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Dissociation of diatomic molecules and the exact-exchange Kohn-Sham potential: The case of LiF
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We examine the role of the exact-exchange (EXX) Kohn-Sham potential in curing the problem of fractional
molecular dissociation. This is achieved by performing EXX calculations for the illustrative case of the LiF
molecule. We show that by choosing the lowest-energy electronic configuration for each interatomic distance,
a qualitatively correct binding energy curve, reflecting integer dissociation, is obtained. Surprisingly, for LiF
this comes at the cost of violating the Aufbau principle, a phenomenon we discuss at length. Furthermore, we
numerically confirm that in the EXX potential of the diatomic molecule, one of the atomic potentials is shifted by
a constant while the other one is not, depending on where the highest occupied molecular orbital is localized. This
changes the relative positions of the energies of each atom and enforces the integer configuration by preventing
spurious charge transfer. The size of the constant shift becomes increasingly unstable numerically the larger the
interatomic separation is, reflecting the increasing absence of coupling between the atoms.
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I. INTRODUCTION

The improper dissociation of neutral “highly stretched”
diatomic molecules into fractionally charged fragments
X+q · · ·Y−q is a well-known problem within density-functional
theory (DFT) [1–22]. For example, the local density approxi-
mation (LDA) yields q = 0.25 for LiH [1], q = 0.4 for NaCl
[3,10] and LiF [7], and q = 0.2 for FH [21]. This problem is
pervasive. Ruzsinszky et al. have shown that LDA erroneously
predicts fractional dissociation for 174 of the 276 distinct
heteroatomic dimers one can form from the first 24 open
sp-shell atoms [10]. Furthermore, fractional dissociation is
often found even when using more sophisticated families of
functionals, including the generalized gradient approximation
(GGA) [8,10,12,13], meta-GGA [10], or hybrid functionals
employing a fixed fraction of exact exchange (EXX) [8,12,13].

For semilocal functionals, this serious deficiency is at-
tributed to the inherent problems of the presence of a self-
interaction error [10,13] and the absence of a derivative
discontinuity in the exchange-correlation potential [1]—issues
that are not unrelated [4,23]. Correspondingly, neutral charge
dissociation has been achieved with the Perdew-Zunger [24]
self-interaction correction (SIC) scheme [10,13], Hartree-
Fock (HF) theory [8,10], and the range-split hybrid [21,23]
(RSH) functional approach [12,13,21]. All of these methods
are rigorously (SIC, HF) or at least asymptotically (RSH)
self-interaction-free (self-interaction is mitigated, but not
eliminated, in hybrid functionals), see, e.g., [23]. But they
circumvent, to varying degrees and in different ways, the
derivative discontinuity issue by employing nonlocal potential
operators.

Use of a nonlocal potential operator, however, should
not be an essential ingredient to overcoming the fractional
dissociation problem. On general grounds, the Kohn-Sham
(KS) theory [25], which employs a local potential, is in
principle exact and should correctly predict any ground-state
property, including molecular dissociation. For example, a
KS SIC scheme involving localizing transformations has
been shown to yield the correct dissociation curve of He+

2
[26]. Furthermore, detailed analysis of the exact functional

reveals the special structure of the exact exchange-correlation
potential that makes this possible in practice [4,5,17,18], an
issue elaborated below.

EXX employed within KS theory, i.e., with a local potential
obtained from the optimized effective potential (OEP) equation
[23,27–31] (or approximations thereof), exhibits a derivative
discontinuity and is also self-interaction free. Just like HF
theory, it does not account for correlation. However, it differs
from HF theory due to the different potential operators.
Therefore, EXX and HF theory each possess components
that the other would “view” as correlation [6,23]. It is thus
interesting to examine whether EXX is generally sufficient for
overcoming the fractional dissociation problem [32] and, if so,
what is the nature of the local KS potential that allows for this.
Here, we answer this question by performing EXX calculations
on the illustrative case of the LiF molecule. We show that by
choosing the lowest-energy electronic configuration for each
interatomic distance, we can obtain a binding energy curve that
is qualitatively correct and has the same structure of the HF
ones. We further demonstrate the mechanism through which
a local potential can lead to neutral dissociation and present
a detailed analysis of its “step structure” features. The study
gains further significance as the physics of this “step structure”
in the exchange-correlation potential, which is at the heart of
the dissociation problem, is also highly relevant to problems
of ionization by external fields [33,34].

