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Rotational spectrum of the molecular ion NH+ as a probe for α and me/m p variation
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We identify the molecular ion NH+ as a potential candidate for probing variations in the fine-structure constant
α and electron-to-proton mass ratio µ. NH+ has an anomalously low-lying excited 4�− state, being only a few
hundred cm−1 above the ground 2� state. Being a light molecule, this proximity is such that rotational levels of the
respective states are highly intermixed for low angular momenta. We find that several low-frequency transitions
within the collective rotational spectrum experience enhanced sensitivity to α and µ variation. This is attributable
to the close proximity of the 2� and 4�− states, as well as the ensuing strong spin-orbit coupling between
them. Suggestions that NH+ may exist in interstellar space and recent predictions that trapped-ion precision
spectroscopy will be adaptable to molecular ions make NH+ a promising system for future astrophysical and
laboratory studies of α and µ variation.
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I. INTRODUCTION

The standard model of particle physics provides a solid
foundation from which physical phenomena of strong and
electroweak nature—from high-energy scattering to atomic
and molecular structure—can be successfully described. The
standard model itself does not predict precise values of
fundamental constants such as the fine-structure constant
α = e2/h̄c or the electron-to-proton mass ratio µ = me/mp,
but rather accepts the experimentally observed values as input
parameters to the physical theory. Speculative theories which
go beyond the standard model, such as string theories, suggest
that these constants may vary in time or space [1], enticing
both theorists and experimentalists alike to contrive favorable
means for detecting variations of these constants.

One method for determining variations—or limitations
on variations—in α and µ is from analysis of atomic or
molecular absorption lines originating from interstellar space.
Comparison with laboratory spectra can, in principle, reveal
variations on cosmological time or distance scales. Employing
this method, groups have reported evidence for nonzero
variations in both α [2,3] and µ [4], although other analyses
have shown no variation at similar levels of accuracy [5–10]
(see also Ref. [11]). Complementary to the astrophysical
studies, terrestrial experiments probe α and µ variation on
much smaller time and distance scales, but benefit from
the high precision and reproducibility that the spectroscopic
experiments offer. Given in terms of temporal drift, laboratory
experiments have placed stringent, model-free constraints on
variations of both α [12] and µ [13]:

α̇/α = (−1.6 ± 2.3) × 10−17yr−1,

µ̇/µ = (3.8 ± 5.6) × 10−14yr−1, (1)

with the dot signifying a derivative with respect to time.
Both the astrophysical and laboratory methods may realize

significant gains by utilizing atomic or molecular species
which have enhanced sensitivity to α and µ variation. Much
theoretical effort has been dedicated to identifying such

systems, with a general strategy being to locate accidental near-
degeneracies within energy spectra. In this spirit, measure-
ments have been proposed for multiply charged ions [14,15],
diatomic [16–23] and more complex [24–27] molecules, and
even nuclei [28–34]. Note that “near-degeneracy” is a relative
term here; for example, the ground and anomalously low-lying
excited states of the 229Th nucleus—being separated by an
interval of 7.6 eV [35]—are nearly degenerate relative to the
typical energy scale of nuclear excitation (>∼10 keV).

The relative sensitivity to α and µ variation for a given
transition may be parameterized in terms of dimensionless
coefficients Qα and Qµ, defined by the relation

δω

ω
= Qα

δα

α
+ Qβ

δµ

µ
,

with ω being the transition energy. “Typical” transitions have
sensitivity coefficients on order of unity or less. For example,
in a diatomic molecule a typical fine-structure transition
has Qα ≈ 2, Qµ ≈ 0, while a typical vibrational transition
has Qα ≈ 0, Qµ ≈ 1/2. Near-degeneracies resulting from a
cancellation between fine-structure and vibrational intervals
can, however, lead to transitions with sensitivity coefficients
orders of magnitude larger than unity [17,36]. Several atomic,
molecular, or nuclear transitions which enjoy large enhance-
ment, however, may be irrelevant for astrophysical studies
or may prove unfavorable for spectroscopic experiments, and
therefore may be of limited utility.

