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Classical interpretation of probability oscillations in low-energy atomic collisions
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We perform close-coupling molecular and classical trajectory Monte Carlo (CTMC) calculations of charge-
exchange probabilities in low-energy H+, He2+ + H collisions. We consider head-on collisions with a zero
impact parameter and study the dependence of the charge-exchange probability on the impact velocity. This
probability exhibits oscillations generally understood as signatures of quantum phase effects. CTMC calculations
with dimensionality reduced to one fairly reproduce the oscillations and show that these latter stem from
the back and forth motion of the electron between the nuclear centers in the internuclear region. In three
dimensions, the probability oscillations are generally washed out in the statistical CTMC framework because
of the electron transverse degrees of freedom. However three-dimensional Bohmian trajectories ascertain the
classical interpretation of the oscillations in a quantum framework.
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I. INTRODUCTION

Charge exchange in atomic collisions is quite an old
topic but still motivates a considerable amount of work
because of its interest in spectroscopic diagnostics of Tokamak
fusion plasmas [1], interstellar medium [2], and radiation
damage applications [3]. From a theoretical point of view,
charge exchange is an interesting problem which underlies
the description of time-dependent electron dynamics in the
field of moving target and projectile centers. Depending on
the perturbation strength ZP /v, where ZP is the (effective)
projectile charge and v the impact velocity, various methods
have been developed to describe the electron transfer pro-
cess [4]. In the high-impact velocity range characterized by
ZP /v > 1, sophisticated perturbative treatments using contin-
uum distorted waves (CDW, [5]) provide an accurate modeling
of the process. In low-energy collisions where v is typically
lower than the orbital velocity ve of the electron in its initial
state, the perturbative schemes do not apply and one generally
implements variational schemes which consist of expanding
the total electron wave function onto molecular [6,7] or
atomic [8] states associated with the main scattering channels.
The theoretical description becomes especially difficult in the
intermediate-energy range where all the inelastic processes
(charge exchange, excitation, and ionization) are of similar
magnitude and must be treated on the same footing. However,
continuous advances in computer performance have allowed
the previous close-coupling treatments to be optimized [9,10]
and new ones to be developed [11,12]; concurrently, the direct
resolution of the time-dependent Schrödinger equation has
became possible [13,14] so that charge exchange can nowadays
be fairly described from low to high v’s, at least for effective
one-electron ion-atom systems.

Despite all these sophisticated descriptions, our understand-
ing of the electron-capture process mostly rests on a classical
picture in which the electron can jump from the target to the
projectile at small enough internuclear distances R so that the
height of the internuclear barrier, formed by the superposition
of target and projectile potentials, is lower than the energy of
the electron in its initial state [15]. This interpretation has been
strengthened by the classical trajectory Monte Carlo (CTMC,
[16]) approach which has provided total and differential cross

sections in close agreement with experiment over a broad
range of impact energies and collisional systems (see, e.g.,
Refs. [17–19]). Nevertheless the reliability of the classical
picture and related CTMC calculations depends on v. In the
low-impact energy range, the classical description is expected
to fail both qualitatively and quantitatively.

It is indeed well known that in addition to overbarrier
transitions, electron capture can also occur at low v in
terms of tunneling (underbarrier) transitions at large R [4].
However, and contrarily to what may be thought at first
sight, such classically forbidden transitions can be mimicked,
to some extent, by means of improved CTMC calculations.
These calculations employ initial conditions beyond the usual
microcanonical framework [20–25] and describe the quantum
electronic density by means of an improved phase-space
distribution akin to, e.g., the well-known Wigner one [26,27].
Such distributions have a classical energy spread which allows
one to relate the tunnel effect to the presence in the ensemble of
classical states of trajectories with energies locally lying above
the barrier [28,29]. Accordingly improved CTMC calculations
have yielded satisfactory quantitative results for v < ve,
typically down to 0.5 ve [18,19,21,30,31]. The existence of
tunneling transitions thus do not appear as the main limitation
of the classical description of the charge-exchange process as
far as the initial quantum state is adequately represented within
the statistical framework.

On the other hand, further quantum effects are expected
to significantly influence the charge-exchange process at low
v. As a matter of fact, the charge-exchange probability then
exhibits an oscillatory behavior either as a function of the
impact parameter b for fixed v or as a function of v for
fixed b [4,32,33]. These oscillations are generally related to
the dependence on v and b of the phase accumulated by the
collisional system along the nuclear path R(t) [4], and are
known as Stueckelberg oscillations in relation to the pioneering
work of Stueckelberg [34], who derived around 1930 an
approximate semiclassical phase-integral method for the two-
state scattering problem. In other words, the oscillations
of probability are commonly related to interference effects
between the main capture and the elastic scattering channels.

Interestingly, oscillations in total capture cross sections
have been observed for singly charged ions impinging on
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Rydberg atoms [35]. These oscillations have been related
to the number of swaps the electron experiences between
the target and the projectile centers during the collision.
Schultz, Reinhold, and Krstić [36] later demonstrated that
this classical phenomenom also induces oscillations in a wide
range of reaction cross sections for collisions of multiply
charged ions with ground-state atoms. The same authors then
undertook a quantum-mechanical analysis [37], in terms of a
close-coupling molecular description derived from the hidden
crossings theory [6], to show that the oscillations originate
from the interference of two collisional paths, namely, |χi〉 →
|χ1〉 → |χf 〉 and |χi〉 → |χ2〉 → |χf 〉, through which the
initial state |χi〉 is promoted to the same final one |χf > (see
also Ref. [38]). The dominant phase causing the interference
pattern is accumulated in the incoming phase of the collision,
owing to the long-range (radial) coupling of |χi〉 and |χ1〉 and
associated with the classical swapping of the electron between
the nuclear centers. The incoming interference pattern remains
imprinted in the cross section associated with the |χf 〉 channel,
despite the integration on impact parameters, provided the
transitions |χ1〉 → |χf 〉 and |χi〉 → |χ2〉 occur in a narrow
range of (small) internuclear distances (while |χ2〉 → |χf 〉
occurs in the receding stage of the collision).