II. COMPUTATIONAL DETAILS

All EXX calculations were performed using DARSEC [35]—
a recently developed all-electron code for diatomic molecules,
based on a real-space prolate-spheroidal-coordinate grid. Here,
this is useful because the nonuniform grid is inherently denser
near the nuclei and sparser far from them, facilitating an
accurate numerical solution even for large bond lengths. The
local exchange potential was found using the Krieger, Li, and
Iafrate (KLI) approximation [36] to the OEP equation. All
calculations were spin-unrestricted and total energies were
converged to at least 0.01 Ry.
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It was often our experience, especially for large interatomic
separations, that an electronic configuration which violates
the Aufbau principle was more energetically stable than the
one obeying it. We elaborate on this point in Sec. III 4. To
converge an electronic configuration tending toward neutral
or ionic fragments irrespective of the Aufbau principle we
followed a two-step procedure: First, the atomic charge q

in Li+q · · ·F−q was estimated for any bond length, R, by a
real-space integration of the density “belonging” to each atom
(followed by adding the nuclear charge). This scheme for
calculating q is by no means a uniquely defined one [37–39].
Here we simply integrated the density in the half-space closer
to each atom, using the fact that division into two half-spaces
is inherent in the prolate-spheroidal coordinate grid (see Fig. 1
in Ref. [35]). For large R, this naive scheme is sufficient
to produce a value that approaches our intuitive notion of
atomic charges. Then, in the second and final step, if an
ionic (neutral) configuration was desired, and q was found
to be smaller (larger) than some threshold value (0.35 in the
present work), the electron residing on the highest occupied
orbital belonging to the cation (anion) was transferred to the
lowest unoccupied orbital of the anion (cation) within the same
spin channel. These two steps were taken after each cycle
in the self-consistency procedure to prevent the system from
reverting to the Aufbau-obeying configuration.

III. RESULTS AND DISCUSSION

1. Binding energy and charge curves

Binding energy curves of LiF (the reference total energies
for Li and F are given in Table I below), computed for both the
“ionic” and “neutral” configurations, are shown in Fig. 1(a).
The neutral configuration does not obey the Aufbau principle,
and was obtained as discussed above. Nevertheless, Fig. 1(a)
shows that for large R it is clearly the more energetically stable
one. For each configuration, curves of the fractional charge on
the Li atom are shown in Fig. 1(b). Next, by choosing the
energetically stable configuration for each R, we obtain the
overall binding energy and fractional charge curves, as shown
in Figs. 1(c) and 1(d), respectively. It is immediately obvious
that fractional dissociation does not arise and that for R→∞,
q→1 in the ionic configurations and q→0 in the neutral one.

Figure 1(c) demonstrates that despite the use of a local
potential, EXX calculations that are done within the KLI
approximation (xKLI) are sufficient to obtain a qualitatively
correct binding energy curve which restores neutral dis-
sociation. Furthermore, Fig. 1(d) shows that the fractional
charge increases toward 1 until a critical distance of 6.5<

Rc < 7.0 a.u., following which it abruptly drops to near 0.
This agrees well with an independent estimate of the critical
distance, based on the relation [1]

Rc = e2/(ILi − AF), (1)

where e2 = 2 because Rydberg atomic units are used through-
out, ILi is the ionization potential of Li, and AF is the electron
affinity of F. If both ILi and AF are computed within xKLI
from total energy differences, a critical value of 6.7 a.u.
is obtained [using the experimental values in Eq. (1) was
shown in Ref. [13] to yield a much larger estimation of Rc �
13.6 a.u.]. We further note that this behavior, which is similar
to the one famously discussed by Coulson and Fischer [40],
is qualitatively the same as that obtained from HF theory for
LiF (with a similar critical distance of Rc � 6.6 a.u.) [13] and
for NaCl [10], again demonstrating that a nonlocal potential is
not essential.

