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Fully relativistic distorted-wave theory has been applied to study the electron-impact excitation of the ns1/2-
np1/2 and ns1/2-np3/2 resonance transitions of singly charged metal ions with one valence electron, viz., Mg+

(n = 3), Ca+ (n = 4), Zn+ (n = 4), Cd+ (n = 5), and Ba+ (n = 6). Calculations are performed in the range of
incident electron energies up to 300 eV for differential and integrated cross sections as well as for the linear
polarization of the photon emissions following the decay of excited np3/2 states. Results are compared with the
available experimental data and previous nonrelativistic theoretical calculations. Moreover, analytic fits to our
integrated cross sections are provided for potential applications in modeling plasma sources and environments.
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I. INTRODUCTION

Electron-impact excitation cross sections of atoms and ions
are in great demand due to their many practical applications
in modeling of fusion plasmas, plasma processing of semi-
conductors, and analyzing planetary atmospheres. Apart from
the behavior and energy dependence of the excitation cross
sections, a detailed analysis of the polarization properties of
the characteristic photons emitted in the decay of excited
atomic states helps to understand the emission line spectra ob-
served in high-temperature plasmas. For excitation of neutral
atoms extensive theoretical and experimental investigations
are reported up to now and their findings have been in good
agreement. These theoretical work have employed various
sophisticated methods, e.g., nonrelativistic and relativistic
distorted wave (RDW) [1–3], converged close coupling (CCC)
[4], and R matrix [5].

In contrast to neutral atoms, less attention has been paid
to the electron excitation of singly and multiply charged ions.
For such ions, a great requirement for cross-section data has
been pointed out as not enough data are available owing
to the difficulties in performing the experiments. To meet
this requirement, several calculations have been reported but
with an emphasis on highly charged ions [6,7]. Therefore,
calculations are still needed for singly ionized metal ions which
play an important role in understanding heating and radiation
mechanisms in a wide range of high electron-temperature
plasmas. For metal ions, the available calculations are based on
simple nonrelativistic theories only. To analyze the quality of
these data, improved relativistic calculations for the excitation
cross sections are desirable and should be performed.

There are some experiments which have been performed to
study excitation of metal ions. For instance, Dunn and his co-
workers measured excitation cross sections and polarization
fraction for Ca+, Zn+, and Ba+ [8–10] using the crossed-
charged-beams technique. Chutjian and co-workers [11,12]
reported the first measurements on the excitation and angular
distribution of the fine-structure unresolved 4s-4p transition
in Zn+ at 75 eV using energy-loss techniques. Later, these
authors [13,14] also performed similar (relative) differential
cross-section measurement for the electron-impact excitation

of optically forbidden and resonance transitions (ns-np) in
Mg+, Zn+, and Cd+. With the electron-energy-loss merged
beams technique, Smith et al. [15] reported excitation cross
sections for fine-structure resonance transition ns1/2-np1/2

in Mg+ and Zn+ for a limited range of electron energies.
However, these latter measurements were found to be not very
reliable since the energy-loss technique has severe limitations
in measuring the data in a forward direction. Therefore, in order
to obtain the integrated cross sections Smith and co-workers
had to extrapolate their data in the forward direction, giving rise
to rather large uncertainties in the experimental values [16].

A number of nonrelativistic fine-structure unresolved cal-
culations were reported for metal ions. Among the recent
theoretical works, Kim [16] applied a scaling method to
Coulomb-Born cross sections for excitations of singly charged
helium, magnesium, and zinc ions. Zatsarinny and Bandurina
[17] investigated the low-energy electron-impact excitation
of the 4s-4p transition in Zn+ using the R-matrix method.
Kennedy et al. [18] performed calculations using a unitarized
distorted-wave polarized-orbital (UDWPOII) approximation
and various forms of the Coulomb-Born (CB) approximation.
They compared their results with the three-state close-coupling
(CC) calculations of Burke and Moores [19]. The shortcoming
of the UDWPOII calculations was that the distortion potential
was included only in the initial channel but was omitted from
the final channel. Such calculations are now known not to be
consistent. Mitroy et al. [20] also presented a detailed study
of electron-impact excitation of the resonance transition of
Ca+ in the limited low-energy range using only three- and
six-state CC approximations as well as unitarized CB and
distorted-wave (DW) approximations. Pindzola et al. [21]
calculated excitation cross sections for the 4s-4p transition in
Zn+ using a multiple LS-term CC approximation. Pangantiwar
and Srivastava [22] applied nonrelativistic distorted-wave
(NRDW) theory to calculate differential cross sections for
resonance transitions in Mg+, Zn+, and Cd+.

