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Double ionization of helium by bare ions: Theoretical study of the fully differential cross sections
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This work presents a theoretical study of fully differential cross sections (FDCSs) for the double ionization
of an He target by ion impact within a distorted wave model. The initial atomic system is described by two
approximated wave functions of different accuracy proposed by Bonham and Kohl. For the final channel several
models are considered based upon improvements and simplifications of the well-known three-body Coulomb
(3C) model. The influence of the receding projectile on the resulting fragments is also studied by implementing a
model with effective charges that depend on the momenta of the four particles. The FDCSs resulting for different
electron energy sharing are discussed. The sensitivity of the FDCSs to the projectile charge sign and magnitude
is explored over the energy range 700 keV/amu through 6 MeV/amu.
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I. INTRODUCTION

Atomic collision processes involving two or more electrons
have shown to be relevant not only to the atomic physics
community but also to other fields such as astrophysics
and radiotherapy. In the astrophysics context we can cite
the important contribution to the x-ray spectra emission of
double capture processes to highly excited states followed by
autoionization or double radiative decay. These processes take
place in collisions involving low-energy solar wind ions as
they transit planetary atmospheres or cometary comas [1,2].
Concerning radiotherapy applications, we emphasize how
important it is to describe multiple ionization as well as transfer
ionization processes accurately in order to provide confident
data to the Monte Carlo codes used to describe the dose
distribution [3].

In particular, experimental studies of the double ionization
(DI) of He by proton impact were performed in the early
1980s [4,5] and mainly concentrated in total cross sections σ 2+
and the experimental determination of the ratio R = σ 2+/σ+.
The R values obtained for He targets by proton and antiproton
impact showed clear differences even at large impact energies
where first Born-type approximations were already reliable
for σ+. In those days, two theoretical models successfully
reproduced the proton-antiproton magnitude difference for
R: the forced impulse method [6] and the n body classical
trajectory Monte Carlo (nCTMC) model [7]. Most of the
quantum mechanical calculations of σ 2+ for light targets such
as He and Li were performed within the independent electron
(IEL) model [8,9] or the independent event (IEV) model [9,10].
None of these models provided an ultimate description of
σ 2+ at the whole range of collision energies experimentally
explored [10–14].

A great experimental advance in the process took place
with the introduction of the cold target recoil ion momentum
spectroscopy (COLTRIMS) technique by the mid 1990s [15].
As a result, and following by a couple of years the measurement
of similar (e,3e) data by the same group [16], in 2003
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the first fully differential cross sections (FDCSs) of the He
collisional breakup process by 6-MeV protons were presented
and compared to their electron-impact counterparts [17]. From
those studies the authors concluded that even for double
ionizing collisions involving intermediate- to low-momentum
transfers, the projectile charge sign played a major role at the
large impact velocity explored of 15.5 a.u.

These experimental results were later integrated and pre-
sented in terms of doubly differential cross sections (DDCSs)
[18]. Nonperturbative close-coupling time-dependent methods
recently succeeded to accurately reproduce these angular
DDCSs [19,20].

Let’s now briefly describe the distorted wave models
employed so far to calculate the double ionization FDCSs
and DDCSs. These models have been built upon initial-state
wave functions, which only consider radial correlation, and
final-state wave functions based on the independent particle
2C model. The interaction between the emitted electrons is
introduced in those works by means of correlation factors
(Ward-Macek type [21] and Gamow, respectively) that are
r12 independent or consider r12 as a momentum-dependent
fixed parameter. Lobanova et al. have only retained the
first-order amplitude [22], while Ciappina et al. have added an
approximate second-order mechanism (noncoherently) at the
squared amplitude level [23,24]. The approximations inherent
to these methods drastically decrease the numerical cost
involved. As a result, a large set of FDCSs can be computed,
allowing for an appropriate convolution over the reported
uncertainties. In contrast, none of these models can provide
information on the possible differences arising in collisions
involving positively and negatively charged projectiles, since
they include at most terms proportional to Z2

P and Z4
P .

In this paper, we explore the theoretical description of
FDCSs for the double ionization of He by positive bare
ions with charges Z = 1+ to 6+ as well as by antiprotons
in the energy range 700 keV/amu through 6 MeV/amu
(V ≈ 5.29 − 15.5 a.u.). The goal of this work is twofold.
First, we consider the projectile as a plane wave in both
initial and final channels and compare the FDCSs obtained
by using two variational initial wave functions of different
accuracy together with analytical wave functions proposed for
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the three-body continuum. Second, we explore the projectile
charge sign and magnitude dependence at the fully differential
level by introducing a model based on effective charges similar
to that introduced by Jetzke and Faisal in their electron and
positron atom studies [25]. The usual contour plots that have
become familiar in these sorts of studies are presented together
with selected cuts in order to help visualize the main physical
trends. Finally, conclusions are drawn and future work lines
mentioned. Atomic units are used throughout this work unless
explicitly stated.

