions) of mass m are denoted by b (respec-
tively, by f ). Fermionic particles are supposed to have two
possible internal states denoted ↑ and ↓. The configurations
studied here are thus constructed from the set of particles
{b,B,f↑,f↓,F↑,F↓}. The present study is also restricted to
2 + 1 few-body systems where the two-body interaction is
nonvanishing for heterogeneous pairs of particles only. As an
example in the case of (bF↑) interacting pairs, other pairs like
(bF↓) or (bB) are not interacting. For fermions neglecting
(F↑F↑) or (f↑f↑) interactions is an exact assumption which
follows from the Pauli principle. However, neglecting (BB)
or (bb) interactions is not an exact hypothesis and only
means that these interactions are negligible with respect to
a heteronuclear interaction. Thus the true interatomic forces
of the heteronuclear interacting pairs are in the vicinity of
an s-wave resonance while interaction for pairs of identical
bosons is neglected. For convenience, the following notations
are introduced for the different combinations of particles’
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masses mi :

M(ij ) = mi + mj, (127)

µi,(jk) = miM(jk)

mi + M(jk)
, (128)

µ(ij ),(kl) = M(ij )M(kl)

M(ij ) + M(kl)
. (129)

In this section, two identical atoms of mass M (particles 1
and 2) interact with another one of mass m (particle 3). All
the possible bound states can be thus deduced from the two
configurations: (BBb) [or, equivalently, (BBf )] and (F↑F↑b)
[or, equivalently, (F↑F↑f )].

An eigenequation for trimers is obtained for a negative
energy E = E3,

E3 = − h̄2q2

2µ2,3
< 0, (130)

and if a dimer of binding energy E2 exists, then E3 < E2.
In the center-of-mass frame, the source amplitude associated
with the pair (23) is〈{ξ 23}∣∣S2�3

�

〉 = (2π )Dδ(k1 + k2 + k3) F(k1). (131)

The other source amplitude with the momentum coordinates
represented schematically in Fig. 4, is deduced from Eq. (131)
by using the exchange symmetry between particle 1 and
particle 2:〈{ξ 13}∣∣S1�3

�

〉 = s13(2π )Dδ(k1 + k2 + k3) F(k2), (132)

where s13 = 1 when particles 1 and 2 are bosons and s13 = −1
if they are fermions. For simplifying the notations, it is useful
to introduce the mass ratio y defined by

y = µ2,3

m3
= M

M + m
. (133)

Assuming that the ε → 0 limit is well defined, the eigenequa-
tion is obtained from the contact condition for the pair
(2 : M; 3 : m) in Eq. (101) where |�(0)〉 = 0:

−s13h̄
2F

(
k
)

2µ2,3TD(Ecol
k )

=
∫

dDu

(2π )D
F(u)

u2 + k2 + 2yk.u + q2
. (134)

In Eq. (134) the identity dDk23 = dDk2 has been used (the
contact condition is performed at a fixed value of K23) and
Ecol

k is the collisional energy:

Ecol
k = E3 − h̄2k2

2µ1,(23)
< 0. (135)

A detailed study of the three-body bound states in 2D has been
performed in Ref. [67], and in this subsection the discussion
is centered on the 3D case. By using the rotational symmetry
of the kernel in Eq. (134), one can fix an arbitrary direction,
êq, and expand the source amplitude F (k) in terms of partial
waves as

F (k) =
∞∑
l=0

Pl(êk · êq)Fl(k). (136)

Each component Fl(k) verifies the integral equation

h̄2s13(−1)l+1Fl(k)

2µ1,3T3
(
Ecol

k

) =
∫ ∞

0
du

uFl(u)

yπk
Ql

(
u2 + k2 + q2

2yku

)
,

(137)
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FIG. 5. Critical mass ratio
(

M

m

)crit

l
for the threshold of appearance

of an Efimov spectrum in each partial wave l of Eq. (137).