In this paper we consider the molecular ion NH+ as a
candidate for measuring variation in α and µ. NH+ possesses
an accidental near-degeneracy between its ground (X2�) and
first excited (a4�−) electronic states, these being separated
by only a few hundred cm−1 (for scale, the next electronic
state is ∼22200 cm−1 higher [37]). As we will show, this
near-degeneracy results in enhanced sensitivity coefficients of
order 10–100 for a number of transitions within the rotational
spectrum. Moreover, NH+ is a light molecule which has been
suggested to be a component in interstellar clouds [38,39],
although to date it has not been detected in such media
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TABLE I. Molecular parameters used to describe the rotational
spectrum of the 2� and 4�− electronic states of NH+ along with
their lowest-order scalings with α and µ. Parameters generally
depend on vibrational state v, with some being appropriate for both
electronic states (e.g., rotational constants B) whereas others are only
appropriate for 2� (e.g., spin-orbit constant A) or 4�− (e.g., spin-spin
constant λ). The physical significance of these parameters is described
in Ref. [45]; the nonstandard parameters ξ1/2, ξ3/2, and ξD quantify
spin-orbit coupling between 2� and 4�− states of similar v [43,44].

Param. Scaling Param. Scaling Param. Scaling

A α2 λ α2 Tnr –
B µ λD α2µ Trel α2

D µ2 p α2µ Tvib µ1/2

H µ3 pD α2µ2 ξ1/2 α2

γ α2 q µ2 ξ3/2 α2

γD α2µ qD µ3 ξD α2µ

[40]. Further still, motivated by the search for an electron
electric dipole moment, Leanhardt et al. [41] have argued that
high-precision spectroscopy may be performed on molecular
ions within a Paul trap, with experiments now underway for
HfF+ [42]. These considerations suggest that NH+ could serve
as a valuable probe of α and µ variation in future astrophysical
or laboratory studies.

II. ROTATIONAL SPECTRUM OF NH+

The rotational spectrum of NH+ was analyzed experimen-
tally in some detail several years ago by Kawaguchi and
Amano [43] and more recently by Hübers et al. [44]. Both
papers tabulate molecular parameters which, together with the
appropriate effective Hamiltonian, are capable of furnishing
the rotational spectrum. Evolution of the spectrum with respect
to α and µ variation may be determined so long as the the
scaling of the molecular parameters with respect to α and µ is
known. A list of molecular parameters relevant to the 2� and
4�− states of NH+ are provided in Table I along with their
lowest-order scalings with α and µ.

Figure 1 illustrates the rotational spectra of NH+ for v = 0
and v = 1 vibrational states. We see that the 4�−,v = 0 state
is in such close proximity to the ground 2�,v = 0 state that the
corresponding rotational spectra begin to overlap for relatively
low (N = 5) levels of the 2� ladder. For v = 1, the states
are closer and even the lowest rotational levels are seen to be
heavily intermixed. This close proximity of 2� and 4�− states
allows for sizable coupling between the two via spin-orbit
interaction. This is accounted for in the effective Hamiltonian
through the nonstandard molecular parameters ξ1/2, ξ3/2, and
ξD appearing in Table I. In general, this coupling results in
noticeable perturbations to the rotational spectrum, with one
example being that the ground 
-doublet interval is doubled
in size [44]. The effect is more pronounced for close 2�

and 4�− rotational levels of similar angular momentum J

and parity p (these being conserved quantum numbers). One
noteworthy case is the 2�3/2,v = 0,J p = 11

2
−

and 4�−,v =
0,N = 4,J p = 11

2
−

rotational levels (see Fig. 1). Due to

spin-orbit coupling, the energy eigenstates are nearly equal
admixtures of the unperturbed 2� and 4�− states.