II. THEORY

We consider the double ionization of a He atom by an
ion with initial (final) momentum Ki (Kf ) and we denote k1

and k2 the momenta of the emitted electrons relative to the
target. Our study will be restricted to fast ions that during
the collision process transfer an intermediate to low amount of
momentum. In this context, we initially represent the projectile
in the initial and final states by plane waves. The FDCS for the
double ionization process is defined as

dσ

dk1dk2dQ⊥
= (2π )4

V 2
|Tf i |2. (1)

Here, Q⊥ is the perpendicular component of the momentum
transferred by the projectile defined by Q = Ki−Kf . The
transition amplitude in the distorted wave formalism at first
order Tf i is given by

Tf i = 〈χf
−|Wi |χi

+〉. (2)

We now describe the wave functions and operators used
throughout this work. The initial state χi

+ is given by,

χi
+ = 1

(2π )3/2
eiKi ·R�+

i (r1,r2). (3)

Here, r1 and r2 are the positions of the electrons relative to
the target, r12 = r1 − r2 and R is the distance between the
ions. For the He(1s2) ground-state wave function (�i

+), we
consider two wave functions:

(i) The Bonham and Kohl wave function 7 [hereafter termed
ground state 1 (GS1)], (see Table I in Ref. [26]), which only
includes radial correlation among the bound electrons,

�i
+(r1,r2) = Ni(e

−αr1−βr2 + e−βr1−αr2 ). (4)

The normalization constant and the variational parameters
are Ni = 0.708 92, α = 2.1832, and β = 1.1885 . This wave
function leads to an energy < E >= −2.8756 a.u., close to the
denominated radial limit of −2.879 a.u., which is the energy
limit that can be reached by only including radial correlation
in the wave function.

(ii) The Bonham and Kohl wave function 9 (GS2) as adapted
by Otranto et al. [27]

�i
+(r1,r2) = Ni(e

−ar1−br2 + e−br1−ar2 )(e−zcr12 + C0e
−λr12 ),

(5)

where Ni = 1.9358, a = 1.4126, b = 2.2068, λ = 0.199,
C0 = −0.6649, and zc = 0.01. This wave function includes
angular correlation (through the explicit r12 dependence) and
leads to an energy < E >= −2.9019 a.u, only 0.0489 eV apart

from the exact energy −2.9037 a.u. [27]. This wave function
differs from the original Bonham and Kohl wave function in the
e−zcr12 factor which replaces 1 in the original function. This
value was introduced to avoid spurious convergence factors
usually introduced to compute cross sections. In that work,
all the variational parameters were recalculated for the He
isoelectronic sequence up to ZT = 10.

The operator Wi represents the unsolved part of the initial
Hamiltonian and reads

Wi = ZP ZT

R
− ZP

|R − r1| − ZP

|R − r2| . (6)

For the final continuum state, after the two electrons have
been emitted from the target, we will use the following models:

(i) The 2C-C(k12) model [11,12,22,23]:

χf
− = 1

(2π )3/2
eiKf ·R�f

−, (7)

�f
− = 1

(2π )3

(1 + P12)√
2

[ei(k1·r1+k2·r2)Dk1 (η1,r1)

×Dk2 (η2,r2)]C(k12), (8)

where P12 is the permutation operator and C(k12) is a
correlation factor which depends on the interelectronic mo-
mentum k12. Here, η1 = −ZT /k1 and η2 = −ZT /k2are the
corresponding Sommerfeld parameters.

(ii) The three-body Coulomb (3C) model [28,29]:

χf
− = 1

(2π )3/2
eiKf ·R�f

−, (9)

�f
− = 1

(2π )3

(1 + P12)√
2

[ei(k1·r1+k2·r2)Dk1 (η1,r1)

×Dk2 (η2,r2)Dk12 (η12,r12)], (10)

where Dk(η,r) is the Coulomb distortion factor

Dk(r) = 	(1 − iη)e− πη

2 1F1 [iη,1,−i(kr + k · r)], (11)

and the interelectronic Sommerfeld parameter is given by
η12 = 1/(2k12) with k12 = (k1 − k2)/2 . This model explicitly
considers the interactions among the three particles but
neglects the nonorthogonal kinetic energy given by the non-
diagonal elements of the metric tensor. The 3C wave function
leads to a description of the three-body continuum in which
the different pairs of particles act unaware of the third particle
under consideration. The lack of nonorthogonal kinetic energy
becomes clearly evident in the usually denominated Wannier
limit, in which the electrons are emitted almost collinear and
with very low energy. The 3C model leads to an exponential
underestimation of the cross sections as the electrons’ emission
energy decreases in contrast to the expected power-law
dependence predicted by Wannier theories [30].