In this paper, we aim to show that Stueckelberg oscillations
can also be interpreted in terms of swaps of the electron
between the target and the projectile nuclear centers. We
even consider resonant charge-exchange processes, inher-
ent in homonuclear systems, in which dynamics cannot
be related to transitions at definite internuclear distances.
Explicitly, we consider the prototypical H+ + H(1s) and
He2+ + H(1s) systems. We restrict our calculations to head-on
collisions with b = 0 and study the dependence of the charge-
exchange probability on E. As we artificially reduce the
dimensionality of the collisional problems to one dimension,
we unexpectedly find that CTMC calculations fairly reproduce
the oscillatory behavior of the probability at low v. We prag-
matically conclude that the usual interpretation, in terms of
quantum-phase effects, has a classical counterpart. The CTMC
electron trajectories indicate that the probability oscillations
stem from the simple (and intuitive) back and forth motion of
the electron between the target and the projectile centers in
the molecular region. As we restore the full dimensionality
of electron motion (to three dimensions), we observe that
the oscillatory behavior of the probabilities is washed out in
the classical calculations because the additional (transverse)
degrees of freedom put the independent electron trajectories
out of phase in the internuclear direction. However, picturing
the charge-exchange dynamics in terms of three-dimensional
(entangled) Bohmian trajectories helps to ascertain the classi-
cal interpretation of the probability oscillations.

The paper is organized as follows: In Sec. II, we outline the
classical and semiclassical descriptions of one-dimensional
(1D) ion-atom collisions. We report our findings in Sec. III
which also contains three-dimensional (3D) illustrations of
the collision dynamics. We give our conclusions in Sec. IV.
Atomic units are used throughout, unless otherwise stated.

II. METHODS

We employ the impact parameter approximation [4] in
which the projectile follows straight-line trajectories with

constant velocity v and impact parameter b so that R(t) =
b + vt . This approximation is accurate for impact energies
E greater than ∼250 eV/amu [33,39]; however, we apply it
whatever E is since we are interested in the comparison of
the classical and quantum electron probabilities and not in the
accuracy of the probabilities owing to nuclear motion effects.
In the 1D model calculations, b = 0.

A. Quantum description of the electron motion
in 1D model collisions

The electron motion is quantum mechanically described by
the total wave function �(x,t), which is the solution of the
eikonal equation

i
∂�(x,t)

∂t
= H�(x,t), (1)

where x is the electron coordinate defined with respect to an
origin located on the internuclear axis (R̂ = x̂) at distances pR

and qR from the target and projectile centers, respectively (0 �
p � 1 and p + q = 1). In one-electron systems with target
and projectile nuclear charges ZT and ZP , the clamped nuclei
(Born-Oppenheimer) Hamiltonian H is

H = p2

2
− ZT√

(x + pR)2 + α2
T

− ZP√
(x − qR)2 + α2

P

, (2)

including the kinetic energy term p2/2 and the electron-
target and electron-projectile interaction potentials, which are
softened by means of the parameters αT,P = √

2/ZT,P to
remove Coulomb singularities on the nuclear centers.

The eikonal equation (1) has to be solved
subjected to the initial condition �(x,t → −∞) =
φ

(T )
1 (x)DT (v; x,t)e−iε

(T )
1 t |t→−∞, where φ

(T )
1 (x) is the

initial atomic target state of energy ε
(T )
1 and DT (v; x,t) =

e−ipvx−ip2v2t is the plane-wave factor which represents the
drag velocity impulsed by the moving target on the electron.
The eikonal equation has been solved by means of a Eulerian
lattice technique employing the Crank-Nicholson scheme [40].
We have also employed a molecular close-coupling technique
which consists of expanding �(x,t) on the eigenstates
χk(x,R) of H according to

�(x,t) =
N∑

k=1

ak(v; t)χk(x,R)e−i
∫ t

Ek (t ′)dt ′ , (3)

where Hχk(x,R) = Ek(R)χk(x,R). Inserting Eq. (3) in Eq. (1)
yields the set of differential equations for the expansion
amplitudes ak(v; t):

∂al(v; t)

∂t
=

N∑
k=1

ak(v; t)v sgn(t)

〈
χl

∣∣∣∣ ∂

∂R

∣∣∣∣χk

〉

×e−i
∫ t [Ek (t ′)−El (t ′)]dt ′ , (4)

where sgn(t) = −1 when t < 0 and +1 otherwise. Care must
be taken in relation with the fact that the eikonal equation is
defined in the laboratory-fixed frame of reference whereas the
χ states are defined in the molecular frame. Passing through the
united-atom limit at t = 0, the molecular frame experiences
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a sudden rotation of π with respect to the fixed frame. In the
united-atom limit, the one-dimensional χ states transform into
atomic states of given (odd or even) symmetry; this means that
χm(x,t = 0+) = −χm(−x,t = 0−) if m is even (the minimum
value of m is 1) while χm(x,t = 0+) = χm(−x,t = 0−) if is m

is odd. We account for this consequence of the sudden rotation
of the molecular frame in Eq. (4) by changing the sign of the
amplitudes associated with odd states as t = 0 is crossed.

For each impact velocity v, the system (4) is numerically
integrated from tin = −50/v, where

ak(v; tin) = 〈
χke

−i
∫ tin Ek(t ′)dt ′ ∣∣φ(T )

1 DT (tin)e−iε
(T )
1 tin

〉
(5)

to tmax = 100/v, where the capture probabilities into the φ(P )
m

bound atomic projectile states are computed as

PC,m(v)=
∣∣∣∣∣

N∑
k=1

ak(v; tmax)
〈
φ(P )

m DP (tmax)
∣∣χke

−i
∫ tmax Ek (t ′)dt ′ 〉

∣∣∣∣∣
2

,

(6)

where DP (t) ≡ DP (v; x,t) = eiqvx−iq2v2t , while for excitation

PE,m(v)=
∣∣∣∣∣

N∑
k=1

ak(v; tmax)
〈
φ(T )

m DT (tmax)
∣∣χke

−i
∫ tmax Ek(t ′)dt ′ 〉

∣∣∣∣∣
2

.