Despite the various experimental results and a number
of nonrelativistic CB, DW, and few three- to five-state CC
calculations for electron-impact excitation of singly charged
metallic ions, there is a lack of reliable relativistic calculations
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for these ions. Relativistic effects are important and must be in-
cluded for those atoms where spin-orbit coupling is important.
In this contribution, we present a systematic study of electron-
impact excitation of singly charged metal ions using the RDW
theory. In our previous work we have successfully applied
the RDW method to electron-impact excitation of various
multielectron neutral atoms including inert gases [1,2,23] and
provided differential and angle integrated cross sections as
well as polarization of photon emission [3,24,25]. The same
RDW theory has been extended to the electron-ion excitation,
and is applied in the present study for singly charged metal
ions. In our RDW method, multiconfiguration Dirac-Fock
wave functions in j -j coupling have been used to describe
the bound states of the target ions. The relativistic continuum
wave functions are calculated by solving Dirac equations in
the field of frozen target-ion charge distribution. In our present
calculation, we have taken into account the relativistic Breit
interaction in addition to the (usual) projectile electron-target
Coulomb interaction, anticipating its contribution might be
important for ions. No Breit corrections were included in
our earlier RDW calculations for neutral atoms [1,2,23–26].
Using the RDW theory, we present here calculations for
differential and integrated cross sections for the resonance
transitions ns1/2-np1/2 and ns1/2-np3/2 in Mg+ (n = 3), Ca+
(n = 4), Zn+ (n = 4), Cd+ (n = 5), and Ba+ (n = 6) in the
electron-energy range up to 300 eV. In addition to the cross
sections, calculations are performed also on the polarization
of the photon emission following the decay of the np3/2 state
back into the ns1/2 ground state in these ions. Finally, we
compare our results with the available experimental and other
nonrelativistic theoretical data.

II. THEORY

A. Scattering amplitude

As usual, all the properties of the excitation process can
be expressed in terms of the scattering (transition) amplitude.
This scattering amplitude can be written within the first-order
perturbation theory as (atomic units will be used throughout)

f (Ja,Ma,µa; Jb,Mb,µb,θ )

= (2π )2

√
kb

ka

〈φb(1,2, . . . ,N)F DW−
b

× (kb,N + 1) |Vin − Vd (N + 1)|
×Aφa(1,2, . . . ,N)F DW+

a (ka,N + 1)〉. (1)

In this amplitude the ion before and after excitation is
supposed to be in the states |αa,Ja,Ma〉 and |αb,Jb,Mb〉 with
a well-defined total angular momentum J ,M and α denote
all the additional quantum numbers as needed for a unique
specification of the states. In the above expression, Vin is
the interaction between incident electron and the ion. Vd is
the distortion potential which is chosen to be the function of the
position coordinate of the scattered electron only, i.e., rN+1. In
expression (1), φa,b represent N -electron target wave functions
while F

DW+(−)
a,b denote the projectile electron distorted-wave

functions which are calculated in the presence of distortion
potential Vd . In this notation, the “+” sign refers to an outgoing
wave, while the “−” sign denotes an incoming wave. A is

the antisymmetrization operator that takes into account the
exchange of the projectile electron with the target electrons.
µa,b are the spin projections of electrons in the initial and final
channel. ka,b are the relativistic wave numbers,

ka,b =
√

Ea,b(Ea,b + 2c2)

c
, (2)

where Ea,b are the relativistic energies (including the rest mass
of the electron). The coordinate system is chosen in such a way
that the incident electron defines the z axis, and the electrons
are scattered in the xz plane with the scattering angle θ as
the angle between the wave vectors ka and kb of the incident
and scattered electron, respectively. In order to evaluate the
amplitude (1) we need to know the explicit form of both,
interaction operators and electronic wave functions. Therefore,
in the following, we shall discuss these ingredients in more
detail.