(iii) The dynamical screening (DS) models: Many studies
were performed during the 1990s with the aim of improving the
3C model [31–35]. All these studies had the common purpose
of obtaining a more accurate analytical wave function for the
three-body Coulomb problem. Although these models have
shown partial success in different contexts (electron impact
studies, ion-impact studies, photo-double ionization) and for
different energy ranges, none of them has arisen in subsequent
studies as the ultimate analytical wave function. For two low-
energy electrons in the continuum, the effective charges model
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of Berakdar and Briggs has shown some success in (e,2e)
and (e,3e) studies [32,33,36]. For each pair of particles these
effective charges are

ZDS
e1−He+ = −ZT + Zeff1 (k1,k2,k12)

ZDS
e2−He+ = −ZT + Zeff2 (k1,k2,k12)

(12)
ZDS

e1−e2
= 1 − Zeff12 (k1,k2,k12)

with

Zeff1 (k1,k2,k12) =
(

3 + cos2 4α1

4

k1

k1 + k2

)2
k12

k1 + k2

Zeff2 (k1,k2,k12) =
(

3 + cos2 4α2

4

k2

k1 + k2

)2
k12

k1 + k2

Zeff12 (k1,k2,k12) =
(

3 + cos2 4α1

4

k12

k1 + k2

)2
k1

k1 + k2

+
(

3 + cos2 4α2

4

k12

k1 + k2

)2
k2

k1 + k2

(13)

and the coefficients α1 and α2 being given by

α1 = arccos
k2√

k2
1 + k2

2

α2 = arccos
k1√

k2
1 + k2

2

. (14)

These charges were initially derived as coordinate dependent
and they satisfy a certain number of desired asymptotic limits.
The above shown momentum-dependent charges are obtained
when the ansatz ri → kit is assumed [33]. These charges
are much easier to implement from the computational view
compared to the coordinate-dependent charges since they
allow the partial use of Nordsieck-type integrals that clearly
alleviate the numerical work to be performed.

(iv) The DS3C-GO model: The previous models for the final
state only focused on the two-electron continuum of the atomic
system. The possible influence of the receding projectile on
this subsystem has been neglected so far. A simple extension,
from the analytical point of view, would be to increase the
number of Coulomb waves and distortion factors in order to
deal with a 6C model. This model has been used in the (e,3e)
context by Götz and Briggs [36] and considers all the two-
body interactions between the particles in the final channel
and hence goes beyond a second Born series. However, the
amount of calculation needed (9-D integrals) only allowed the
calculation of a few FDCSs as stated by the authors and their
conclusions are still the focus of debate [37].

A simpler alternative that we explore in this work, still
preserving the Götz and Briggs strategy, is the introduction of
the Jetzke-Faisal first-order multiple scattering model [25]. In
the ion-atom context its implementation results in the nuclear-
nuclear interaction being explicitly included in the final state
through a Coulomb wave function:

χ−
f = 1

(2π )3/2
eiKf ·RDKf

(ηNN,R)�f
−. (15)

Furthermore, effective charges are introduced following
Jetzke and Faisal, in order to include the projectile charge
effects on the electrons’ dynamics. Such a strategy was

previously considered by Gasaneo et al. for (e,3e) pro-
cesses [38] and was used on a He target at intermediate- to
high-impact energies. The effective charges that are used in
this work are then given by

ZGO
e1−He

= ZDS
e1−He+ + ZP

k1P .k1

k3
1P

k1

ZGO
e2−He

= ZDS
e2−He+ + ZP

k2P .k2

k3
2P

k2

(16)
ZGO

e1−e2
= ZDS

e1−e2

ZPT = ZP

(
ZT + k1P .V

k3
1P

V + k2P .V

k3
2P

V

)
.

As a result, the charges seen by the electrons in the
DSC model of Berakdar and Briggs are corrected with terms
that explicitly consider the projectile charge as well as the
relative velocities of the emitted electrons with respect to the
projectile [38]. Here, k1P and k2P are the electrons’ momenta
relative to the projectile and V is the velocity of the projectile.