In Table I we have decomposed the term energy for a given
electronic and vibrational state into three contributions,

T = Tnr + Trel + Tvib,

where the respective terms correspond to the nonrelativistic
electronic, relativistic electronic, and vibrational contribu-
tions. For each vibrational subspace, only T (4�−) − T (2�)
is required to produce the spectrum, this being supplied
by Refs. [43,44]. However, to determine the overall α and
µ dependence we require the partial contributions. The
vibrational part may be inferred from Ref. [43], and for the
v = 0 subspace it is found to be

Tvib(4�−) − Tvib(2�) = −179 cm−1, (2)

corresponding to the difference in zero-point energies. For
the v = 1 subspace this difference is a factor of 3 larger. The
relativistic electronic contribution cannot be extracted from
experiment; we have determined it by ab initio calculation to
be

Trel(
4�−) − Trel(

2�) = 41 cm−1.

The details of this computation are reserved for the Appendix.
Constraining T (4�−) − T (2�) to the experimental value
implies a nonrelativistic electronic contribution of

Tnr(
4�−) − Tnr(

2�) = 477 cm−1.

This last part is insensitive to both α and µ variation.
Finally, in our analysis we choose to neglect the hyperfine

splitting of the rotational levels. According to Hübers et al. [44]
the largest hyperfine constants are of order 100 MHz, or 3 ×
10−3 cm−1. As long as the smallest ω considered are of the
order 0.1 cm−1, the hyperfine interaction does not change these
transition energies by more than a few percent. The same must
be true for sensitivity coefficients Qα and Qµ.

III. RESULTS

Before proceeding, we must briefly discuss our man-
agement of the available experimental data. The effective
Hamiltonian employed by Hübers et al. [44] differs subtly
from the earlier work of Kawaguchi and Amano [43], with
this difference extending to the underlying definitions—and
therefore scalings—of the molecular parameters found in
Table I. For the discussion of the previous section we chose
to be consistent with Hübers et al., who in turn follow closely
the methodical development of the effective Hamiltonian
given in the book of Brown and Carrington [45]. However,
in our analysis we have calculated the rotational spectrum
and sensitivity coefficients by following both references as
independently as possible, taking care to scale molecular
parameters as appropriate for each case. In principle, results
following from Ref. [44] would be preferred, as the data are
more accurate and the effective Hamiltonian formulation is
more transparent. Unfortunately, Ref. [44] lacks molecular
parameters for the v = 1 subspace and in itself does not
provide information for the vibrational contribution to the
term energy in the v = 0 subspace [i.e., Eq. (2)]. In this
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FIG. 1. Rotational spectrum of NH+ for (a) v = 0 and (b) v = 1 subspaces. Integer and half-integer labels correspond to rotational and
total angular momentum quantum numbers N and J , respectively, while parity is labeled with ±. Energy is in cm−1.

section, we choose to maintain consistency by presenting our
results following exclusively from Ref. [43]. Implications of
this particular choice will be discussed more in Sec. IV.

In practice, the dimensionless sensitivity coefficients for a
given transition are found from the relation (here X = α,µ)

QX = �qX

ω
, (3)

where ω = �E is the energy difference between levels
and �qX is the difference between dimensional sensitivity
coefficients defined by

qX = X
∂E

∂X
. (4)

Scaling molecular parameters accordingly, we obtain rota-
tional energy levels by diagonalizing the effective Hamiltonian
for multiple values of µ and α in the neighborhood of the
known present-day values; numerical differentiation is then
used to obtain the coefficients qX for each level. Note that
proper interpretation of Eq. (4) requires us to specify our
employed unit system, namely atomic units (i.e., the atomic
unit of energy 1 hartree = α2mec

2 is assumed constant). A
more subtle point is that the sensitivity coefficients QX, despite
being dimensionless, also depend on this specification of
atomic units. Differences Q′′

X − Q′
X, on the other hand, do

not depend on the choice of unit system.
Tables II, III, and IV display our results for select (low-

frequency) transitions within the NH+ rotational spectrum.
Along with the transition energy ω and sensitivity coefficients