where Ql is a Legendre function of the second kind. One
can notice that the standard STM Eq. (111) is obtained by
setting formally s13 = 2 and y = 1/2 in Eq. (137). For a
sufficiently large value of the mass ratio, the Efimov effect
appears in nonzero partial waves [74,75]. As in the three-boson
case, in this regime and in the limit of large momentum k,
Eq. (137) supports a pair of solutions Fl(k) ∼ k−2±is (s ∈ R).
The critical values of the mass ratio of the Efimov theshold in
the l wave [denoted

(
M
m

)crit
l

] are plotted in Fig. 5. They have
been deduced from Eq. (137) in the Appendix and the results
found with this method coincide with the ones computed in
Refs. [9,17,75].

C. Heteronuclear tetramers

Recent theoretical [73,76–80] and experimental [81,82]
progress has been achieved in the four-body problem with
ultracold atoms. In this section, a zero-range eigenequation
for four-particle bound states or “tetramers” is considered.
The binding energy is denoted E4 and

E4 = − h̄2q2

2µ1,2
, (138)

where E4 < E3 and/or E4 < 2E2 if a trimer and/or dimer
exists. A particle (i) is characterized by a momentum ki and
a mass mi equals to m or M . In the center-of-mass frame, the
source amplitude associated with the pair (12) can be written
as

〈{ξ 12}∣∣S1�2
�

〉 = (2π )Dδ
( 4∑

n=1

kn

)
F (K 12,k34). (139)

The integral equation satisfied by the function F is obtained
from Eq. (101) [here (ij ) = (1,2)]. A specific configuration
is represented schematically in Fig. 6. The summation on
the left-hand side of the integral equation is composed of
source terms which are deduced from Eq. (139) by using the
permutation symmetry and the statistics of the particles. In
order to have a general equation for the different possible
configurations, a statistical factor denoted snp is introduced
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FIG. 6. Schematic representation of the momentum coordinates
used for the source amplitude associated with the contact condition
between particles 1 and 2 for a system of fermions with two-mass
components.

for each pair of particles. Depending on the system, for two
interacting particles n and p, the statistical factor is snp = ±1
or snp = 0 for noninteracting particles. Using this notation, the
different source amplitudes are written in Table I. Different
possible configurations of the two-mass component system
and the corresponding statistical factors are listed in Table II.

Equation (101) can be simplified to∫
dDk12

(2π )D
∑
n<p
p>2

snp

F (K np,kkl)

κ2 + k2
12

= −h̄2F (u,v)

2µ1,2TD

(
E

(12)
col

) , (140)

where u = K 12 and v = k34. In Eq. (140) the momentum κ is
related to the collisional energy by E

(12)
col = h̄2κ2/(2µ1,2); thus

κ2 = q2 + µ1,2

µ(12),(34)
u2 + µ1,2

µ3,4
v2. (141)

Using the notations defined in Table III, the integral equation
which encapsulates the Bethe-Peierls contact condition can
finally be written as∫

dDk

(2π )D

[
s13

F (k,v13)

κ2 + σ 2
13

+ s14
F (k,v14)

κ2 + σ 2
14

+ s23
F (k,v23)

κ2 + σ 2
23

+s24
F (k,v24)

κ2 + σ 2
24

+ s34
F (−u,k)

κ2 + k2

]
= −h̄2F (u,v)

2µ1,2TD

(
E

(12)
col

) . (142)

In the particular case where the system is composed of
two heterogeneous dimers made of fermions (F↑f↓F↑f↓), one
recovers the same integral equation as in Eq. (16) of Ref. [12].

TABLE I. Source terms for each pair (ij ) deduced by using
the permutation symmetry of the four-body wave function from the
source term of the interacting pair (12) in Eq. (139). The statistical
factors sij are given in Table II.