For ZP > 0 and vP > k1, ∼ k2 the target core charge seen
by each of the electrons is lowered, depending on how fast
and in which direction each electron is emitted. For ZP < 0
and vP > k1, ∼ k2 opposite conclusions apply: The target core
charge seen by the electrons increases depending on each
relative velocity with respect to the projectile. As we can see,
for large impact energies and low electron emission energies
these charges tend to ZT as 1/k2

1P irrespective of the charge
sign or magnitude of ZP . As the impact energy is lowered,
the sign and magnitude of ZP plays a role affecting the core
charge seen by the ejected electrons as well as the internuclear
charge.

The fact that these charges are momentum dependent
allows, within the present calculation scheme, the computation
of a wide set of FDCSs and provides, in this sense, a larger
bench test for the model. The introduction of these effective
charges provides some information on the possible differ-
ences arising in collisions involving positively and negatively
charged projectiles. In this sense, the present model allows the
exploration of the projectile charge sign dependence predicted
by Fischer et al. [17] at the fully differential level. However, the
convolution over the reported experimental uncertainties turns
prohibitive within the DS3C-GO model due to the numerical
cost involved. Thus, representative punctual emission energies
and momentum transfers are considered and discussed in the
next section.

III. RESULTS

First, we will model the impinging projectile in terms of
plane waves and we concentrate on the description of the He
subsystem provided by the different models. We describe the
calculated FDCSs for double ionization of He by proton impact
in the coplanar emission geometry (Q,k1 and k2 all laying in
the scattering plane). The FDCS will be represented in terms
of contour plots as a function of the electron emission angles
θ1 and θ2 with respect to the forward beam direction. In the
following, we denote the different combinations of initial and
final wave functions under study by means of their respective
acronyms introduced above. In Figs. 1(a)–1(d) we show
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FIG. 1. Angular distributions of the two ejected electrons in the scattering plane. The polar angles are measured from the direction of the
incident beam. The calculated ionization FDCSs are given in units of 10−6 a.u. for proton impinging on He at Ei = 700 keV. The electrons are
ejected with equal energies of 10 eV and the momentum transfer Q is 0.9 a.u. The contour plots (a)–(d) correspond to the GS1 initial-wave
functions, (e)–(h) to the GS2 initial waves. The (a) and (e) plots corresponds to the 2C-Gamow final-state wave function, (b) and (f) to the
DS2C-Gamow, (c) and (g) to the 3C, and (d) and (h) to the DS3C model.

FDCSs obtained with different models for the final state and
a GS1 initial state and at Figs. 1(e)–1(h) those corresponding

to a GS2 initial state for 700-keV proton impact. The emitted
electron energies are E1 = E2 = 10 eV and the momentum
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transferred by the projectile is Q = 0.9 a.u. and θQ = 40.18◦.
The main purpose of this analysis is to contrast the angular
distributions of the models so far used to describe the present
problem [22–24], which are based on the use of correlation
factors, against those obtained by more elaborated models. It
can be seen that in the simplest model under consideration
(GS1-2C-Gamow), the emission of both electrons in the
same direction is strongly suppressed by the Gamow factor
which introduces a wide gorge that runs through the diagonal
θ1 = θ2, probably overestimating the exclusion mechanism.
The introduction of either angular correlation in the initial state
[GS2-2C-Gamow, Fig. 1(e)] or DS-effective charges within the
2C-Gamow model [Fig. 1(b)] drastically alters the structures.
This clearly highlights the sensitivity of the present system to
how the electronic correlation is introduced in both initial and
final states. As the final-state correlation is improved by using
the 3C and DS3C models, which explicitly consider the r12

dependence at the wave-function level, the sensitivity to the
initial state is not that large and the distributions obtained by
using either GS1 or GS2 are rather similar. Besides, we point
out that the FDCS obtained by using the 2C-Gamow final
state are two orders of magnitude below those obtained with
the more sophisticated 3C and DS3C final states. It is well
known that the Gamow factor leads to the underestimation
of the double ionization total cross section when associated

to the IEL model [14]. It should be expected then that such
underestimation would find its origin at the FDCS level in
concordance with our results. Interestingly, the introduction
of the DS charges of Berakdar and Briggs in the 2C-Gamow
model partially corrects such behavior and provides absolute
magnitudes much closer to those obtained with the more
elaborate models. The effective charges given by Eq. (12) take
constant values on the lines where θ2 − θ1 is a constant. In
particular ZDS

e1−e2
is zero along the line where θ2 − θ1 = π and

the corresponding Gamow factor is 1. This limit corresponds
to the collinear emission configuration in which both electrons
leave the reaction region seeing a nuclear charge equal to
Z − 1/4. Studies performed in the (e,3e) context [36] clearly
show that the DS3C model is in much better agreement with
the available data than the pure 3C model. In any case, from
the inspection of these figures one can conclude that the
results obtained by means of the GS2-DS3C model cannot
be accurately reproduced by any combination based on the
simpler models currently under study for the final state.