Qα and Qµ, we also tabulate reduced matrix elements for
electric dipole transition amplitudes,

||E1|| ≡ (−1)J
′−M ′ 〈J ′,M ′|Dq |J,M〉(

J ′ 1 J

−M ′ q M

) ,

where Dq is a spherical component of the electric dipole
operator and M is an angular momentum projection along
the z axis in a space-fixed frame. In the nonrelativistic
limit all off-diagonal amplitudes between electronic states
2�1/2, 2�3/2, and 4�− vanish. These amplitudes appear only
after spin-orbit interaction mixes these states. As spin-orbit
coupling is embedded in the effective Hamiltonian, only the
dipole moments of the 2� and 4�− states in the molecule-
fixed frame are further needed to determine the off-diagonal
amplitudes. We have calculated the dipole moments for
these states to be 0.91 a.u. and 0.82 a.u., respectively (see
Appendix).

A. �-doublet transitions

Sensitivity of 
-doublet transitions to α and µ variation
has been discussed previously in Refs. [20–22]. In NH+
the situation is complicated by the proximity and strong
spin-orbit coupling of the 2� and 4�− states, resulting in
less predictable behavior of the intervals. In some instances
this leads to anomalously small transition energies ω, with
subsequently magnified sensitivity coefficients [see Eq. (3)].
One example is the J = 15/2 doublet of the 2�3/2,v = 0
state. Here we find that the spin-orbit coupling leads to a
more than 10-fold decrease in the transition energy, with large
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TABLE II. 
-doublet transitions for the v = 0 and v = 1 vibrational states of NH+. The parity p and the energy E are given for the upper
level of the doublet, with energy being referenced from the lowest level of the respective vibrational subspace. E and ω are in cm−1 and ||E1||2
is in atomic units.

J p Eup ω Qα Qµ ||E1||2 J p Eup ω Qα Qµ ||E1||2

Transitions for 2�1/2,v = 0 Transitions for 2�1/2,v = 1
(1/2)− 0.454 0.454 2.08 1.39 0.564 (1/2)− 16.431 9.455 −2.29 7.29 0.493
(3/2)+ 34.450 0.677 3.56 0.88 0.403 (3/2)+ 64.878 0.418 0.21 20.94 0.442
(5/2)− 97.065 0.799 4.57 0.81 0.336 (5/2)− 131.543 4.582 1.16 −6.68 0.249
(7/2)+ 189.470 0.892 5.56 1.00 0.285 (7/2)+ 222.450 8.464 2.87 −5.13 0.199
(9/2)− 311.925 1.019 6.45 1.55 0.246 (9/2)− 340.220 9.783 3.65 −4.91 0.177
(11/2)+ 464.416 1.276 6.80 2.56 0.215 (11/2)+ 485.857 9.626 4.21 −4.92 0.162
(13/2)− 646.814 1.854 6.22 3.98 0.190 (13/2)− 659.709 8.654 4.76 −5.10 0.151
(15/2)+ 858.917 3.187 4.83 5.62 0.168 (15/2)+ 861.832 7.243 5.46 −5.51 0.142
(17/2)− 1100.473 6.435 3.03 7.44 0.144 (17/2)− 1092.120 5.611 6.56 −6.39 0.133
(19/2)+ 1371.183 15.041 1.01 9.12 0.107 (19/2)+ 1350.354 3.885 8.65 −8.34 0.126
(21/2)+ 1699.955 29.249 3.22 −4.56 0.076 (21/2)− 1636.231 2.135 14.22 −13.94 0.119
(23/2)− 2020.150 21.488 2.89 −2.27 0.097 (23/2)+ 1949.389 0.398 68.76 −70.30 0.112
(25/2)+ 2373.578 18.952 2.39 −0.73 0.100 (25/2)+ 2290.724 1.310 −18.81 20.53 0.106
(27/2)− 2756.628 18.488 2.00 0.16 0.097 (27/2)− 2658.832 2.981 −7.48 8.88 0.101
(29/2)+ 3167.736 19.044 1.73 0.72 0.093 (29/2)+ 3052.821 4.610 −4.40 5.75 0.096
(31/2)+ 3605.981 20.256 1.54 1.12 0.088 (31/2)− 3472.169 6.194 −3.00 4.34 0.091