1. Interaction potential

The interaction between the (incident) electron and the
target in Eq. (1),

Vin(ri ,rj ) = V C(ri ,rj ) + V B(ri ,rj )

=
∑
i<j

(
1

rij

− αi · αj

1

rij

+ 1

2
(αi · ∇i)(αj · ∇j )rij

)
,

(3)

contains both the Coulomb repulsion V C as well as the
relativistic Breit interaction V B (the second and third terms),
which represent the contributions from the magnetic interac-
tion between electrons and classical retardation due to finite
propagation of the action. In the above expression, αi are
the Dirac matrices. The reduction of scattering amplitude in
terms of angular coefficients and radial integrals for Coulomb
interaction has already been discussed in our previous work
[27]. In addition, we include the Breit interaction into the
scattering amplitudes by following the paper by Grant and
Pyper [28] to decompose the overall amplitude into products
of radial integrals and angular coefficients.

2. Distortion potential

In order to obtain DWs, we compose the distortion potential
as the sum of a direct part Vst(r) (or static potential) and an
exchange part Vex(r),

Vd (r) = Vst(r) + Vex(r). (4)

The first term Vst(r) is a spherically symmetric distorting
potential which is obtained from the charge distribution of the
atomic wave functions. This is a static atomic potential since
the atomic wave functions are assumed not to be distorted by
the projectile electron. In the present calculations we choose
Vst(r) as the final excited-state potential of the ion with nuclear
charge Z and number of electrons N ,

Vst(r) = −Z − N

r
+

∑
j∈all subshells

Nj

∫ ∞

0

[
P 2

nj κj
(rj )

+Q2
nj κj

(rj )
] 1

r>

dr. (5)
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Here Nj is the occupation number of the j th subshells and the
electron in it is represented by quantum number njκj . P and
Q are the larger and smaller components of the radial wave
functions of ionic orbitals. These bound orbital wave functions
are calculated by using the GRASP92 code of Parpia et al. [29].

In the present calculation we also include dynamic effects
in the atomic potential such as electron exchange distortion.
The exchange potential has also been derived from the static
potential Vst by taking the commonly used local energy-
dependent form [30]

Vex(r)= 1

2

[(
1

2
k2−Vst(r) + 3

10
[3π2ρ(r)]

2
3

)

−
{(

1

2
k2 − Vst(r)+ 3

10
[3π2ρ(r)]

2
3

)2

+ 4πρ(r)

} 1
2
]
.

(6)

Here ρ(r) is the charge density which is given by

ρ(r) = 1

4πr2

∑
j∈all subshells

Nj

[
P 2

nj κj
(rj ) + Q2

nj κj
(rj )

]
. (7)

3. Continuum wave function

The projectile electron DW functions F DW±
ch,µch

are expanded
into partial waves as

F DW±
ch,µch

(kch,r) = 1

(2π )3/2

∑
κm

e±i�κ a
µch
ch,κm(k̂ch)

×1

r

(
fκ (r)χκm(r̂)

igκ (r)χ−κm(r̂)

)
, (8)

with

a
µch
ch,κm(k̂ch) = 4πil

[
Ech + c2

2Ech

] 1
2

×
∑
ml

(l ml 1/2 µch|j m)Y ∗
lml

(k̂ch). (9)

We use “ch” to denote either the initial channel a or the final
channel b. �κ is the phase (Coulomb+scattering) shift. fκ

and gκ are the large and small components of the radial wave
functions and the χ±κm are the spinor spherical harmonics,

χκm(r̂,σ ) =
∑
µν

(
�µ

1

2
ν

∣∣∣jm

)
Y�µ(r̂)ψ 1

2 ν(σ ), (10)

χ−κm(r̂,σ ) =
∑
µν

(
�̃µ

1

2
ν

∣∣∣jm

)
Y�̃µ(r̂)ψ 1

2 ν(σ ). (11)

Here j is the total angular momentum of the electron, m is the
z component of j , �̃ = 2j − �, (�1m1�2m2|�3m3) is a Clebsch-
Gordan coefficient, the Y�m(r̂) is the spherical harmonic, and
ψ 1

2 ν(σ ) is a spinor basis function. κ is the relativistic angular
quantum number, κ = ±(j + 1/2) for l = j ± 1/2.

The large and small components fκ and gκ of the continuum
wave functions satisfy the coupled Dirac equations,(

d

dr
+ k

r

)
fκ (r) − 1

c
(c2 − Vd + Ech)gκ (r) = 0, (12)(

d

dr
− k

r

)
gκ (r) + 1

c
(−c2 − Vd + Ech)fκ (r) = 0, (13)

for the DW potential Vd as described above. These coupled
equations can be solved numerically by accounting for the
boundary conditions

fκ (r)
r→∞−→ 1

k
sin

(
kchr − lπ

2
− η ln 2kchr + �κ

)
,

(14)

gκ (r)
r→∞−→ c

c2 + Ech
cos

(
kchr − lπ

2
−η ln 2kchr+�κ

)
,

(15)

where η = Z/v is the Sommerfeld’s parameter, with v being
the velocity of the electron.