An alternative way to explore why the different models
exhibit structures at different angular regions is through the
inspection of the recoil momentum acquired by the nucleus.
In Fig. 2 the contour lines of the FDCS above shown for
the GS2 initial state and the 2C-Gamow, DS2C-Gamow, 3C,
and DS3C final states, are drawn over the recoil momentum

FIG. 2. Angular distributions of the two electrons drawn over the corresponding absolute values of the target recoil momentum, for the
same dynamical conditions considered in Fig. 1. The scale on each plot indicates absolute values for the target recoil momentum. Theories:
(a) GS2-2C-Gamow, (b) GS2 -DS2C-Gamow, (c) GS2-3C, and (d) GS2-DS3C.
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FIG. 3. Contour plots for the scattering plane angular distributions of the two electrons (a), (b) and target recoil (c), (d) for double ionization
of He by 700 keV/amu proton impact. The momentum transfer is Q = 0.9 a.u. and the energy shared among the electrons is 50 eV. All the
calculations were performed with the GS2-DS3C model. The FDCSs are in units of 10−6 a.u. The different emission geometries considered
are (a) and (c) E1 = 10 eV and E2 = 40 eV; (b) and (d) E1 = 1 eV and E2 = 49 eV.

contour plot. The target recoil is obtained from the momentum
conservation equation

R = Q − k1 − k2 (17)

The magnitude of the recoil can be inferred from the scale that
is located on the side of each plot. For the GS2-2C-Gamow
model, we can identify two main structures: one located at
θ1 ≈ −15◦ and θ2 ≈ 100◦, which represents electrons that
tend to leave the reaction region sharing almost all the
transferred momentum by the projectile (k1 + k2 ≈ Q), with
the target nucleus being practically a witness. The other
important structure is seen at θ1 ≈ −75◦ and θ2 ≈ 150◦,
emission geometry for which the recoil acquired by the target
nucleus is close to 2Q (position in which the recoil peak
would be expected in a single ionization process). Symmetric
structures to the ones described are observed with respect to
the diagonal θ1 = θ2. The introduction of the DS charges in
the 2C-Gamow model drastically alters the distributions: The
first structure (k1 + k2 ≈ Q) is already present, but now a
strong structure is found close to θ1 ≈ 40◦ and θ2 ≈ 220◦,

which represents the two electrons leaving in a collinear
configuration (i.e., with k1 + k2 ≈ 0) while the target nucleus
absorbs the momentum transfer Q. For the fully correlated
final states, we find the GS2-3C model pushing this very last
picture (most of the electrons leaving the reaction region in a
collinear configuration), which could be in principle expected
since during their emission the two electrons (as a two-body
subsystem) are unaware of the presence of the recoil nucleus.

The GS2-DS3C, on the other hand, smoothly moderates the
two-body interactions taking into account the third particle and
as a result we observe that the dominant structures correspond
to the binary and recoil peak. This would seem at first sight
similar to the GS1-2C-Gamow description but we again point
out that there is a difference of two orders of magnitude
among theories. Besides, a closer inspection of the region
near the diagonal θ1 ≈ θ2 shows that it seems to narrow for the
GS2-DS3C model compared to the GS1-2C-Gamow model.
In terms of the recoil momentum, we observe that the main
structure is now centered at θ1 ≈ −5◦ and θ2 ≈ 85◦, indicating
that both electrons can get angularly closer than predicted by
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FIG. 4. Contour plots of the angular distributions of the two electrons for double ionization of He by proton impact (a), (b) and antiproton
impact (c), (d). The impact energies considered are Ei = 700 keV (a) and (c), and Ei = 6000 keV (b) and (d). All the calculations were
performed with the GS2-DS3C-GO model. The emission geometry considered is that of Fig. 1. The FDCS are in units of 10−6 a.u.

the GS1-2C-Gamow model. In fact, this peak is placed in
an extended ridge that developed along the line θ2 ≈ θ1 + π/2
indicating that this reaction results when the projectile hits one
electron, which pushes out the second one, sharing during the
process some momentum with the core. The above described
features indicate that the use of the Gamow factor as the
only factor in the wavefunction which takes account of the
electron-electron interaction, leads to an overestimation of
the repulsion effects. In the DS models, the electron-electron
interaction is softened in terms of the relative emission
angle compared to the pure Gamow factor, providing, in
principle, a much more realistic description at least based on
physical grounds. Besides, the GS2-DS3C model, through the
explicit r12 dependence and DS charges, leaves fingerprints
at the FDCS level of the role played by the electron-electron
repulsion that could be traced, in principle, by inspection of
the recoil momentum.