2. Potential structure

To explain how exact KS theory can describe charge
dissociation correctly, Perdew has suggested in 1990 the
following mechanism, taking NaCl as a representative case
[4]: “The exact KS potential maintains this situation [atomic
neutrality—the authors] by erecting a ‘plateau’ of positive
constant potential in the ‘domain’ of the Cl atom (that region
of space in which the density of the Cl dominates that of the
Na atom).” To examine how this mechanism is reflected in
our calculations, we consider the xKLI potential along the
interatomic axis (shown as a solid line in Fig. 2) for both
the ionic and the neutral configurations, in a highly stretched
geometry with R = 18 a.u.

For the stretched ionic configuration, Li+1 · · ·F−1 (top of
Fig. 2), no spin polarization was found. For the neutral
configuration, Li0 · · · F0 (bottom of Fig. 2), although each
spin channel contains the same number of electrons, the spin
symmetry is broken (as discussed recently in Ref. [22]) and

TABLE I. Ground-state xKLI energy levels (the last state is the lowest unoccupied one) and total energies (in Ry) of Li, F, and Li0 · · · F0

(R = 18 a.u.). The values of �H−1,α and �H−4,β are also reported for the stretched molecule.

Li F Li0 · · · F0

εiα εiβ εiα εiβ εiα εiβ

−4.163 −4.934 −49.29 −49.40 −49.16(F ) −49.29(F )
−0.392 – −2.93 −2.75 −4.163(Li) −4.78(Li)

−0.257 −0.605 −1.56 −1.40 −2.50(F ) −2.93(F )

Etot = −14.8648 −1.56 −1.34 −1.16(F ) −1.56(F )
−1.46 – −1.09(F ) −1.56(F )

−0.58 −1.34 −0.392(Li) −1.46(F )
Etot = −198.8198 −1.09(F ) −0.454(Li)

�H−1 =0.246 �H−4 =0.15
Etot = −213.69
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FIG. 1. (Color online) The LiF diatomic molecule. Left column: binding energy curves (in Ry) as a function of the interatomic distance R

(in a.u.). Right column: fractional charge on the Li atom as a function of R (in a.u.). First row: both ionic and neutral configurations are plotted
in blue stars and red plus signs, respectively. Second row: only the lowest energy configuration is plotted for each interatomic distance.

significant spin polarization is found. The potential shown
corresponds to the α-spin channel, containing the majority-
spin electrons of the Li atom (the potential corresponding to
the β spin is qualitatively the same as that of the ionic one and
is therefore not shown).

For the ionic configuration, the asymptotic potential in the
“domain” of the F atom is a simple Coulomb potential (−2/r ,
in Ry units, shown as a dash-dotted line). In the “domain” of
the Li atom, however, the potential tends toward a different
asymptotic limit, shifted from −2/r by a constant (see dashed
line). For the neutral configuration, the picture is similar,
except that it is the asymptotic potential in the Li “domain” that
decays to zero and the asymptotic potential on the F “domain”
that tends toward a positive constant. In other words, the Li and
F asymptotic potentials are shifted with respect to each other by
a constant. To bridge across this constant, a step in the potential
must arise in between the atoms. This step is pointed out in
Fig. 2 as s1. It can be interpreted as enforcing nonfractional
occupation by setting up a potential barrier that aims to prevent
electron transfer from F to Li or from Li to F, for the ionic
and neutral configurations, respectively. Accordingly, s1 is of
opposite sign in the two cases. Furthermore, the asymptotic
positive-constant region of the shifted potential (dashed line)
can be identified with Perdew’s plateau. Because a finite object
can have only one asymptotic KS potential [41,42], far to the
left of the Li “domain” for the ionic configuration, or far to
the right of the F “domain” in the neutral configuration, the
above-mentioned positive asymptotic constant vanishes and

the potential can no longer follow Perdew’s plateau. This
necessitates a second step in the potential profile, which is
pointed out in Fig. 2 as s2. This second step enforces the
correct asymptotic structure of the potential with no further
consequence for charge transfer.