B. Scattering parameters

Having discussed all the ingredients of the scattering
amplitude, we can use it to calculate other properties of the
electron-ion collision process. For the given normalization of
the amplitude, for instance, the differential cross section (DCS)
is given by

dσ (θ )

dω
= 1

2(2Ja + 1)

∑
Ma,µa

Mb,µb

|f (Ja,Ma,µa; Jb,Mb,µb,θ )|2,

(16)

where we need to sum over the (unobserved) spins of the inci-
dent and scattered electron as well as the magnetic substates of
the target ion in its initial and final state. The integrated cross
section (ICS) is obtained by integrating the DCS (16) over the
all scattering angles. Similarly, after averaging only over initial
magnetic sublevels Ma , one can easily obtain the cross section
for excitation to a specific final magnetic sublevel Mb. In the
present work we consider the excitation of an electron from the
ns1/2 to the np1/2 and np3/2 levels, which are both related to
the ground state by electric-dipole transitions. However, only
the np3/2 levels can become aligned due to this excitation and
can give rise to an anisotropic and polarized photon emission.
Since in electron-photon coincidence experiments the photon
is observed at 90◦ relative the electron beam, we can restrict
ourselves to this angle. For 90◦, the polarization of the emitted
photons can be expressed in terms of magnetic sublevel cross
sections as

P = 3(σ1/2 − σ3/2)

3σ3/2 + 5σ1/2
, (17)

where σ1/2 and σ3/2 denote the cross sections for electron-
impact excitation from the ground level ns1/2 to the Mb = 1/2
and 3/2 magnetic sublevels of the np3/2 level.

III. RESULTS AND DISCUSSION

We have performed relativistic distorted-wave (RDW)
calculations for electron-impact resonance transitions ns1/2-
np1/2 and ns1/2-np3/2 in singly ionized metal ions. Here n = 3
for Mg+ ([Ne]3s), n = 4 for Ca+ ([Ar]4s), n = 4 for Zn+
([Ar]3d10 4s), n = 5 for Cd+ ([Kr]4d10 5s), and n = 6 for
Ba+ ([Xe]6s). We have used the GRASP92 code [29] to obtain
the wave functions for the ground and excited states as well as
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TABLE I. Comparison of oscillator strength fosc for the transi-
tions np1/2-ns1/2 and np3/2-ns1/2 in various ions.

Ion Transition GRASP Experiment Other theories

Mg+ 3p1/2-3s1/2 0.312 – 0.302b,c

3p3/2-3s1/2 0.632 0.64±0.03a 0.605b,c

Ca+ 4p1/2-4s1/2 0.364 – 0.330c,d

4p3/2-4s1/2 0.735 0.66±0.02a 0.682c,d

Zn+ 4p1/2-4s1/2 0.251 0.249±0.050e, 0.243c 0.317e

4p3/2-4s1/2 0.550 0.467±0.093e, 0.543c 0.642e

Cd+ 5p1/2-5s1/2 0.256 – 0.256f, 0.230c,g

5p3/2-5s1/2 0.560 – 0.548f, 0.390c,g

Ba+ 6p1/2-6s1/2 0.416 0.348±0.090c,h 0.342i

6p3/2-6s1/2 0.887 0.690±0.030c,h 0.742i

aGallagher [32].
bMCHF calculations of Fischer et al. [33].
cNIST database [31].
dFuhr and Wiese [34].
eMayo et al. [35].
fHFR calculations of Xu et al. [36].
gFuhr and Wiese [37].
hDavidson et al. [38].
iRMP calculations of Migdalek and Wyrozumska [39].