In Fig. 3 we consider the double ionization of He by a
700-keV proton impact for different sharings of the total
emission energy among the electrons. The theoretical model
chosen for this study is the GS2-DS3C. This model satisfies

more desirable physical limits than any other possible
combination based on the wave functions above shown. The
momentum transfer is Q = 0.9 a.u. and θQ = 10.26◦, the
emission energy shared among the two electrons is 50 eV, and
the FDCS distributions obtained are shown for E1 = 10 eV
and 1 eV in the first column. In the second column selected
contour levels are drawn over the recoil momentum contour
plot to help visualize the main physical trends that can be
inferred for the different energy sharings. For E1 = 10 eV
and E2 = 40 eV, the main yield appears for θ2 ≈ θ1 + π/2.
A possible interpretation would be provided by the projectile
hitting one electron, which then collides with the core and
pushes out the second electron. As the electron emission
energies turn more asymmetric, we observe that the probability
of finding electrons emitted in the forward direction increases
(i.e., the dynamic restriction remnants from the equal energy
distribution get lost as the energy sharing is more asymmetric).
For E1 = 1 eV and E2 = 49 eV, the recoil distribution patterns
tend to conform to two horizontal strips, which can be related
to large and low recoil momentum respectively. From these
strips we infer that in terms of acquired momentum, the
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FIG. 5. (Color online) Selected cuts of the surfaces shown in Fig. 4 represented in terms of polar plots from for: (a), (b) Ei = 700 keV and
(c), (d) Ei = 6000 keV. Angular distributions for one of the emitted electrons are shown at fixed emission angles of the other one at values (a)
and (c) θ1 = 0◦, and (b) and (d) θ1 = 180◦ (indicated by arrows). Theories: GS2-DS3C model (solid line); GS2-DS3C-GO model for proton
impact (dashed line); GS2-DS3C-GO model for antiproton impact (dashed-dotted line).

target nucleus is rather sensitive (insensitive) to the emission
direction of the fast (slow) electron. From Fig. 3, we notice that
most of the double emission is in this case associated to low
momentum transfer to the target nucleus, with both electrons
being emitted in the forward direction (θ1,θ2 < 90◦). Other
structures are found around θ1 ≈ 0◦ and θ2 ≈ 180◦, in which
the fast electron suffers a strong interaction with the recoiling
nucleus, and θ1 ≈ 180◦ and θ2 ≈ 0◦, which can be related to
the fast electron departing in the forward direction and the slow
electron interacting with the recoiling nucleus. Concerning
magnitudes, we notice that the FDCS magnitudes for the
most asymmetric double emission here considered are about a
factor of 5 greater than those corresponding to the equal energy
case. This should be relevant at the integrated cross sections
level. Although not shown here, for the equal energy case
corresponding to E1 = 25 eV and E2 = 25 eV, the angular
distribution is similar to Fig. 1(h) and the same comments
apply.

We now turn our attention to the projectile field effects
on the FDCS and describe the results obtained by means
of the GS2-DS3C-GO model. The effective charges in this
model depend on the relative velocities of the four particles,
introducing multiple collisions in the reaction zone, which
is equivalent to the introduction of higher-order perturbative
corrections in the present first Born approximation. In Fig. 4
we compare the double emission distributions in the collision
plane for proton and antiproton collisions at impact energies
of 700 keV and 6000 keV. Selected cuts of these surfaces
are shown in terms of polar plots in Fig. 5. The emitted
electron energies and momentum transfer are those considered
in Fig. 1. Clear differences are observed in the structures
predicted for both projectiles at the lowest energy considered
of 700 keV. Compared to the GS2-DS3C model [Fig. 1(h)] the
structure associated to recoil values close to 2Q is enhanced
for antiproton impact and weakened for proton impact. This is
clearly shown in Fig. 5(b) and can be explained in terms of the
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FIG. 6. Contour plots of the angular distributions of the two emitted electrons for proton (a), (b) and antiproton (c), (d) impact. All
the particles are in the scattering plane and the electrons are emitted with asymmetric energies. The calculations were performed with the
GS2-DS3C-GO model, and the FDCSs are given in units of 10−6 a.u. The collision energy is Ei = 700 keV, the momentum transfer Q = 0.9 a.u.
and the different emission geometries considered are (a) and (c) E1 = 5 eV and E2 = 15 eV; (b) and (d) E1 = 1 eV and E2 = 19 eV.

decrease (increase) of the target charge seen by the electrons
for proton (antiproton) impact, which provides the physical
picture of the electrons being pulled from (pushed against) the
target nucleus by the receding projectile.