Transitions for 2�3/2,v = 0 Transitions for 2�3/2,v = 1
(3/2)+ 105.405 0.244 −1.97 2.91 1.592 (3/2)− 151.564 16.803 1.86 −0.67 1.170
(5/2)− 195.934 0.617 −1.02 2.34 0.885 (5/2)+ 237.233 20.745 2.76 −1.79 0.664
(7/2)+ 317.542 1.082 −0.55 2.13 0.598 (7/2)− 352.021 20.618 3.41 −2.37 0.457
(9/2)− 469.655 1.710 −0.02 2.73 0.446 (9/2)+ 495.901 18.888 3.91 −2.72 0.353
(11/2)− 655.253 3.410 19.71 −53.15 0.190 (11/2)− 668.781 16.511 4.36 −2.99 0.291
(13/2)− 863.581 0.996 −11.10 −0.22 0.286 (13/2)+ 870.530 13.906 4.86 −3.27 0.251
(15/2)+ 1103.851 0.150 −81.53 −126.86 0.236 (15/2)− 1100.956 11.276 5.50 −3.64 0.221
(17/2)+ 1374.211 5.020 1.73 19.93 0.165 (17/2)+ 1359.806 8.724 6.44 −4.25 0.198
(19/2)+ 1694.241 20.595 3.65 −4.78 0.140 (19/2)− 1646.767 6.297 8.04 −5.39 0.179
(21/2)− 2017.566 15.979 2.66 −1.11 0.159 (21/2)+ 1961.476 4.008 11.39 −7.90 0.164
(23/2)+ 2373.114 15.516 2.01 0.32 0.151 (23/2)− 2303.527 1.858 22.27 −16.23 0.150
(25/2)− 2757.519 16.311 1.65 0.95 0.140 (25/2)− 2672.636 0.158 −239.61 185.81 0.139
(27/2)+ 3169.622 17.721 1.43 1.29 0.130 (27/2)+ 3069.899 2.041 −17.09 14.15 0.129
(29/2)− 3608.690 19.585 1.30 1.53 0.120 (29/2)− 3492.954 3.787 −8.62 7.58 0.120

TABLE III. Low-frequency (|ω| < 30 cm−1) transitions 2� →
4�−. Negative frequencies mean that the 4�− level is below the 2�

level. 4�− levels are labeled with quantum numbers N
p

J and 2� levels
are labeled with 


p

J . E and ω are in cm−1 and ||E1||2 is in atomic
units. Transitions with ||E1||2 < 10−3 a.u. are skipped.

N
p

J 

p

J E� ω Qα Qµ ||E1||2

Transitions for v = 0
2−

7/2 (3/2)+9/2 443.287 −24.658 −3.74 17.82 0.005
4−

11/2 (1/2)+13/2 643.977 −0.983 −76.84 249.78 0.002
4−

11/2 (3/2)+11/2 643.977 −7.866 −4.68 30.10 0.165
4−

9/2 (3/2)+11/2 649.676 −2.167 −48.45 193.99 0.001
Transitions for v = 1

0−
3/2 (1/2)+1/2 0.000 −6.976 −13.68 22.48 0.385

1+
3/2 (1/2)−1/2 21.486 5.055 19.73 −33.94 0.208

1+
1/2 (1/2)−3/2 58.529 −5.931 −19.95 25.71 0.222

2−
5/2 (1/2)+3/2 77.352 12.474 3.48 −8.68 0.023

2−
3/2 (1/2)+3/2 83.854 18.976 5.44 −6.48 0.003

2−
1/2 (3/2)+3/2 104.966 −29.795 −0.10 5.94 0.099

3+
3/2 (3/2)−5/2 190.451 −26.037 −1.96 7.87 0.003

sensitivity coefficients Qα = −82 and Qµ = −127 following.
Full results for 
-doublet transitions are given in Table II.