oscillator strengths fosc of the resonance transitions of these
ions. Table I. shows the comparison of our calculated oscillator
strengths for the fine-structure transitions of all the ions with
the experiment and recent theoretical calculations, along with
the values recommended in the NIST database [31]. For the
3p3/2-3s1/2 transition in Mg+, our oscillator strength is in
very good agreement with the measured value of Gallagher
[32]. Also, for both the fine-structure transitions in Mg+, our
results are in reasonable agreement with the multiconfiguration
Hartree-Fock (MCHF) calculations of Fischer et al. [33] and
the same values recommended in the NIST database [31]. A
similar comparison for Ca+ shows that our oscillator strengths
are slightly higher than the measurement of Gallagher [32],
as well as theoretical oscillator strengths listed in the NIST
database [31,34]. In case of Zn+, our calculated oscillator
strengths for 4p1/2-4s1/2 and 4p3/2-4s1/2 transitions are in
good agreement with the recently reported experimental
and multiconfigurational relativistic Hartree-Fock (MCHFR)
calculations of Mayo et al. [35], as well as the experimental
values from NIST database. For Cd+, our calculated oscillator
strengths are in good agreement with the pseudorelativistic
Hartree-Fock (HFR) calculations of Xu et al. [36] but
somewhat higher than the theoretical values of the NIST
database [31,37]. Finally for Ba+, our oscillator strengths are
compared with the measurements of Refs. [31] and [38], as
well as relativistic model potential (RMP) calculation [39]. For
the 6p1/2-6s1/2 transition our value lies within the experimental
uncertainty, whereas our oscillator strength for the 6p3/2-6s1/2

transition is slightly higher than the other results presented
in Table I. However, as we will see later in Figs. 5(c)
and 5(d), our cross sections for fine-structure transitions
in Ba+ still agree very well with the measurements of
Crandall et al. [8].

Further, the results for DCS, ICS, and the degree of linear
polarization of photon emission are obtained in the electron-

energy range up to 300 eV for the resonance transitions. The
calculations have been performed by taking into account the
relativistic Breit corrections. Figures 1– 5 compare the results
from our computations with the available measurements and
other theoretical calculations. For further comparison, we have
also performed semirelativistic DW calculations for the ICS
by using the Los Alamos code [40]. However, this code helps
to calculate only the ICS as summed over all the magnetic
substates but not for the ICS for the sublevels or the DCS
and any other scattering parameter. On the other hand, our
RDW code has an advantage that it can calculate all possible
differential and angle integrated scattering parameters, also in
a fully relativistic manner. In the following, we summarize our
results for the individual ions.

A. Mg+

Figures 1(a)–1(d) present our RDW results for Mg+. In the
top row, we show the DCS at 35 eV (left-hand side) and at 50
eV (right-hand side). The bottom left-hand and bottom right-
hand panels display ICS and polarization fraction, respectively.

We compare our DCS results with the available experi-
mental data at 35 and 50 eV and with the five-state CC [14]
and NRDW calculations [22]. As can be seen from the figure,
we show these results for the fine-structure unresolved 3s-3p

transition. This is because the RDW excitation cross section
for 3s1/2-3p1/2 is nearly half the cross sections for 3s1/2-3p3/2,
which suggests that the excited states in Mg+ can be well
described by LS coupling. Therefore, we take the sum of
the two DCS for these fine-structure transitions and displayed
in Figs. 1(a) and 1(b). The experimental data of Williams
et al. [13,14] were normalized to the five-state CC calculations
at θ = 12◦. We did not renormalized this data with our
calculations as CC results agree with our results at 12◦ as well.
We see that all the three theoretical curves agree reasonably
with the measurements, which are available in the limited
small scattering angle range of 20◦. This is not surprising
as, being a dipole allowed transition, most calculations (even
first Born) are expected to give reliable results near forward-
scattering angles. For intermediate and large scattering angles,
there are large deviations among the theoretical results and
hence more experimental data are desired for this range
of scattering angles in order to confirm or deny these
structures. The present DCS calculations show a broad dip
near 120◦ while the five-state CC calculations show a sharp
dip slightly shifted to smaller scattering angles. The NRDW
DCS results [22] tend to oscillate rapidly at larger angles,
which may be due to nonconvergence of partial waves in these
calculations.