Pair (ij ) Permutations
〈{ξ ij }∣∣Si�j

�

〉
(12) (2π )Dδ

( ∑4
n=1 kn

)
F (K 12,k34

)
(13) 2 ↔ 3 s13(2π )Dδ

(∑4
n=1 kn

)
F (K 13,k24)

(14) 2 ↔ 4 s14(2π )Dδ
(∑4

n=1 kn

)
F (K 14,k32)

(23) 1 ↔ 3 s23(2π )Dδ
(∑4

n=1 kn

)
F (K 23,k14)

(24) 1 ↔ 4 s24(2π )Dδ
(∑4

n=1 kn

)
F (K 24,k31)

(34) 1 ↔ 3, 2 ↔ 4 s34(2π )Dδ
(∑4

n=1 kn

)
F (K 34,k12)

TABLE II. Different possible four-body configurations. The
notation is as follows: B (respectively, F ) means that the atom is
a boson (respectively, a fermion) of mass M , and b (respectively, f )
means that the atom is a boson (respectively, a fermion) of mass m.
The fermions have two possible internal states, ↑ and ↓. For each
configuration, interaction is nonvanishing only between one type of
heterogeneous pair. The statistical factors sij appear in the integral
equation (142).

Configuration (m1,m2,m3,m4) (s13,s14,s23,s24,s34)

BBBB (m,m,m,m) (1,1,1,1,1)
(f or b)BBB (m,M,M,M) (1,1,0,0,0)

BbBb (M,m,M,m) (0,1,1,0,1)
F↑f↓F↑f↓ (M,m,M,m) (0, − 1, − 1,0,1)
Bf↑Bf↑ (M,m,M,m) (0, − 1,1,0, − 1)

(f or b)F↑F↑F↑ (m,M,M,M) (−1, − 1,0,0,0)

In 3D depending on the statistics of the particle and of the mass
ratio, Eq. (142) is not in general well defined as a consequence
of the Efimov-Thomas effect. For systems composed of four
particles in 2D, bound states of particles of the same mass have
been considered in Ref. [77]. In the present work, the binding
energies of 2D ground tetramers are computed numerically
as a function of the mass ratio of the interacting particles in
the BBBb configuration. Calculations are restricted to s-wave
tetramers by using the ansatz

F (u,v) = F (u,v,θ ), with θ = ∠(u,v). (143)

In order to check the numerical computation, the particular
case of four identical bosons which has been already ob-
tained by several authors [76,77] has been considered. In
this configuration, two bound states have been found with
binding energies which are close to already published results:
E4/E2 = 197 and 24, to be compared with E4/E2 = 197.3
and 25.5 in Ref. [76] or with E4/E2 = 194 and 24 in Ref. [77].
Results for three identical bosons interacting resonantly with
another particle is shown in Fig. (7). In 3D for the same
bBBB configuration, similarly to the three-boson original
STM equation, Eq. (142) does not constitute a well-defined
problem. The nature and properties of eigenstates of this
system in the zero-range limit are yet unsolved. The bF↑F↑F↑
or f↓F↑F↑F↑ configurations have been studied recently in
Ref. [73] and a pure four-body Efimov effect (i.e., without a
three-body Efimov state) involving a four-body parameter has
been found for a mass ratio of 13.384 < M/m < 13.607.

TABLE III. Coordinates appearing in Eq. (142).

Pair (ij ) vij σ ij

(13) m4u
M3,4

+ v − m4k
M2,4

(µ1,2
m1

− µ3,4
m3

)
u − v + k

(14) − m3u
M3,4

+ v + m3k
M2,3

(µ1,2
m1

− µ3,4
m4

)
u + v + k

(23) m4u
M3,4

+ v + m4k
M1,4

(µ1,2
m1

− µ3,4
m4

)
u + v − k

(24) m3u
M3,4

− v + m3k
M1,3

(µ1,2
m1

− µ3,4
m3

)
u − v − k
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FIG. 7. Ground-state branch for the three bosons of mass M

interacting with one impurity of mass m in 2D as a function of the
mass ratio.