The unique structure of the KS potential—a plateau
accompanied by two potential steps of different signs—can
be explained by examining the KLI approximation in more
detail. The KLI potential (in the noncomplex formalism used
in this work) is given by [29,43]

V KLI
xc,σ (r) = 1

ρσ (r)

Nσ∑
i=1

|φiσ (r)|2[uiσ (r) + V
KLI
xc,iσ − uiσ

]
, (2)

where σ is a spin index, φiσ (r) is the ith KS orbital,
uiσ (r) = 1

φ∗
iσ (r)

δExc
δφiσ (r) with Exc being the employed exchange-

correlation energy functional, V
KLI
xc,iσ = 〈φiσ |V KLI

xc,σ |φiσ 〉, and
similarly uiσ = 〈φiσ |uiσ |φiσ 〉. In regions where the density is
dominated by a single KS orbital, i.e., ρσ (r) � |φkσ (r)|2, the
KLI potential reduces to (see, e.g., [44])

V KLI
xc,σ (r) � ukσ (r) + �kσ , (3)

where �kσ stands for V̄ KLI
xc,kσ − ūkσ .

In the case of EXX, uiσ (r) corresponding to the asymp-
totically dominating orbital tends to −2/r for large r [45].
By extension, any asymptotic region that is dominated by a
single orbital, φkσ (r), would feature an xKLI potential that
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FIG. 2. (Color online) xKLI potential (black solid line) along
the interatomic axis of the stretched LiF molecule with R = 18 a.u.
Rydberg atomic units, i.e., e2 = 2, are used. The potential tends to
−2/r (dash-dotted red line) far on either the Li or the F side. Top:
Li+1 · · ·F−1, the potential tends to −2/r + �H−4 (dashed blue line)
near the Li atom. The H −k subscript denotes the orbital that is
k states below the HOMO. Bottom: Li0 · · ·F0, the α-spin potential
tends to −2/r + �H−2 (dashed blue line) near the F atom.

approaches −2/r + �kσ . Because each KS orbital is known
to decay exponentially, with the decay constant dictated by the
KS eigenvalue [29], at the asymptotic regime far to either the
left or the right of the stretched molecule, the density must be
dominated by the highest occupied molecular orbital (HOMO).
Typically, the constant corresponding to this HOMO, �H , is
explicitly set to zero, yielding the correct asymptotic limit of
−2/r [36,44,46] that is indeed revealed in Fig. 2.

For a sufficiently stretched molecule where fractional
dissociation is avoided, each orbital will be localized on one
of the atoms. Consequently, the “domain” of each atom will be
dominated by the HOMO of that atom, which is not necessarily
the HOMO of the whole system (say, k eigenvalues lower).
In such a “domain,” the potential will approach a different

FIG. 3. (Color online) Two-dimensional view of the spin-α
HOMO-2 and HOMO-1 orbitals of Li0 · · ·F0 (Li on the left and F atom
on the right) with R = 18 a.u., calculated with xKLI. Both orbitals
are localized on the F atom, with pz and px shapes, respectively,
without and with a node along the interatomic axis.

asymptotic limit, −2/r + �H−k . Perdew’s plateau is then an
automatic consequence of �H−k being nonzero. Specifically,
for Li+1 · · ·F−1, the HOMO of either spin channel resides on
the F atom and HOMO-4 is the highest occupied orbital that is
localized on the Li atom. Consequently, the F-related potential
is not shifted (�H = 0) but the Li-related potential is shifted
upward by �H−4. Conversely, for Li0 · · ·F0 in the α-spin
channel, the HOMO resides on the Li atom and therefore
it is the F-related potential that is shifted upward. The same
argument also allows for the formation of the steps s1 and s2.
These naturally arise in the area corresponding to the transition
from a density dominated by the leading orbital of one atom to
a density dominated by the leading orbital of the other atom.