Another mechanism for enhancement is the state-mixing
itself, as exemplified by the J = 11/2 doublet of the 2�3/2,v =
0 state. Indeed, spin-orbit coupling has a significant effect on
this transition energy, even causing ω to change sign. This
modification of ω does not promote enhancement, however,

TABLE IV. Low-frequency (|ω| < 30 cm−1) transitions 2�1/2 →
2�3/2 in the v = 1 subspace. Negative frequencies mean that the
2�3/2 level is below the 2�1/2 level. Levels are labeled with quantum
numbers J p . E and ω are in cm−1 and ||E1||2 is in atomic units.
Transitions with ||E1||2 < 10−3 a.u. are skipped.

(J p)3/2 (J p)1/2 E3/2 ω Qα Qµ ||E1||2

(3/2)+ (5/2)− 134.760 3.217 30.68 −11.53 0.039
(5/2)− (7/2)+ 216.488 −5.962 −6.89 0.05 0.020
(7/2)+ (9/2)− 331.403 −8.817 −0.94 −2.13 0.008
(9/2)− (11/2)+ 477.013 −8.844 0.94 −3.03 0.004
(11/2)+ (13/2)− 652.270 −7.439 2.18 −3.95 0.002
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as the absolute value of ω is found to increase by about 50%.
Enhancement here comes rather from the numerator of Eq. (3).
As mentioned in Sec. II, the negative parity state in this doublet
is nearly an equal admixture of 2� and 4�− due to spin-obit
coupling of near resonant levels. The 2� portion brings no
enhancement, while the 4�− portion provides larger �qα and
�qµ values expected of 2� → 4�− transitions. In fact, �qµ

may be readily estimated:

�qµ ≈ 1
2

[
1
2 (−179 cm−1) + (−22)(15 cm−1)

]
≈ −210 cm−1,

where the first term is from a difference in vibrational energies
(with a factor of 1/2 from the µ1/2 scaling) and the second
term is from a difference in rotational energies [B ≈ 15 cm−1

for both states and −22 is the difference in N (N + 1)]; the
leading 1/2 is a weight factor accounting for the fact that
the eigenstate is about “half” 4�−. The comparatively small
interval, ω = 3.4 cm−1, implies a sensitivity coefficient Qµ ≈
−60. This agrees with our tabulated result for this transition,
wherein Qα = 20 and Qµ = −53.

B. 2�–4�− transitions

From the preceding discussion, we can infer that sensitivity
coefficients Qα and Qµ will be enhanced for 2� → 4�− cross
transitions having ω comparable to the 
-doublet intervals
(∼1–10 cm−1). From the perspective of electronic transitions,
these are anomalously small ω. There are a number of such
transitions in the spectrum, and in Table III we present results
for transitions with |ω| < 30 cm−1. Again we find sensitivity
coefficients on the order of 10–100.

Transitions between 2� and 4�− states require the change
of the electronic spin, S = 1/2 → S = 3/2. Thus, we would
expect strong suppression of transition amplitudes. This is
found to be generally true for the v = 0 subspace. The
exception is the transition complementary to the 
-doublet
transition described in the previous section (involving the other
state which is a nearly equal admixture of 2� and 4�−); this
has an “enhanced” transition amplitude on the order of the

-doublet transition amplitudes. For the v = 1 subspace, the
difference in term energies is smaller (−19 cm−1 compared
to 339 cm−1 for v = 0) and the mixing caused by spin-orbit
interaction is generally stronger. Because of this, there are
several sufficiently strong transitions.

C. Fine-structure transitions

Fine-structure transitions between 2�1/2 and 2�3/2 states
constitute another source of low-frequency transitions; fol-
lowing from our analysis of 
-doubling, we may suspect
enhancement of Qα and Qµ here as well. In the Hund’s
case “a” limit, these transitions require spin-flip (i.e., � =
±1/2 → � = ∓1/2, for spin-projection � on the internuclear
axis) and are therefore forbidden in the nonrelativistic limit.
The interaction with the 4�− state can open some of these
transitions. It is a second-order effect and the transition
amplitudes are significantly smaller than for 2� → 4�−
transitions. Table IV lists a number such transitions within
the v = 1 subspace, with the most sensitive transition having
Qα = 31 and Qµ = −12.