VI. CONCLUSIONS

In this paper, it has been shown how the zero-range
approach can be formulated for different problems in a
unified framework without technical intricacy for all di-
mensions D � 3. In the few-body problem, general integral
eigenequations are obtained straightforwardly in the momen-
tum representation. The Efimov effect is deduced from the
STM equation by using a nodal condition and a subtracting
technique which is close to regularizing schemes used in the
effective field theory.

Various open issues remain to be solved for few-body
systems in the limit of zero-range forces. For example, the
question of whether or not the three-body parameter is enough
for describing four-boson properties in 3D is still under
debate [79,80]. For heteronuclear few-body systems, taking

into account the external trapping (which is a natural concern
in regard to experiments) makes the problem even richer.
The external potential differs for different atomic species
and this degree of freedom allows one to explore realistic
intermediate situations between the fully three-dimensional
homogeneous configuration and the limit of mixed dimensions
where interesting predictions have been already made in the
three-body case [69,70]. The present formalism can be also
used to model systems where interaction occurs between three
spin components like in 6Li experiments [83–86]. Another
open issue concerns the possible occurrence of Efimov states
for more than four particles in 3D. The four-body Efimov
phenomenon has been found to occur for a specific interval
of mass ratio in the 3 + 1 fermionic problem in Ref. [73].
Therefore, one can wonder whether or not a pure Efimov
effect in a N + 1 fermionic system can also occur and at
which critical mass ratio for N � 3. Despite the difficulty of
this problem, the integral equation of the system in the limit
of zero-range forces can be easily deduced from the present
formalism and is given below as a concluding remark. Each of
the N polarized fermions of mass M labeled by i (1 � i � N )
interact with only one impurity (particle i = N + 1) of mass
m. In the center-of-mass frame, the source amplitude for the
pair N,(N + 1) can be written as〈{ξN,(N+1)}∣∣SN�N+1

�

〉
= (2π )Dδ

( N+1∑
i=1

ki

)
F (k1,k2 . . . kN−1), (144)

and other source amplitudes |Si�N+1
� 〉 (i = 1, . . . ,N − 1) are

deduced from this ansatz by using the fermionic statistics. The
general integral equation for this problem which encapsulates
the Bethe-Peierls asymptotic condition is then obtained from
Eq. (101):

∫
dDkN

(2π )D
F (kN,k2,k3, . . . ,kN−1) + F (k1,kN,k3, . . . ,kN−1) + · · · + F (k1,k2, . . . ,kN−2,kN )

−E − i0+ + h̄2

2M

∑N
i=1 k2

i + h̄2

2m

( ∑N
i=1 ki

)2

= F (k1,k2, . . . ,kN−1)

TD(Ecol + i0+)
−

∫
dDkN

(2π )D
�(0)(k1, . . . ,kN ), (145)

where Ecol = E − h̄2

2M

∑N−1
i=1 k2

i − h̄2

2(M+m)

(∑N−1
i=1 ki

)2
,

�(0) is a complementary solution associated with the free
Hamiltonian at energy E in the center-of-mass frame (it is
equal to zero for E < 0), and F is antisymmetric under the
exchange of two coordinates (ki ,kj ).
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APPENDIX: THRESHOLDS FOR THE ′1 + 2′-BODY
EFIMOV EFFECT

In this appendix, the values of the mass ratio for which an
Efimov effect occurs are deduced from Eq. (137). To this end,
zero-energy solutions at unitarity |a3| = ∞ are considered
(solutions for finite energy have the same high-momentum
behavior). In this regime, Eq. (137) is scale invariant and this
allows one to search for power law solutions: Fl(k) = kν+l−2,
where ν is a function of the mass ratio. For convenience, the
following dimensionless parameter t is introduced:

t = arcsin(y) = arcsin

(
M

M + m

)
. (A1)
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Thus, the scattering amplitude is f3(κk) = 1/(k cos t) and
Eq. (137) gives for each partial wave l an eigenvalue equation:
λ(ν,l,t) = 0, where

λ(ν,l,t) = cos t − s13(−1)l

π sin t

∫ ∞

0
dzzν+l−1Ql

(
1 + z2

2z sin t

)
.