(7)

Assuming that the target and projectile atomic basis are
not overcomplete at tmax, we use closure relations to finally
define the ionization probability Pion(v) = 1 − ∑

m PC,m(v) −∑
m′ PE,m′ (v).
As explained in Ref. [25], the atomic states {φ(T ,P )

m } are
obtained by diagonalizing the target (projectile) Hamiltonian
in a basis of cos(kx) and sin(kx) functions confined in
a box of length 2x(T ,P )

max centered on the target (projectile)
nucleus. In practice, the underlying basis contains all the
cos(kx) and sin(kx) functions such that cos(kx(T ,P )

max ) = 0 and
sin(kx(T ,P )

max ) = 0, respectively, with 0 � k � k(T ,P )
max . Similarly,

the molecular wave functions {φm(x,R)} are obtained by
diagonalizing the total Hamiltonian H of Eq. (2) for fixed
R’s in a basis of confined cos(kx) and sin(kx) functions.
In this case, the box of length 2xmax is centered on the
origin of electronic coordinates and the momentum scale
is restricted to k � kmax. The latter diagonalization yields a
huge number of χm(x,R) eigenstates, including discretized
continuum ones. In the framework of molecular close-coupling
approaches, one has to check the sign consistency of the
diagonalized molecular eigenstates as R varies from 0 to
vtmax [41] in order to manipulate well-behaved radial couplings
in Eq. (4) throughout the collision. To cope with the fact that
diagonalization yields eigenstates with random signs at each
R, we proceed as follows: we define an x grid of dimension
N within which we only retain the Nret points xk such that
χm(xk,R) > S and χm(xk,R + �R) > S, with S typically of
the order of 10−2; for these Nret points we calculate

|χm(xk,R) − χm(xk,R + �R)| = D−,

|χm(xk,R) + χm(xk,R + �R)| = D+. (8)

If the number of grid points such that D− < D+ is larger than
that for which D− > D+, the sign is declared to be consistent
between R and R + �R; if the reverse occurs, the sign of χm

is changed at R + �R. This procedure is reliable even for the
discretized continuum states.

Concerning the computation of the radial couplings enter-
ing Eq. (4), we circumvent the derivation with respect to R

of the diagonalization coefficients cl
p(R) resulting from the

diagonalization of H following [42]

〈
χl

∣∣∣∣ ∂

∂R

∣∣∣∣χk

〉
= 1

Ek − El

∑
p,q

cl
p(R)ck

q(R)
∂

∂R
〈ψp|H |ψq〉,

(9)

where the {ψq} stand for the underlying cos(kqx) and sin(kqx)
functions. Since ψq does not depend on R, we finally obtain

〈
χl

∣∣∣∣ ∂

∂R

∣∣∣∣χk

〉
= 1

Ek − El

〈
χl

∣∣∣∣∂H

∂R

∣∣∣∣χk

〉
, (10)

which is easily computed using ∂H/∂R = ZT p(x +
pR)[(x+pR)2+α2

T ]−3/2−ZP q(x−qR)[(x−qR)2+α2
P ]−3/2.

The case of homonuclear systems, with ZP = ZT , deserves
special attention. In such systems, the main charge-exchange
channel is symmetrically resonant with the elastic scattering
one so that a two-state molecular expansion, including only
these channels, is generally sufficient to account for the whole
capture process at low v [4]. If the origin of electronic
coordinates is chosen at the geometrical center of the system
(p = 1/2), the radial coupling linking these two channels
vanishes since they present gerade and ungerade symmetries,
respectively. If we label χ1 and χ2 the respective gerade and
ungerade molecular states, we thus have according to Eq. (4),
and taking into account the sudden rotation of the molecular
frame at t = 0, a1(v; +∞) = a1(v; −∞) and a2(v; +∞) =
−a2(v; −∞). The initial target state φ

(T )
1 corresponds to

limR→∞[χ1(x,R) + χ2(x,R)]/
√

2 while the resonant capture
state φ

(P )
1 is limR→∞[χ1(x,R) − χ2(x,R)]/

√
2. Neglecting the

plane-wave factor in the definition of the initial and final
conditions (5) and (6), which is justified at (very) low velocities
[43], we finally obtain a1(v; +∞) = −a2(v; +∞) = 1/

√
2 so

that the capture probability is

PC,1(v) = cos2 1

v

∫ ∞

0
[E2(R) − E1(R)]dR. (11)

The probability oscillates with unit amplitude as a function
of v. The oscillations are monitored by the phase difference
between the lowest gerade and ungerade pathways, which
should not be at first sight reproducible in terms of classical
mechanics. However, we shall illustrate hereinafter that the
quantum-mechanical interpretation has a classical analog in
terms of the behavior of classes of trajectories.

B. CTMC description of the electron motion
in 1D model collisions

In our classical description of the electron dynamics, the
origin of electronic coordinates is placed on the target nucleus
(p = 0). The statistical CTMC procedure [16] employs an
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N -point discrete representation of the phase-space distribution

(x,p,t),


(x,p,t) = 1

N

N∑
j=1

δ(x − xj (t))δ(p − pj (t)), (12)

which transforms the Liouville equation [the classical analog
to the eikonal equation (1)],

∂
(x,p,t)

∂t
= −[
(x,p,t),H ], (13)

where [
(x,p,t),H ] is the Poisson bracket, into the well-
known Hamilton equations

∂xj (t)

∂t
= pj (t),

(14)
∂pj (t)

∂t
= − ZT xj (t)[

xj (t)2 + α2
T

]3/2 − ZP (xj (t) − R(t)){
[xj (t) − R(t)]2 + α2

P

}3/2 ,

which monitor the temporal evolution of the j th electronic
trajectory among the set of N noninteracting ones.

In the present work, we mainly use an initial microcanonical
phase-space distribution,


(x,p,tin) = 
M

(
ε

(T )
1 ; x,p

)

= κδ

⎛
⎝p2

2
− ZT√

x2 + α2
T

− ε
(T )
1

⎞
⎠ , (15)

which assigns the energy ε
(T )
1 of the quantum initial state to the

energy of all the N electrons at time t = tin. κ is a normalization
constant so that

∫ ∫

(x,p,tin)dxdp = 1. The construction

and characteristics of the microcanonical 
(x,p,tin) associated
with the 1D H(n = 1) are detailed in Ref. [25]. In the same
reference, we explain how to build an initial distribution that
better reproduces the quantum electron densities in terms of
the truncated Wigner distribution:


(x,p,tin) = 
Wt (x,p)

=
∫ ε

(T )+
1

ε
(T )
min

fW (ε(T ))
M (ε(T ); x,p)dε(T ). (16)


M (ε(T ); x,p) is a microcanonical distribution of energy ε(T )

[see Eq. (15)] and

fW (ε(T )) = 1

NW

∫

W (x,p)

× δ

⎛
⎝p2

2
− ZT√

x2 + α2
T

− ε
(T )
1

⎞
⎠ dxdp (17)

is the classical energy distribution associated with the Wigner
distribution 
W (x,p) of the initial quantum state φ

(T )
1 (x). In

Eq. (16), fW (ε(T )) is truncated to [ε(T )
min,ε

(T )+
1 ], where ε(T )+ is

the upper bound of the classical energy bin associated with
the initial φ

(T )
1 state, and ε(T )

min and NW are introduced so that∫ ε
(T )+
1

ε
(T )
min

fW (ε(T ))dε(T ) = 1 and
∫ ε

(T )+
1

ε
(T )
min

fW (ε(T ))ε(T )dε(T ) = ε
(T )
1 .