IV. ACCURACY ASSESSMENT

As mentioned in Sec. III, we analyzed the NH+ rotational
spectrum following the papers of Kawaguchi and Amano
[43] and Hübers et al. [44] as independently as possible. A
comparison of these results allows us to assess the accuracy of
our data presented in Tables II, III, and IV. For the majority
of the transitions, our values of Qα and Qµ agree to within
a few percent following both references. This agreement,
however, deteriorates for a handful of the transitions, with
these transitions tending to be the ones with the largest Qα

and Qµ. The bulk of the discrepancy in these cases can be
attributed to a difference in ω [i.e., the denominator of Eq. (3)],
which in the most extreme case differs by a factor of two.
Direct measurement of the transition energies can remove
this uncertainty, provided that the sensitivity coefficients are
corrected appropriately,

Qcorr
X = Qtheor

X

(
ωtheor

ωexpt

)
. (5)

With this prescription, theoretical uncertainty is then due to
calculated �qα and �qµ. We find that our �qα are consistent
to <∼10%, with agreement being somewhat better for �qµ at
<∼5%. We emphasize that our comparison here is limited to the
v = 0 subspace, as Hübers et al.do not give data for the v = 1
subspace.

The above analysis effectively gauges the spread in �qα

and �qµ arising from uncertainty in the molecular parameters
of Table I (we note that the difference between molecular
parameters tabulated in Refs. [43,44] is typically more than
1 σ , even after the disparity in effective Hamiltonians is
accounted for [44]). The notable exclusion is the relativistic
electronic contribution to the term energy. This is supplied
by our computed value, Trel(4�−) − Trel(2�) = 41 cm−1, for
which we estimate an uncertainty of 10% (see Appendix).
Taking values within this window, we find deviations in �qα

to be under 10% for most transitions, but up to 30% for a select
few. Since Trel is insensitive to variations in µ, the �qµ are not
affected.

Finally, we mention that our analysis is based on the
lowest-order scaling of the molecular parameters. In principle,
higher-order contributions alter the α and µ dependence of
the parameters. The higher-order contributions are small, and
we expect their effects on �qα and �qµ to be negligible.

Altogether, we estimate uncertainty in our �qα and �qµ to
be about 30% and 5%, respectively. With experimental values
of ω and subsequent application of Eq. (5), this uncertainty
extends to our tabulated sensitivity coefficients Qα and Qµ.
For most transitions, the 30% estimate is highly conservative.

V. CONCLUSION

For laboratory experiments, it is useful to quantify absolute
shift in addition to relative shift. The largest �qα and �qµ have
magnitudes of about 100 cm−1 and 400 cm−1, respectively.
For temporal variations of α and µ at the current laboratory
limits, Eq. (1), the resulting drift in ω is

|ω̇| ≈ (400 cm−1)(4 × 10−14 yr−1) ≈ 0.5 Hz/yr.
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Here α variation is neglected, as its laboratory constraint
is three orders of magnitude tighter than for µ variation.
We may conclude that if hertz-level precision is achievable
with molecular-ion spectroscopy, then NH+ represents a good
system to probe for µ variation in the laboratory.

The natural linewidth gives a fundamental limit to spectro-
scopic precision. The contribution to the natural linewidth from
a given decay channel n → n′ is proportional to the product
ω3|〈n|D|n′〉|2, with ω being the transition energy and 〈n|D|n′〉
being the electric dipole matrix element connecting the two
states. For the v = 0 subspace, the dominant decay channels
are the rotational transitions N → N − 1. As the rotational
splitting ωrot grows with N , so too does the natural linewidth.
For large N , where the Hund’s case “b” limit is realized, we
find the linewidth to be