(A2)

The integrand in Eq. (A2) is positive, hence for a
Bose (respectively, Fermi) statistics only even (respec-
tively, odd) values of l can support a solution. For x > 1,
Ql(x) = 1

2Pl(x) ln( x+1
x−1 ) + Wl(x), where Wl(x) is a polyno-

mial of order l. The polynomial Wl does not contribute in the
integral of Eq. (A2) and λ(ν,l,t) can be thus expressed in terms
of a sum of functions of the form

I (γ,t) =
∫ ∞

0
dz zγ−1 ln

(
z2 + 2z sin t + 1

z2 − 2z sin t + 1

)
, (A3)

with 0 � t � π
2 and |Re(γ )| < 1. In Eq. (A3), I (γ,t) can be

calculated explicitly as

I (γ,t) = 2π sin(γ t)

γ cos
(

πγ

2

) . (A4)

In the l wave, Efimov states are characterized by a power law
such that ν = −l + is, where s is real. For example, for two
identical bosons interacting with another particle (s13 = 1), in
the s-wave sector,

λ (ν,l = 0,t) = cos t − sin(νt)

ν sin(t) cos
(

πν
2

) . (A5)

Equation (A5) admits solution of the form ν = is for all
values of the mass ratio and s → 0 for t → 0. For higher
l waves, Efimov states appear above a critical value of the
mass ratio. The threshold is obtained by searching the value
of the parameter t = tcrit

l such that

lim
ν→−l

λ
(
ν,l,tcrit

l

) = 0. (A6)

In the p-wave sector which concerns the case of two identical
fermions interacting with another particle (s13 = −1), one gets

λ (ν,l = 1,t) = cos t − (ν + 2) sin(νt) − ν sin[(ν + 2)t]

2ν(ν + 2) sin2 t cos t cos
(

πν
2

) ,

(A7)

and the threshold is obtained from the equation
tcrit
1 = tan(tcrit

1 ) − π
2 sin2(tcrit

1 ), which gives the critical mass
ratio (M

m
)crit
l=1 � 13.6 found in Refs. [8,75]. For higher partial

waves, the critical values of the mass ratio ( M
m

)crit
l found by this

method coincide with the ones computed in Ref. [17] where
the hyperspherical method was used. Results are reported in
Fig. 5.

In the regime where an Efimov effect occurs, the regulariz-
ing technique can be achieved by fixing the asymptotic phase
shift which is a function of the three-body parameter (denoted
κ�

l ) in the partial wave l:

Fl(k) ∝
k→∞

1

k2
sin

[
s ln

(
k
√

3

κ�
l

)]
. (A8)

A set of solutions satisfying Eq. (A8) can be filtered from
Eq. (137) by imposing the nodal condition:

Fl

(
k

reg
p,l

) = 0, where k
reg
p,l = κ�

l√
3
epπ/s, p ∈ N. (A9)

Exact zero-range theory is obtained in the limit where p → ∞.
Universal results are recovered if the node k

reg
p,l is chosen

at a large value as compared to all the low-energy scales
(kreg

p,l � 1/|a|,q). Using the subtracting scheme of the three-
boson problem, Eq. (A9) can be also incorporated into the
integral equation, Eq. (137):

h̄2Fl(k)

2µ1,3T3
(
Ecol

k

)
= − s13(−1)l

yπ

∫ ∞

0
du uFl(u)

[
1

k
Ql

(
u2 + k2 + q2

2yku

)

− 1

k
reg
p,l

Ql

(
u2 + (

k
reg
p,l

)2 + q2

2yuk
reg
p,l

)]
. (A10)
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