Once the trajectories have been propagated up to t =
tmax, we discriminate between the various inelastic pro-
cesses using energy criteria: a trajectory is ascribed to

capture if its energy with respect to the target, ε
(T )
j (tmax) =

p2
j (tmax)/2 − ZT /

√
xj (tmax)2+α2

T , is positive and its energy with

respect to the projectile, ε
(P )
j (tmax) = [pj (tmax) − v]2/2 −

ZP /
√

[xj (tmax)−R]2+α2
T , is negative; a trajectory belonging to

excitation (including elastic scattering) fulfills ε
(T )
j (tmax) < 0

and ε
(P )
j (tmax) > 0, while for ionization, ε

(T ,P )
j (tmax) > 0. The

probabilities for capture P clas
C , excitation P clas

E , and ionization
P clas

I are then defined by counting, among the N electrons,
those who obey the previous criteria, respectively,

P clas
C,E,I (v) = NC,E,I

N
. (18)

State-selective excitation and capture probabilities can be com-
puted after partitioning the classical negative-energy scales
of the target and the projectile in order to associate energy
bins [ε(T ,P )−

n ,ε(T ,P )+
n ] with the atomic quantum states φ(T ,P )

n

of energy ε(T ,P )
n [25]. The partial probabilities are computed

using statistical counting similar to that in Eq. (18).

C. Three-dimensional calculations and Bohmian trajectories

Three-dimensional calculations have been carried out to
gauge the effect of the additional degrees of freedom with
respect to the previous calculations with restricted (1D)
dimensionality. The electron-target and electron-projectile
potentials are no longer softened and reduce to true Coulomb
potentials for one-electron systems.

The 3D CTMC calculations employ the numerical scheme
originally proposed by Abrines and Percival [16]. The initial
conditions are microcanonical and the calculation of total and
partial probabilities is detailed in, e.g., Ref. [31].

The quantum-mechanical treatment consists of a close-
coupling molecular expansion similar to that in Eq. (3)
but the χk(r,R) states are one-electron-diatomic-molecule
(OEDM) orbitals corrected by a common translation factor
(CTF) as in Ref. [7]. The molecular expansions that have
been used are restricted to bound OEDM orbitals which
asymptotically correlate to capture and excitation atomic
states; such expansions are far from being complete, contrarily
to the previous 1D one (3), so that the CTF has to be included
to fulfill the asymptotic scattering conditions and to yield
Galilean-invariant probabilities [43].

Once the total wave function �(r,t) is known, one can
display in the course of the collision snapshots of the electron
density in both configuration and momentum spaces in order
to shed light on the electron dynamics (see, for instance,
Refs. [43–48]). Nonetheless, the resulting quantum pictures
remain less illustrative than the classical ones that provide
continuous electron trajectories, with well-defined position
r(t) and momentum p(t), throughout the collision. We thus
have decided to adopt the Bohmian formulation of quantum
mechanics [49–51] that allows one to picture the dynamics
by means of continuous quantum trajectories. The hydrody-
namical (Bohm) formulation consists of likening the electron
density to a fluid described in terms of NB trajectories located,
at time t , at rj (t) with velocities vj (t) and weights ρj ≡
|�(rj (t),t)|2(j = 1,...,NB ). Writing the total wave function
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in its polar form, �(r,t) = √
ρ(r,t) exp[iS(r,t)], the velocity

vj (t) is defined according to

dr
dt

|j = vj (t) ≡ v|j = ∇S|j , (19)

which is used, together with ∂/∂t = d/dt − v · ∇, to derive
from the eikonal equation (1) the equations

dρ

dt

∣∣∣∣
j

= −ρj∇ · v|j , (20)

dS

dt

∣∣∣∣
j

= v2
j

2
− (VT + VP + VQ)|j, (21)

where VT and TP , respectively, stand for the classical electron-
target and electron-projectile interaction potentials. It is note-
worthy that Eq. (20) is the continuity equation for the electron
density ρ while Eq. (21) is known as the quantum Hamilton-
Jacobi (HJ) equation [51], since it includes, with respect to
the classical HJ formulation, the additional term VQ(r,t) =
−∇2√ρ(r,t)/2

√
ρ(r,t), which is generally referred to as the

quantum (Bohm) potential [51]. Equations (19)–(21) monitor
the temporal evolution of the quantum trajectory j among
the set of NB ones. These equations are known to be (very)
difficult to solve self-consistently since small errors in the
computation of the quantum VQ degrade the subsequent
propagation of all the trajectories (see, however, Ref. [52]).
Only recently some numerical procedures, mainly borrowed
from plasma physics [51], have allowed us to implement self-
consistently the Bohmian hydrodynamical approach, provided
the dimensionality of the problem is not too high [51,53]. In
the present work, we do not seek a self-consistent solution
but rather aim at displaying, in the course of the collision, the
temporal evolution rj (t) of the quantum trajectories. We thus
take advantage of the knowledge of the total wave function
� resulting from our CTF-modified molecular calculations
to compute, on a fine 3D Eulerian grid, the velocity field
v(r,t) = j(r,t)/|�(r,t)|2, where j(r,t) is the current density

j (r,t) = i

2
[�∗(r,t)∇�(r,t) − �(r,t)∇�∗(r,t)]. (22)

The Bohmian trajectories are then directly recovered by
interpolation of the Eulerian velocity field v(r,t) on the
Lagrangian (Bohmian) grid dictated by rj (t) = rj (t − �t) +
vj (t − �t)�t , with �t ∼ 10−3 a.u. the small time step
used in the molecular calculations. Besides user-supplied
initial conditions rj (tin) (j = 1, . . . ,NB), we have vj (tin) =
∇U (rj (tin),tin), where U (r,t) is the CTF explicated in Ref. [7],
which tends to vj (tin) ∼ −pv in the asymptoptic ingoing phase
of the collision according to the initial condition (5).

III. RESULTS

We first illustrate our findings for H+ + H(n = 1) collisions
where the classical description of the capture process at low v

is expected to strongly fail according to Eq. (11) and then we
consider He2+ + H(n = 1) collisions where phase effects also
affect the probabilities according to Eqs. (4) and (6).
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FIG. 1. Correlation diagram of the 1D H+ + H system: the plain
lines correspond to the molecular energies En(R) as functions of the
internuclear distance R; the dotted line refers to the energy of the
electron in its initial target state perturbed by the projectile located at
distance R; and the dashed line illustrates the height of the internuclear
potential barrier as a function of R.