Similar conclusions apply for the structures seen at θ1 ≈ 0◦
and θ2 ≈ 80◦ for proton impact. In this case, the picture of
a binary collision between the projectile with one of the
electrons, which in a subsequent collision ejects the other
electron becomes clearly evident. In the latter, on the other
hand, it is clearly observed that the receding projectile favors
the interaction of the emitted electrons with the target nucleus
as inferred from the recoil momentum acquired. These plots
highlight the statements above discussed and allow a closer
inspection of the structures. In all cases, the GS2-DS3C model
results lay in between the proton and antiproton results. As
expected, the differences tend to vanish as the impact energy
increases. At the impact energy of 6000 keV, the present FDCS
for proton and antiproton impact are very similar and already
converge to the GS2-DS3C, as shown in Figs. 5(c) and 5(d).

In Fig. 6 we consider the unequal energy sharing case
for a total excess energy of 20 eV. The FDCS for E1 =
5 eV and 1 eV are shown for 700 keV/amu proton impact
(first column) and antiproton impact (second column). The
momentum transferred by the projectile is set equal to 0.9 a.u.
and θQ = 40.18◦, as in Fig. 1. As above stated, the cross
sections turn more intense as the electron emission energies
become more asymmetric. For proton impact and E1 = 5 eV
we observe a large part of the emission in a geometry that
corresponds to the fast electron being ejected at θ2 ≈ 30◦
while the slow electron departs at θ1 ≈ 240◦ (i.e., the proton
drags the fast electron). We notice that this particular structure
turns dominant as the energy asymmetry among electrons
increases. A weaker cusp is observed around θ1 ≈ 30◦ and
θ2 ≈ 220◦, which can be associated to a second-order collision
with the target by the fast electron. For antiproton impact on
the other hand, the most intense structure is found around
θ1 ≈ 45◦ and θ2 ≈ 220◦ indicating that the fast electron prefers
backward emission angles. This structure turns dominant for
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FIG. 7. (Color online) Selected cuts from Figs. 6(b) and 6(d) in polar plot representation. The cuts are taken at fixed momentum of the slow
electron (a), (b) E1 = 1 eV, and for the fast electron (c), (d) E2 = 19 eV. The emission angle of one of the electrons is indicated with an arrow
at (a) and (c) θ1,2 = 0◦, and (b) and (d) θ1,2 = 50◦, respectively. Theories: Same as in Fig. 5.

the most asymmetric energy sharing among electrons under
study. Additionally, it can be seen that in all cases double
electron emission in the forward direction ( θ1,θ2 < 90◦)
seems to be strengthened for proton impact and weakened
for antiproton impact. In order to perform a closer inspection,
in Fig. 7 selected cuts of Fig. 6(b) and 6(d) are shown in polar
representation and are compared to the results obtained with
the GS2-DS3C model, for the more asymmetric energy case.
In the left column we show the fast electron distributions for
the slow electron being ejected at angles θ1 = 0◦and 50◦. In the
right column, on the other hand, we present the slow electron
distributions with the fast one being emitted at the angles
above mentioned. The first thing to notice in Figs. 7(a) and
7(b) is that the fast electron shows an emission in the forward
direction for proton impact larger than for antiproton impact.
The postcollisional picture we get is that of the proton pulling
the fast emitted electrons, increasing (diminishing) the forward
(backward) emission. The inverse situation is observed for
antiproton impact.

Similar features were recently described in single ionization
of argon by electron and positron impact [39,40]. Since
the GS2-DS3C model does not account for any kind of

postcollisional interaction between the atomic subsystem and
the receding projectile, it provides a clear view of how the
structures are altered when using the GS2-DS3C-GO model.
We now turn to the slow electron distribution, for which we
observe a more intense distribution in the case of proton
impact than for antiproton impact. This can be explained by
considering that the slow electron electron emission resembles
an (e,2e) process, but with the projectile field influencing
the size of the target. For proton impact the electron target
nucleus interactions are weakened in contrast to the antiproton
impact case, where the electron target nucleus interactions
are strengthened. As a result, the chance of a second order
electron-electron collision is much more probable for proton
impact than for antiproton.