Figure 1(c) shows the comparison of our ICS results for
Mg+ with the scaled cross sections of Kim [16] as well
as semirelativistic DW calculations from the Los Alamos
code [40]. All the three theoretical curves in Fig. 1(c) tend
to merge as the incident electronenergy increases. However,
near threshold excitation, the other two theocratical curves
lie below our results. Until now, we have discussed results
for an unresolved transition. Further, we show the polarization
fraction for the 3p3/2-3s1/2 line in Mg+ as a function of electron
energy [Fig. 1(d)]. There are no theoretical calculations or
experimental data available for comparison. We see from
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FIG. 1. Electron-impact excitation of Mg+: (a) DCS at 35 eV;
(b) DCS at 50 eV; (c) ICS for 3s-3p (d) polarization fraction
for 3p3/2-3s1/2. Solid curve, present RDW calculations; dashed
curves, NRDW calculations [22]; short dashed curves, five-state CC
calculations [14]; dotted curves, scaled results [16]; dashed-dotted
curve, Los Alamos code [40]; experimental points with error bars,
Williams et al. [13,14].

the Fig. 1(d) that our calculated polarization decreases as
the energy of the incident electron increases and becomes
negative above 50 eV. This is qualitatively in accord with
one’s expectations that at threshold the momentum transfer
should be along the electron direction, and at high energy
should be dominantly transverse to the electron direction
of motion. Since the momentum transfer from the electron
to target is connected to the alignment of the excited
target, the polarization of the emitted radiation should be
positive near threshold and starts getting negative at high
energies.

B. Ca+

In contrast to Mg+ ions, the top left-hand figure shows
DCS at one energy, i.e., at 50 eV while the top right-hand
panel displays linear polarization. The ICSs for fine-structure
transitions are shown in the bottom row.

There are no experimental or theoretical DCS data available
for comparison, therefore, as an illustration we show in
Fig. 2(a) the DCS for the 4s-4p resonance transition at
50 eV. Again we present results for an unresolved transition
since LS coupling can be allowed for Ca+. As compared

FIG. 2. Electron-impact excitation of Ca+: (a) DCS at 50 eV;
(b) polarization fraction for 4p3/2-4s1/2; (c) ICS for 4s1/2-4p1/2;
(d) ICS for 4s1/2-4p3/2. Solid curve, present RDW calculations;
dashed curves, Los Alamos code [40]; short dashed curve,
three-state CC calculations [19]; experimental points, Taylor and
Dunn [9].

to DCS for Mg+, the forward peak of DCS for Ca+ is
approximately five times larger and the DCS curve shows
two well-defined minima at θ = 70◦ and 140◦. We now turn
to the fine-structure transition and display in Fig. 2(b) the
polarization fraction for the K line (4p3/2-4s1/2) in Ca+ as a
function of electron energy. We compare our results with the
measurements reported by Taylor and Dunn [9], as well as
with the three-state CC calculations of Ref. [19]. The overall
agreement of our results is reasonable with the experimental as
well as theoretical results. However, at the intermediate energy
range (50–150 eV), the measured polarization lies between the
two calculations.

Taylor and Dunn [9] also measured absolute excitation cross
sections for fine-structure resolved 4s1/2-4p1/2 (H -line) and
4s1/2-4p3/2 (K-line) transitions. Figures 2(c) and 2(d) display
a comparison of our ICS results with these measurements, as
well as with semirelativistic DW calculations from the Los
Alamos code [40]. From these two figures we find that our
results for both the fine-structure transitions agree well in shape
with the experimental data while the agreement in magnitude
improves as we go to higher energies. Also the calculations
from the Los Alamos code [40] agree very well with our results
for both transitions. It is important to mention that in contrast
to the available nonrelativistic calculations, our RDW method
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can deal with fine-structure resolved transitions explicitly and
hence is more suitable for describing fine-structure transitions.

C. Zn+

In Fig. 3 we present our results for excitation of Zn+.
Similar to Mg+, the top row shows the DCS results and the
bottom left-hand and right-hand figures exhibit the ICS and
polarization fraction, respectively. As shown in Fig. 3(a), we
compare our DCS results for 4s-4p transition at 50 eV with the
theoretical results in multiple LS-term CC [21] and NRDW
[22] approximations as well as the relative measurements of
Williams et al. [13]. These experimental data were normalized
to five-state CC calculations [14] at θ = 12◦. Our results
are in good agreement with the experimental values and the
other two calculations in the small scattering angle range.
Again the three theoretical DCS curves have different shapes
over the large scattering angles, but these features could not
be confirmed due to unavailability of measurements in this
scattering angle range. Figure 3(b) shows a comparison of our
present relativistic calculations at 75 eV with the experimental
data and five-state CC calculations of Chutjian et al. [12], as
well as the NRDW results [22]. Similar to the case observed