A. H+ + H(n = 1)

1. One-dimensional calculations

The 1D H states are obtained by diagonalization of the
atomic Hamiltonian in a {cos(kx), sin(kx)} basis defined by
x(T ,P )

max = 50 a.u. and k(T ,P )
max = 3 a.u. The diagonalized basis

{φq(x)(T ,P )}, which is identical for T and P , includes 11 bound
and 83 discretized continuum states. The molecular states
{χm(x,R)} are obtained similarly by diagonalizing H (2) in
a basis characterized by xmax = 150 a.u. and kmax = 3 a.u.,
yielding 29 bound and 257 discretized continuum molecular
wave functions. The classical CTMC calculations employ
N = 30 000 noninteracting trajectories.

We present in Fig. 1 the correlation diagram of the H+ + H
system, emphasizing the energy region where resonant charge
exchange H+ + H(n = 1) → H(n = 1) + H+ occurs. To elicit
the range of internuclear distances where capture transitions
can occur in a pure (overbarrier) classical framework, we
also include in Fig. 1 the energy of the electron in its initial
target state perturbed by the projectile located at distance R,
E1p(R), and the height Vmax(R) of the internuclear barrier
formed by the superposition of the electron-target and electron-
projectile potentials. Assuming that the target electron is,
on the average, located on the nucleus, we have E1p(R) =
ε

(T )
1 − 1/

√
R2 + 2 [since αT = αP = √

2 in Eq. (2)] while the
internuclear potential is maximum at the geometrical center
of the H2

+ quasimolecule with Vmax(R) = −2/
√

R2/4 + 2.
Electron hops from the target to the projectile are classically
allowed when E1p(R) > Vmax(R), i.e., for R � Rob ∼ 5 a.u.

The total capture probability resulting from our molecular
calculations with 286 states is displayed in Fig. 2 as a function
of the impact energy E in the range 0.05 � E � 100 keV. We
explicitly show that dynamical calculations carried out with
p = 0 and p = 1/2 yield the same results; this Galilean invari-
ance, also verified at the level of partial probabilities, signifies
the effective completeness of the underlying {cos(kx), sin(kx)}
basis in the confined xmax box. Furthermore, only the two
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FIG. 2. (Color online) Total capture probability in 1D H+ +
H(n = 1) collisions as a function of the impact energy E: large-
scale molecular calculations with p = 0 (—) and p = 1/2 (�);
expected results (green •) from the two-state expansion (11); and
microcanonical (red dashed line) and truncated Wigner (blue dot-
dashed line) CTMC calculations.

lowest molecular states among the 286 ones are necessary
to obtain reliable capture probabilities at E � 1 keV, as can
be checked in Fig. 2 by comparison of our large-scale results
with the expression (11) associated with the minimal two-state
expansion without translation factor.

As expected from Eq. (11), the capture probability oscillates
as a function of E. Nevertheless, the quantum interpretation
of the oscillations, in terms of the phase difference between
the gerade and ungerade scattering channels, can certainly
be linked to a classical picture since the CTMC calculations
are found in Fig. 2 to be able to reproduce the oscillatory
behavior of the probability. The classical results are slightly out
of phase with respect to the quantum ones and the dephasing is
increasing as E decreases. The origin of this minor deviation
will be understood in the light of the behavior of the CTMC
electron trajectories that shall elucidate the origin of the
classical probability oscillations.

We have randomly sorted some CTMC electron trajectories
among the N = 30 000 ones to compare their temporal
evolution at different impact energies within an oscillation
of the total capture probability. We concentrate our attention
on the oscillation enclosed in the [0.147,0.21] keV energy
interval. For E = 0.147 keV, where P clas

C ∼ 0, we display in
Fig. 3(a) the evolution xj (t) of the sorted CTMC trajectories.
Up to vt ∼ −5 a.u., all the trajectories are blocked in the
target potential well. Later on, they enter into the overbarrier
region previously identified (in Fig. 1) to −5 � vt � 5 a.u.;
within this time interval, the trajectories experience a back
and forth motion between the target and the projectile centers
as they consecutively bounce against the exterior walls of the
total potential. Finally, all the trajectories localize on the target
center at about vt ∼ 5 a.u., which marks the upper bound of
allowed (overbarrier) transitions. The initial dispersion of the
trajectories within the target’s potential well induces a delay
between the subsequent dynamics of the trajectories. However
this delay is small, so that a whole (average) motion clearly
shows up in Fig. 3(a), because the electronic velocity ve is
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FIG. 3. (Color online) Temporal evolution xj (t) of randomly
sorted CTMC electron trajectories in 1D H+ + H(n = 1) collisions
(a–c). The trajectories (black thin lines) are displayed as functions of
the scaled time vt for the impact energies E = 0.147 (a), 0.173 (b),
and 0.21 (c) keV. The target (dashed green line) remains located at
x = 0 for all t and the projectile trajectory x(t) = vt is drawn with
a thick (red) line. Temporal evolution of the quantum-mechanical
electron density |�(x,t)|2 for E = 0.147 (d), 0.173 (e), and 0.21
(f) keV.

significantly larger than the impact one; in other words, the
initial phase of the electron is not important.

In Fig. 3(b), we display the temporal evolution of the CTMC
trajectories as in Fig. 3(a) but for E = 0.173 keV, where P clas

C

reaches its maximal value ∼1 (see Fig. 2). Once again, the
trajectories are subjected to a back and forth motion between
the target and projectile centers in the overbarrier interval
−5 � vt � 5 a.u. Nevertheless the impact velocity is now
larger so that the trajectories perform a half twist less than
in the previous case; concretely, the trajectories bounce for the
sixth time on the (projectile) right exterior potential wall too
late, at vt � 4 a.u., to be able to jump over the internuclear
barrier later on (at the lower E = 0.147 keV, the trajectories
bounced for the sixth time on the right wall earlier, around
vt � 4 a.u., and were accordingly able to hop on the target for
vt � 4 a.u.).