We observe that for Li0 · · ·F0 (bottom of Fig. 2), the shift
of the potential on the F “domain” is dictated by �H−2, even
though the highest occupied orbital in the domain of the F
atom is actually the HOMO-1. This seeming contradiction to
the above argument arises because for the HOMO-1 orbital the
interatomic axis is a nodal one, as shown in Fig. 3, whereas
the HOMO-2 orbital does not possess a node along this axis
and therefore dominates the density along it, leading to a
“ridge” in the potential landscape. A similar behavior was
previously reported and similarly explained in the context
of EXX calculations of ethylene and benzene [44,47] and of
Na4 [48].

We note in passing that the phenomenon of shifts in the
local EXX potential has been previously noted also for lower-
lying orbitals of atoms [46,49,50] and is also observed here
in our xKLI calculations. For example, Fig. 4 shows that in
the domain of both Li and F there is a transition in the core
region from domination by a 1s electron (HOMO-4 for Li,
HOMO-5 for F) to domination by a valence electron (HOMO
for Li, HOMO-2 for F). The transition of the potential from
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FIG. 4. (Color online) α-spin xKLI potential (in Ry, thick solid
black line) and absolute value of KS orbitals (in arbitrary units), for
Li0 · · ·F0 with R = 18 a.u., shown along the interatomic axis. Top:
Focus on the Li atom, the HOMO |φH | and the 1s orbital |φH−4|
are plotted in thin solid red line and dotted blue line, respectively.
The potential tends to either −2/r + �H = −2/r (dash-dotted red
line) or −2/r + �H−4 (dashed blue line), depending on which
orbital dominates. Bottom: Focus on the F atom, |φH−2| and the
1s orbital |φH−5| are shown in thin solid red line and dotted blue line,
respectively. The potential tends to either −2/r + �H−2 (dash-dotted
red line) or −2/r + �H−5 (dashed blue line), depending on which
orbital dominates.

−2/r+�H−4 to −2/r+�H for Li and from −2/r+�H−5 to
−2/r+�H−2 for F occurs at the crossover point of orbital
domination and is accompanied by a “bump” in the potential.

3. Atom decoupling

A subtle point involving the plateau and steps structure
discussed above is its limiting behavior with an arbitrarily
large interatomic distance. We remind the reader that in the
KLI approach, all constant terms �iσ are determined, for

each spin σ , by solving a set of linear equations of the
form (I −Mσ )�σ = V̄ S

σ −ūσ , where I is the identity matrix,
�σ is a vector of �iσ values, V̄ S

σ is a vector consisting of
V̄ S

iσ =〈φiσ | 1
ρσ

∑Nσ

k=1 |φkσ |2ukσ |φiσ 〉, ūσ is a vector composed
of ūiσ values, and Mσ is a matrix given by [29,46]

Mjiσ =
∫ |φjσ (r)|2|φiσ (r)|2

ρσ (r)
dr

=
∫ |φjσ (r)|2[ρσ (r) − ∑N

k �=i |φkσ (r)|2]
ρσ (r)

dr

= 1 −
N∑

k �=i

Mjkσ . (4)

This means that the matrix I −Mσ is of the form

I − Mσ

=

⎛
⎜⎜⎜⎝

1 − M11 −M12 · · · −M1N = −1 + ∑
i �=N M1i

−M21 1 − M22 · · · −M2N = −1 + ∑
i �=N M2i

...
. . .

−MN1 · · · 1 − MNN = ∑
i �=N MNi

⎞
⎟⎟⎟⎠.