FIG. 3. Electron-impact excitation of Zn+: (a) DCS at 50 eV; (b)
DCS at 75 eV; (c) ICS for 3s-3p; (d) polarization fraction for 3p3/2-
3s1/2. Solid curve, present RDW calculations; dashed curves, NRDW
calculations [22]; dotted curve, CC calculations [21]; short dashed
curve, five-state CC calculations [12]; short dotted curves, scaled
results [16]; dashed-dotted curve, Los Alamos code [40]; squares
with error bars, Williams et al. [13]; open squares with error bars,
Chutjian et al. [12]; circles, Roger et al. [10].

at 50 eV, all three calculations are in good agreement with
the experimental data near forward angles but differ at larger
scattering angles. At both these energies a comparison of our
results with experiment shows similar features as described in
Fig. 1 for Mg+.

Figure 3(c) displays our ICS results for the 4s-4p excitation
in Zn+ as compared with the scaling method of Kim [16] and
DW calculations from the Los Alamos code [40]. Overall, our
results and the calculations from the Los Alamos code [40] are
in good agreement, but the scaled cross sections of Kim [16]
are much lower in the entire energy range and do not seem to
follow the same high-energy behavior. Figure 3(d) shows the
comparison of our results of the polarization fraction for the
fine-structure transition 4p3/2-4s1/2 with the experimental data
of Roger et al. [10]. To the best of our knowledge, there are no
other theoretical results available for comparison. We see that
our results agree reasonably with the measurements at large
electron-impact energies and show the expected high-energy
behavior.

D. Cd+

Through Fig. 4 we have shown the results for Cd+, similar
to Mg+ and Zn+ in earlier figures. Figures 4(a) and 4(b) (top

FIG. 4. Electron-impact excitation of Cd+: (a) DCS at 50 eV;
(b) DCS at 75 eV; (c) ICS for 5s-5p; (d) polarization fraction for
5p3/2-5s1/2. Solid curve, present RDW calculations; dashed curves,
NRDW calculations [22]; dashed-dotted curve, Los Alamos code
[40]; squares with error bars, Williams et al. [13]; open squares with
error bars, Chutjian [41]; circles, Goto et al. [42].
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panel) show our DCS results for the 5s-5p transition in Cd+
at 50 and 75 eV, respectively. Here we compare our DCS
results with the NRDW calculations [22] and experimental
data of Williams et al. [13] at 50 eV and Chutjian [41] at
75 eV. The behavior of the present DCS results for Cd+ is
similar to the features as discussed earlier for Mg+ and Zn+.
Our results are in good agreement with the measurements as
well as other theoretical results in the forward-scattering angle
region. Again the fast oscillations in the NRDW results [22]
show that these results may not have been converged. In
Fig. 4(c) (bottom left-hand panel) we compare our ICS for
the 5s-5p transition in Cd+ with DW calculations from the
Los Alamos code [40]. Both the calculations merge together
as the electron energy increases. Similar to the previous
comparisons, Fig. 4(d) (bottom right-hand panel) displays the
polarization fraction as a function of electron energy for the
5p3/2-5s1/2 transition. In this figure we compare our results
with the measurements of Goto et al. [42]. Above 70 eV, our
calculations show negative values similar to the experimental
values of polarization fraction, but the experimental data lie
higher than our results.

FIG. 5. Electron-impact excitation of Ba+: (a) DCS at 50 eV;
(b) polarization fraction for 6p3/2-6s1/2; (c) ICS for 6s1/2-6p1/2; (d)
ICS for 6s1/2-6p3/2. Solid curve, present RDW calculations; dashed
curves, present RDW DCS for 6s1/2-6p1/2; short dashed curve, present
RDW DCS for 6s1/2-6p3/2; dotted curve summed DCS for 6s-6p;
dashed-dotted curve, Los Alamos code [40]; circles with error bars,
Crandall et al. [8].