Increasing further the impact velocity makes the overbarrier
time interval shorter, according to −5/v � t � 5/v a.u., and
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the number of trajectories’ oscillations between the target and
projectile centers is consequently reduced. In Fig. 3(c) which
illustrates the electron motion for E = 0.21 keV, we observe
that the trajectories are effectively delayed with respect to those
of Fig. 3(b) on a fixed scaled time interval, finally leading to a
minimum capture probability P clas

C ∼ 0. Within one oscillation
of the capture probability, as exemplified in Figs. 3(a) and
3(c) by E = 0.147 keV and E = 0.21 keV, respectively,
we note that the trajectories perform one oscillation less
between the nuclear centers in the overbarrier region. This
leads to a particularly simple and intuitive explanation for the
oscillatory behavior of the capture (and corresponding elastic)
probabilities: it stems from the dependence of the overbarrier
time interval on the impact velocity, −Rob/v < t < Rob/v,
which determines the number of allowed electron transitions
between the nuclear centers before final localization.

One may legitimately cast doubt on the soundness of
this classical picture which is apparently difficult to link
with Eq. (11). We therefore display in Figs. 3(d)– 3(f)
the temporal evolution of the quantum-mechanical electron
density |�(x,t)|2, as a function of the scaled time vt and for
the same impact energies as in the classical graphs [Figs. 3(a)–
3(c)]. A close classical-quantum correspondence shows up
as one compares the classical pictures [Figs. 3(a)–3(c)] with
their quantum counterparts [Figs. 3(d)–3(f)]. In fact, the
accumulative phases e−i

∫ t
Ek(t ′)dt ′ which enter the expansion

(3) of � and subsequently lead to Eq. (11) contribute to the
description of a classical electron that oscillates between the
target and projectile centers in the near collisional region.
The number of oscillations is monitored by the dependence of
the phases on v, e−i

∫ t
Ek (t ′)dt ′ = e− i

v

∫ R
Ek(R′)dR′

, with R = vt .
In the following section, we further prove that Bohmian
quantum trajectories validate the classical swapping of the
electron between the nuclear centers.

We now turn our attention to the origin of the above-
mentioned weak dephasing of the classical and quantal
capture probabilities. While back and forth transition hops
are restricted to the overbarrier region in the classical frame-
work, some underbarrier transitions are quantum mechanically
allowed for R > Rob. In the incoming phase of the collision,
such additional transitions occur for vt � −6 a.u., just before
overbarrier hopping is allowed [see Figs. 3(d)–3(f)]. The
quantum electron dynamics thus occur in advance of their
microcanonical counterparts, yielding the weak dephasing of
the corresponding final probabilities. The dephasing vanishes
as v increases because the delay �t between under- and
overbarrier transitions scales as �t = �R/v, with �R ∼
2 a.u. We have investigated how the use of improved initial
conditions (16), beyond the microcanonical framework (15),
allows one to remedy the classical-quantal shift. The truncated
Wigner distribution (16) indeed includes electron trajectories
with energies ε(T ) greater than ε

(T )
1 and these trajectories are

expected to mimic classically the underbarrier transitions [28].
The capture probability obtained by means of the CTMC
calculations using 
Wt (x,p) is reported in Fig. 2. It is clear that

Wt (x,p) makes the agreement of the quantum and classical
descriptions of electron motion worse: the classical-quantal
shift is increased and the amplitude of the classical probability
oscillations is significantly reduced at low E. These features

indicate an improper description of primary tunnel transitions
and a subsequent jumbling of the electron oscillations which
monitor the shape of the capture probability as a function of
E. In practice, we have observed that some trajectories, with
energies ε(T ) exceeding the internuclear barrier, do hop on
the projectile for vt � −6 a.u., but other ones, with smaller
ε(T ), remain blocked in the target potential; this picture is
not a faithful representation of the quantum tunnel process
which occurs in the same vt range and where the electron
density moves as a whole from the target to the projectile
[see Figs. 3(d)–3(f)]. Later on, swapping between the nuclear
centers is allowed for most of the trajectories but the spread
of the electron velocity distribution, inherent in 
Wt (x,p),
impedes those trajectories to evolve as a whole at low E. The
dispersed trajectories consequently contribute more equally to
the capture and elastic scatterings than in the microcanonical
and quantum frameworks. For E > 1 keV, the contribution of
underbarrier transitions decreases and the effect of dispersion
on trajectories does not have time to operate significantly;
the capture probability obtained by means of Wigner-CTMC
calculations then agrees with its microcanonical analog.

2. Three-dimensional calculations

The close-coupling calculations are based on an eight-
term CTF-corrected molecular expansion that includes all the
OEDMs correlated with H+ + H(n) and H(n) + H+ up n = 2.
The CTMC calculations employ N = 30 000 trajectories in a
microcanonical framework. To compare the results of these
calculations with the previous 1D ones, we set b = 10−3 a.u.

In Fig. 4, we report the total capture probability resulting
from the close-coupling calculations as a function of E lying
in the range 0.05 � E � 1 keV. As before, the computed
probability coincides with the expression (11) associated
with the minimal two-state expansion without translation
factor. The striking difference which appears with respect
to the previous 1D simulations is the failure of the CTMC
calculations to reproduce the oscillatory behavior of the
capture probability, P clas

C ∼ 0.5 in all the low-impact velocity
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FIG. 4. (Color online) Total capture probability in 3D H+ +
H(n = 1) collisions as a function of the impact energy E: large-scale
molecular calculations (—); expected results (green •) from the
two-state expansion (11); and CTMC calculations (red – –).

062704-7



P. BOTHERON AND B. PONS PHYSICAL REVIEW A 83, 062704 (2011)

-8 -6 -4 -2 0 2 4 6 8
x (a.u.)

-8

-6

-4

-2

0

2

4

6

8

vt
 (

a.
u.

)

FIG. 5. (Color online) Temporal evolution of the longitudinal
coordinate xj (t) of randomly sorted CTMC electron trajectories in
three-dimensional H+ + H(n = 1) collisions with E = 0.6 keV and
b ∼ 0. The electron trajectories (black thin lines) are displayed as
functions of the scaled time vt . The target (dashed green line) remains
located at x = 0 for all t and the projectile trajectory x(t) = vt is
drawn with a thick (red) line.

ranges. The small deviations of P clas
C around 0.5 are due to

statistical uncertainties and must not be related to genuine
collisional effects.