�rot 	 16

3

(
BN

h̄c

)3

D2,

where D is the dipole moment in the molecule-fixed frame.
With the experimental values of B [44] and our calculated
values of D, we establish that �rot <∼ 30 Hz for rotational
levels N < 20. For the v = 1 subspace, decay to the ground
vibrational state opens up as well. The vibrational transition
energy ωvib is larger than the rotational transition energies
ωrot, whereas the dipole matrix element is suppressed in
comparison. We find the resulting contribution to the linewidth
to be

�vib 	 4

3

(ωvib

h̄c

)3
(

B

ωvib

)
χ2D2, χ ≡ dln(D)

dln(R)
, (6)

χ being a factor of order unity which accounts for dependence
ofD on internuclear separation R (as withD, evaluation of χ at
the equilibrium separation is implicit in the first expression).
With experimental values of ωvib [43] and computed values
of χ (see Appendix), we find �vib 	 20 Hz for the 2� state
and �vib 	 85 Hz for the 4�− state. Assuming practical
limitations (10−3 to 10−6) × �, depending on statistics, we
conclude that the natural linewidth should allow measurement
of the transition energies at the required level of precision.

To summarize, we have analyzed the sensitivity of the
NH+ rotational spectrum to variations in the fine-structure
constant α and electron-to-proton mass ratio µ. We find
enhanced sensitivity for a number of low-frequency transitions
within both the v = 0 and v = 1 spectra, having sensitivity
coefficients on the order of 10–100. The enhanced sensitivity
for these transitions is attributed to the near-degeneracy of
the ground X2� and excited a4�− electronic states and the
significant spin-orbit coupling between them. These results
could prove useful in future astrophysical and laboratory
searches for α and µ variation.
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APPENDIX : COMPUTATIONAL DETAILS

The potential energy curves and the dipole moments of
the 2� and 4�− states were obtained using the MOLPRO

computational package [46], within the multireference config-
uration interaction approach with single and double excitations
(MRCISD). Correlation consistent Dunning aug-cc-pVQZ
basis sets were employed for both atoms [47,48]; convergence
of calculated spectroscopic constants with respect to the
basis set was verified. The second-order Douglas-Kroll-Hess
Hamiltonian [49,50] was used to account for scalar relativistic
effects. The contribution of spin-orbit coupling was calculated
by employing the Breit-Pauli (BP) operator. Within the
MOLPRO package, the lowest-order one- and two-electron
spin-orbit BP operators are used for computing the matrix
elements between internal configurations (no electrons in
external orbitals), while for contributions of external configu-
rations a mean-field one-electron Fock operator is employed.
The error introduced by this approximation is generally
negligible [51].

The calculated potential energy curves were used to extract
the relativistic electronic contribution to the term energy,
Trel(4�−) − Trel(2�) = 41 cm−1. Agreement between our cal-
culated spin-orbit splitting, 80.4 cm−1, and the experimental
spin-orbit constant A = 81.7 cm−1 [44] gives testament to our
accuracy. Our accuracy is likely limited by higher-order (∼α4)
effects, arising primarily from the spin-orbit mixing between
the 2� and 4�− states. This mixing is already explicitly
accounted for in the effective Hamiltonian by the parameters
ξ1/2, ξ3/2, and ξD , and its effect on the potential energy curves
here represents somewhat of an intrusion. We estimate these
effects to be a few cm−1, leading us to ascribe 10% accuracy
to our calculated value of Trel(4�−) − Trel(2�) = 41 cm−1.

We have computed the dipole moments in the molecule-
fixed frame (origin at the center of mass) to be 0.91 a.u.
and 0.82 a.u. for the 2� and 4�− states, respectively. Cheng
et al. have previously computed the 2� dipole moment to
be 0.7897 a.u. [52], and we suspect that their result is more
accurate. High accuracy is not required for the dipole moments,
and this agreement is sufficient for our purposes. We also
compute dependence of the dipole moments on internuclear
separation; for the factor χ appearing in Eq. (6), we obtain
values 0.73 and 2.0 for 2� and 4�−, respectively.
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