E. Ba+

Finally, in Fig. 5 we present our results for Ba+ ions. Similar
to Ca + ions, to the best of our knowledge, there are no
other experimental or theoretical DCS results available for
comparison. Therefore, Fig. 5(a) (top left-hand panel) shows
our DCS results for the fine-structure resolved as well as
the unresolved 6s-6p transition in Ba+ only at one energy,
i.e., 50 eV. Since Ba+ can be said to be a relatively heavier
ion, we see that the relativistic effects play a significant role.
Consequently, the ratio of DCS for 6s1/2-6p3/2 and 6s1/2-6p1/2

excitations is not nearly 2 for Ba+, as was seen earlier for
other ions, in particular, for Mg+ and Ca+. Moreover, unlike
the other four ions discussed earlier, the individual DCSs for
these two fine-structure transitions in Ba+ have a very different
shape [Fig. 5(a)]. At 50 eV we observe that the summed
DCS for unresolved transition is dominated by the DCS for
the 6s1/2-6p3/2 excitation. The polarization fraction for the
6p3/2-6p1/2 transition is shown in Fig. 5(b) (top right-hand
panel), where we compare our results with the measurements
of Crandall et al. [8]. Our calculations are seen to overestimate
the polarization measurements over the entire electron-energy
range. The source of this discrepancy could be due to the
cascade effect in the experimental data. Crandall et al. [8]
also measured the absolute cross sections for 6s1/2-6p1/2 and
6s1/2-6p3/2 transitions. Figures 5(c) and 5(d) (bottom panel)
show the comparison of our ICS results with their experimental
results. Our cross sections are in very good agreement with
the measurements. We have also shown the results from
semirelativistic DW Los Alamos code [40]. The comparison
of our results with the results from the Los Alamos code and
measurements shows that relativistic effects play an important
role for Ba+ and must be included in the theoretical model to
interpret experimental data.

F. Analytic fits to cross sections

Since the transitions ns1/2-np1/2 and ns1/2-np3/2 are reso-
nance transitions, their ICS takes on the Bethe-Born form at
higher projectile electron energies, viz.,

ICS = 4πfosc

E�E
[b + ln(E)]a2

0 . (18)

In the above expression, E is the incident electron energy, �E

is the excitation energy of the transition, a0 is the Bohr radius,
and b is the fitting constant. All energies are in Rydbergs. The
oscillator strength fosc is taken to be the same as given in
Table I. We have fitted our cross sections to the above formula
and the fitting constant b for all the transitions is given in

TABLE II. Values for the constant b from Eq. (18) for the
resonance transition ns1/2-np1/2 and ns1/2-np3/2 in various ions.

Transition ns1/2-np1/2 ns1/2-np3/2

Ion b b

Mg+ 1.815 1.926
Ca+ 2.578 2.551
Zn+ 2.902 2.501
Cd+ 2.957 2.622
Ba+ 0.910 0.841
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Table II. Our fitting is valid for impact energies above 30 eV
and has an accuracy of 5%.

IV. CONCLUSIONS

In the present work we have extended the RDW method
to study electron-impact excitation of singly charged metal
ions with one electron in the outer shell, viz., Mg+, Ca+, Zn+,
Cd+, and Ba+. We calculated and presented differential and
integrated cross sections as well as the polarization parameter
for fine-structure resolved resonance transitions ns1/2-np1/2

and np3/2 in these ions.
For DCS, our RDW calculations show very good agreement

with the experimental data, along with other theoretical
results in the near forward-scattering angle region where the
measurements existed. However, for larger scattering angles
all the theoretical curves have shown different structures
which could not be confirmed owing to the unavailability
of experimental data in this range. Further experiments are
desirable to test the theories. We noticed that a large number
of oscillations in the DCS from NRDW theory [22] seem to
be due to nonconvergence of the partial waves.

We reported ICS for fine-structure transitions in Ca+ and
Ba+ for which experimental data were available and, to the
best of our knowledge, no other theoretical calculations have
been reported for comparison. Our RDW calculations for these
two ions have shown good agreement with the measurements.
For rest of the ions, we showed ICS results for a fine-structure

unresolved transition ns-np and found reasonable agreement
with the other theoretical results. We have also provided the
fitting to the ICS for their applications in plasma modeling.

We also presented linear polarization of the photon emission
following the decay of the excited np3/2 state to the ground
ns1/2 state. Our results are in good agreement with the available
measurements and theoretical calculations for all the metal
ions except for Ba+. The reason for this discrepancy could be
cascade effects which we neglected in the present calculations.

In the present calculations, to account full relativistic
effects of the electron-electron interaction, we added the Breit
interaction as a correction to the Coulomb interaction in
first-order perturbation theory. Although inclusion of the Breit
interaction did not have a very significant effect on the results
presented in this paper, this has been expected to be of great
importance for studying highly charged ions. As a further
application of our present RDW method, we plan in the near
future to apply it to study the electron-impact excitation of
highly charged ions in the light of ongoing measurements.
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