To trace back the root of the failure of the 3D classical
treatment, we proceed as in Fig. 3 and display in Fig. 5, for
E = 0.6 keV, the evolution of the longitudinal cooordinate
xj (t) (x̂ = v̂) of randomly selected CTMC trajectories as a
function of the scaled time vt . We observe that the trajectories
behave in the longitudinal direction similarly as they evolve in
the 1D simulations: they remain blocked in the target potential
wall up to vt ∼ −5 a.u. and then begin to oscillate between
the target and projectile centers in the overbarrier region.
Nevertheless the trajectories evolve out of phase so that half
of them finally follow the target nucleus while the remaining
ones are captured. The dephasing of the trajectories exists
since their entrance in the overbarrier region as a result of the
dispersion induced by the transverse degrees of freedom y and
z. In practice, the transverse momenta py(t) and pz(t) strongly
influence the moments where the classical electrons bounce
on the exterior walls of the total potential in the longitudinal
direction. Therefore, and contrary to what has been observed
in the 1D simulations of Fig. 3, the 3D CTMC trajectories
do not evolve as a whole in the longitudinal direction as it is
required to reproduce the oscillatory behavior of the capture
probability.

We are thus led to examine the behavior of Bohmian trajec-
tories to understand how and why the probability oscillations
arise in the 3D quantum framework. Among all the quantum
trajectories that belong to the initial state at t = tin, we decided
to follow the motion of some prototypical ones, initially
located in the (x,z) collisional plane as shown schematically in
Fig. 6(a); some of them lie in the internuclear direction z = 0
(as in Fig. 3) while the remaining ones are located in symmetric
transverse directions given by z = −2 a.u. and z = 2 a.u.,
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FIG. 6. (Color online) Temporal evolution of Bohmian trajecto-
ries in 3D head-on H+ + H(1s) collisions. Three subsets of Bohmian
trajectories are selected as shown schematically in (a): a first subset
includes trajectories initially located around the target nucleus in the
internuclear direction z = 0 (red points, on middle line); the second
and third subsets correspond to trajectories located in the transverse
directions z = −2 a.u. (green points, on top line) and z = 2 a.u. (blue
points, on bottom line). The origin of electron coordinates is chosen
at the midpoint of the H2

+ system so that the target (T ) and projectile
(P ) travel with respective velocities −v/2 and v/2 in the x direction;
the trajectories of T and P are represented by the dashed and plain
thick lines, respectively, in (b–g). In (b–d), we display the evolution
of the longitudinal coordinate xj (t) of the trajectories as a function
of the scaled time vt for the impact energy E = 0.6 keV; (b), (c), and
(d), respectively, refer to the trajectories initially located on the axis
z = −2 a.u., z = 0 a.u., and z = 2 a.u. In (e–g), we display the same
as in (b–d) but for E = 0.94 keV.

respectively. The origin of electron coordinates is p = 1/2 so
that the target and the projectile move with respective velocities
−v/2 and v/2 along the x direction. Initially (at t = tin), all
the Bohmian trajectories evolve with vj (t) ∼ −v/2. We then
compare in Figs. 6(b)–6(g) the evolution of the longitudinal
motion xj (t) of the selected quantum trajectories at E = 0.6
[Figs. 6(b)–6(d)] and E = 0.94 keV [Figs. 6(e)–6(g)] that
coincide with two consecutive locations of probability maxima
(see Fig. 4).

Let’s first consider the quantum trajectories initially located
along the x axis [Fig. 6(c)]. The similarity of their behavior
with that of the classical trajectories of Fig. 3(b) is striking.
As soon as it enters into the overbarrier region, the Bohmian
flow exhibits the back and forth motion between the target
and projectile centers. This whole motion is dictated by the
outer trajectories with significant weights ρj that consecutively
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bounce on the outer walls of the molecular potential. As the
trajectories cannot cross, since vj = ∇S|j is single valued
at a given rj , the inner trajectories do not really bounce
on the external potential walls but rather follow the motion
constrained by the outer trajectories. Finally all the quantum
trajectories localize on the projectile to yield PC = 1.

Because of the azimuthal symmetry around the x axis, all
the quantum trajectories of Fig. 6(c) have transverse velocity
components which remain equal to 0 throughout the collision.
This is not the case for the trajectories of Figs. 6(b) and 6(d)
which were initially located in the transverse directions z =
−2 a.u. and 2 a.u., respectively. These trajectories present vy =
0 to obey symmetry with respect to the collisional (x,z) plane,
but vz �= 0. In practice, vz remains quite small in the course
of the collision, because of the noncrossing rule mentioned
above, and the transverse motions of left (z < 0) and right
(z > 0) trajectories are symmetric with respect to the x axis.
Both sets of trajectories evolve identically in the longitudinal
direction and display, like the z = 0 trajectories, the classical
back and forth motion in the overbarrier region which is at the
root of the maximal capture probability PC = 1.

As we consider in Figs. 6(e)–6(g) E = 0.94 keV, which
consists of the impact energy leading to the next PC = 1
condition after E = 0.6 keV, we observe that the Bohmian
trajectories depict the same classical behavior as in the
previous case, but perform one oscillation less between the
nuclear centers in the overbarrier region. The origin of
probability oscillations drawn from our 1D CTMC study is
thus clearly ascertained in the quantum framework: it stems
from the dependence of the overbarrier time interval on the
impact velocity, −Rob/v � t � Rob/v, which determines the
number of allowed electron transitions between the nuclear
centers before final localization.

In the light of Fig. 6, we understand that what is clearly
failing in the 3D statistical description is the reproduction of
trajectories’ entanglement. CTMC is succeeding in describing
the (quantumlike) initial average conditions on the transverse
electron velocity components, 〈vy(r)〉
 = 〈vz(r)〉
 = 0, by
means of a large ensemble of noninteracting trajectories with
significant velocity spread [46]. However, large tranverse
components, compared to v, put the independent electron
trajectories out of phase in the longitudinal direction in which
no overall motion can then show up (see Fig. 5). In this
respect, the introduction of an artifical viscosity term [51] in the
classical equations of motion should remedy this, entangling
the CTMC trajectories. Such an entanglement must not be
interpreted as a major quantum effect. We indeed know that
quantum effects generally induce the apparition of nodes or
deep minima in the total electron wave function [53]; in
the present case, we have explicitly verified by means of
our close-coupling calculations that the total � is weakly
structured, which is a sign of both weak quantum effects and
related dominance of classical behavior, as corroborated by
the Bohmian trajectories of Fig. 6.

B. He2+ + H(n = 1)

We now consider 1D He2+ + H(n = 1) collisions as a
prototype of multicharged ion-atom collisions. The He+ states
are obtained by diagonalization of the atomic Hamiltonian in a
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FIG. 7. Correlation diagram of the 1D He2+ + H system: the plain
lines correspond to the molecular energies En(R) as functions of the
internuclear distance R; the dotted line refers to the energy of the
electron in its initial target state perturbed by the projectile located at
distance R; and the dashed line illustrates the height of the internuclear
potential barrier as a function of R.