In Fig. 8, we consider other projectiles and show the surface
distributions for 1 MeV/amu collisions of He2+, Li3+, and
C6+ on He. The electron emission energies considered are
E1 = E2 = 10 eV and Q = 0.9 a.u. The first thing we note
is a ridge resulting from momentum transference from the
projectile to one electron which kicks off the other electron and
transfers some momentum to the core before being emitted.
In this ridge the more intense structure takes place when the
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FIG. 8. Contour plots of the angular distributions of the two emitted electrons for (a) He2+, (b) Li3+, and (c) C6+ impact with energy
Ei = 700 keV/amu. The calculations were performed with the GS2-DS3C-GO model, for E1 = E2 = 10 eV and Q = 0.9 a.u. The FDCSs
are in units of 10−5 a.u.

target nucleus remains still, the situation which corresponds to
k1 + k2 ≈ Q. We observe that the structure corresponding to
R ≈ 2Q tends to disappear for large ZP . This would indicate
that the second-order interactions with the target nucleus

become less important as the impact charge increases. This
should be expected since the highly charged projectile is
pulling both electrons out, clearly diminishing the probability
of a secondary collision between the emitted electrons with the

FIG. 9. (Color online) Selected cuts of Figs. 8(a)–8(c) in polar plot representation with the addition of data for proton impact. The theoretical
method, impact energy, momentum transfer, and electron energies are as in Fig. 8. The emission angle of one of the electrons is indicated with
an arrow at (a) θ1 = 0◦, (b) θ1 = 60◦, (c) θ1 = 90◦, and (d) θ1 = 120◦. C6+ impact (solid line), proton impact (dashed line), He2+ impact (dotted
line), and Li3+ impact (dashed-dotted line). For a better visualization, all curves are normalized to the FDCS obtained for C6+ impact.
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target. In Fig. 9 we show polar plots corresponding to selected
cuts of these surfaces and we add the proton impact data. The
second electron distribution is studied as a function of the
first electron emission angle. The different curves have been
normalized to the highest structure for C6+ in order to compare
the angular profiles. It can be seen that the second-order
interactions with the target nucleus clearly tend to diminish as
the projectile charge increases as above stated. Furthermore,
the peaks corresponding to emission geometries for which the
target nucleus plays a minor role are strongly influenced as can
be inferred from the shape distortion and the emission profiles
which are tilted toward the projectile direction θ ≈ 0◦. All
this theoretical evidence highlights the importance of having a
model able to include the postcollisional interaction between
the receding projectile and the He subsystem fragments at the
collision energies under consideration.

IV. CONCLUSIONS

In this work we have theoretically studied the double
ionization of He by protons, antiprotons and fully stripped
ions. Fully differential cross sections have been calculated
using a distorted wave model that allowed the implementation
of different wave functions for the initial and final states of
the He subsystem. A relevant theoretical advance is attained
by describing the final state with a full 3C wave function,
improving former descriptions based on the 2C wave together
with a simple Gamow factor to account for the e-e correlation.
Since the static charges in the 3C model do not account for the
dynamical screening produced by the relative motion of the
four particles in the final state, we have introduced two dis-
torted wave methods based on dynamically screened charges.
The first model considers the dynamical correlation between
the electrons and the target nucleus, assuming the effective
charges proposed by Berakdar [33]. The second model addi-
tionally incorporates the influence of the receding projectile
following the proposal of Jetzke and Faisal [25]. Basically,
the field of the receding projectile alters the way in which the
emitted electrons interact with the recoiling target nucleus.

The probability of a secondary interaction between the
emitted electrons and the target nucleus is increased in the

case of antiproton impact and diminished for positive ion
impact. The present results suggest that double emission for
asymmetric electron energies is much more favorable than
equal energy double emission. Furthermore, we have shown
that from the inspection of the recoil momentum acquired by
the target nucleus it can be possible to gain insight on the He
subsystem dynamics predicted by the different models.

Fully stripped projectiles with charges up to 6+ have been
considered and found to strongly influence the electronic
angular distributions at the impact energy of 1 MeV/amu.
As the projectile charge increases, the electronic distributions
are more localized and, as stated above, the chance that the
electrons suffer a secondary collision with the target nucleus
tends to vanish.

We found that the calculated FDCSs for proton and antipro-
ton impact with the GS2-DS3C-GO model clearly differ at
the lowest impact energy here considered (700 keV/amu) but
differences tend to disappear as the impact energy is increased.
It is well known from the σ 2+/σ+ studies performed in the
1980s that at 6 MeV/amu the antiproton σ 2+ cross sections
are expected to almost duplicate those obtained with protons.
Within the GS2-DS3C-GO model, as the impact energy is
increased to 6 MeV/amu, the results for proton and antiproton
impact are almost indistinguishable and converge to the GS2-
DS3C results. Whether this is a consequence of the limitations
of the model under consideration or a characteristic of the limit
of intermediate- to low-momentum transfers here considered
remains an open issue. A second Born approximation model
for the present collision system is currently under way and will
be contrasted against the present model.

We hope this work will give guidance and stimulate future
experimental work to further refine our understanding of these
collision systems at the fully differential level.
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