{cos(kx), sin(kx)} basis defined by x(P )
max = 50 a.u. and k(P )

max =
6 a.u., yielding 16 bound and 174 discretized continuum
states. The molecular states χm(x,R) are obtained similarly
by diagonalizing H (2) in a basis characterized by xmax =
150 a.u. and kmax = 6 a.u. The {χm(x,R)} basis includes
36 bound and 536 continuum wave functions. The classi-
cal CTMC calculations employ N = 30 000 noninteracting
trajectories.

We display in Fig. 7, as functions of R, the energies of
the molecular states associated with the entrance state and
main capture channels. We also include in this figure the
energy ε

(T )
1 − 2/

√
R2 + 1/2 of the electron in its initial state

perturbed by the projectile located at distance R, as well as
the height Vmax(R) of the internuclear total potential. The
comparison of these two quantities shows that overbarrier
transitions between the target and the projectile are allowed for
R � 7 a.u.

The total capture probability obtained by means of the
molecular calculations is drawn in Fig. 8 as a function of
the impact energy E with 1 � E � 200 keV/amu. PC(E)
presents an oscillatory shape with an amplitude less than 1. In
the close-coupling framework, the origin of the (Stueckelberg)
oscillations can be traced back to the phase differences which
appear in the set of differential equations (4) defining the
expansion coefficients.

The classical probability resulting from microcanonical
CTMC calculations is included in Fig. 8. As for H+ + H
collisions, the oscillatory behavior of the probability is fairly
reproduced. To elicit the origin of the classical oscillations,
we draw in Fig. 9 the temporal evolution of randomly sorted
CTMC trajectories for E = 1.21, 1.66, and 3 keV/amu [within
one oscillation of PC(E), see Fig. 8]. The scenario that applied
for the previous homonuclear system is clearly repeated in
the present case: the trajectories remain trapped in the target
potential well until they reach the overbarrier region where
they start to bounce off the outer walls of the molecular
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FIG. 8. (Color online) Total capture probability in 1D He2+ +
H(n = 1) collisions as a function of the impact energy E: large-scale
molecular calculations (—); CTMC calculations with microcanonical
(red dashed line) and truncated Wigner (green dot-dashed line) initial
conditions.

potential; for the selected impact energies of Fig. 9, the
initial dispersion of the trajectories has no consequence on the
subsequent global electron flow which finally localizes around
one nuclear center according to the number of bounces allowed
in the overbarrier time interval that shrinks as −Rc/v < t <

Rc/v with increasing v. For impact energies in between those
of Fig. 9, the initial phase of the electron plays a role since
the trajectories arrive at the exit of the overbarrier region
with a delay that impedes the last trajectories to hop on the
nuclear center where the first (prompter) electrons have lo-
calized; the final capture probability is consequently neither 0
nor 1.
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FIG. 9. (Color online) Temporal evolution xj (t) of randomly
sorted CTMC electron trajectories in 1D He2+ + H(n = 1) collisions.
The trajectories (black thin lines) are displayed as functions of the
scaled time vt for the impact energies E = 1.21 (a), 1.66 (b), and 3
(c) keV/amu. The target (dashed green line) remains located at x = 0
for all t and the projectile trajectory x(t) = vt is drawn with a thick
(red) line.

For E < 10 keV/amu, the amplitude of the classical
probability is overestimated with respect to its quantum analog.
This is due to the lack of underbarrier transitions (occuring for
R > Rc) in the classical microcanonical framework. Therefore
we have performed Wigner-CTMC calculations and the results
are included in Fig. 8. The magnitude of the probability
maxima is suitably reduced for E < 10 keV/amu, even though
it does not decrease enough to match the quantum value,
but the minima are no more 0 as they should be (and were
in the microcanonical calculations). This reiterates the fact
that the improvement of initial CTMC conditions, beyond the
microcanonical framework, does not provide a faithful enough
representation of tunnel transitions in low-energy atomic
collisions.

IV. CONCLUSIONS

In this paper, we have considered the behavior of the
total charge-exchange probability in low-energy ion-atom
collisions. It is well known that this probability exhibits
oscillations either as a function of b for fixed v or as a function
of v for fixed b. These oscillations are usually interpreted
as signatures of quantum (interference) effects because they
result, in the close-coupling formulation of the collision
dynamics, from v- and b-dependent phase terms involving
energy differences between the capture and elastic scattering
channels.

We have performed molecular close-coupling and classical
CTMC calculations of the charge-exchange probabilities in
low-energy H+ + H(n = 1) and He2+ + H(n = 1) collisions.
In a first step, we have used a reduced (1D) dimensionality
and have studied the dependence of the probabilities on
the impact energy E for b = 0. We have found that the
oscillatory behavior of the probabilities is fairly represented
by means of the microcanonical CTMC method, even in the
case of H+ + H(n = 1) where the main capture and elastic
scattering channels are symmetrically resonant. The temporal
evolution of the classical trajectories has thus allowed us to
propose a classical interpretation of the oscillations, as an
alternative to the usual quantum explanation: the trajectories
remain trapped in the target potential well until they reach the
overbarrier region R < Rc where they start to bounce off the
outer walls of the molecular potential; the final localization
of the electron then depends on the number of bounces
allowed within the overbarrier time interval that shrinks
according to −Rc/v < t < Rc/v as v increases. This finding
is consistent with previous works (see, e.g., Refs. [36,37])
which already linked classical swapping of the electron
between the colliding nuclear centers to quantum-interference
patterns.

We have also performed 3D calculations for the same
systems. The probability oscillations did not show up in the 3D
CTMC simulations because of the additional tranverse degrees
of freedom which induce a strong dephasing of the trajectories
in the longitudinal (internuclear) direction throughout the
collision. The tranverse components of the electron momentum
tend to distribute the noninteracting CTMC trajectories more
uniformly between the nuclear centers at the exit of the
overbarrier region. In a quantum description, these transverse
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components do not blur the whole electron flow because of
the entanglement of the trajectories; 3D Bohmian trajectories
evolve as a whole in the longitudinal direction, similarly to
what happens in the 1D CTMC framework. Even if this

shows that 3D CTMC calculations cannot substitute exact
quantum-mechanical descriptions, the fact remains that the
probability oscillations can be classically understood as in 1D
model systems.
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