(5)

Clearly, the sum of the elements in each row is zero, making
the I−Mσ matrix singular, such that any constant vector is
a null vector of this matrix. As mentioned above, the free
constant is usually chosen as �Hσ = 0 to allow for a “natural”
asymptotic decay of the KS potential. The HOMO is then
removed from the above set of equations, resulting in an I−Mσ

matrix of size (N−1) × (N−1) which is no longer singular.
However, as the interatomic distance is increased, the orbital
overlap between the two atoms decreases in an asymptotically
exponential manner and therefore all terms Mij,σ where i, j

correspond to orbitals on different atoms decay exponentially.
Accordingly, if one orders the orbitals by atom, then the I−Mσ

matrix exponentially approaches a block diagonal form, with
each block approaching singularity individually. This means
that in this limit we have two free constants to choose per each
spin channel—one for each atom. Effectively, then, the two
atoms have decoupled.

The practical manifestation of the above observation is that
with increasing interatomic distance the interatomic orbital
overlap becomes numerically negligible and the (N−1) ×
(N−1) I−Mσ matrix becomes increasingly ill-conditioned.
For example, for LiF the determinant of I−Mα used to
construct the potential as in Fig. 2 (bottom) decreases by
almost three orders of magnitudes as R increases from 8 to
18 a.u. As a consequence, if for R=18 a.u. one adjusts the
plateau value manually, by additionally fixing the value of
�H−1,α as shown in Fig. 5, and recalculates the corresponding
total energy, the total energy changes by only ∼ 10−5 Ry,
which is at least two orders of magnitude below the overall
accuracy of our calculations, and the density changes by less
than 10−6 a.u. This manual adjustment is tantamount to an
independent choice of the shift for the highest-occupied F
orbital. Figure 5 confirms that such a constant shift of the “F
domain” with respect to the “Li domain” is indeed the only
meaningful difference between the different xKLI potentials
obtained from this manual shift. It is also interesting to note that
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FIG. 5. (Color online) xKLI potentials of Li0 · · ·F0 with R =
18 a.u. in the α-spin channel, corresponding to four different values
of �H−1,α (in Ry): 0 (dash-dotted green), 0.246 (thick solid black),
0.49 (dotted red), and 0.8 (dashed blue). The shift given by �H−1,α =
0.246 is the one obtained directly from the calculation. All others
were manually set.

the larger the relative shift is, the further the plateau extends
before reverting back to the asymptotic −2/r curve, i.e., the
further out the s2 step is pushed.

The fact that, within numerical accuracy, several manifestly
different potentials effectively share the same ground-state
density and total energy may seem to violate the Hohenberg-
Kohn theorem [51]. We note that nonuniqueness of the KS map
has previously been discussed for spin-polarized DFT [52–54]
and explained physically by the need to fix two constants (one
for each spin channel) where only one reference energy exists.
In our case, however, once the atoms numerically decouple, we
effectively deal with two separated subsystems and there are
effectively two constants to choose per each spin channel. This
does not, however, contradict the Hohenberg-Kohn theorem
because there now exists a finite region where the density
is numerically nonexistent (in the case of Fig. 5 the density
is smaller than 10−6 along an interatomic segment larger
than 1.5 a.u.). For the Hohenberg-Kohn theorem to hold, the
ground-state density should not vanish except on a set of zero
measure, a condition that is still obeyed analytically, but not
numerically. Hence, a unique mapping between the density and
the potential no longer exists, unless the numerical accuracy
is increased. This also means that, as pointed out previously
for the regular spin-polarized case [53], attempts to construct
accurate KS potentials out of accurate densities for highly
stretched molecules should be performed with great numerical
care.

4. Eigenvalue shifts

The eigenvalues obtained from xKLI calculations of Li,
F, and Li0 · · ·F0 (with R=18 a.u.) are listed in Table I.

We conclude that the step structure of the xKLI potential
is accompanied by a systematic shift in the eigenvalues, as
follows. For the α-spin channel, the Li-related eigenvalues
of Li0 · · ·F0 are unchanged, as compared to the majority
eigenvalues of Li, whereas the F-related eigenvalues in the
same spin channel are shifted by a constant (�H−1,α =
0.246 Ry), as compared to the minority eigenvalues of F. A
complementary picture is obtained for the β-spin channel—the
F-related eigenvalues are unchanged, as compared to the
majority eigenvalues of F, but the Li-related eigenvalues are
shifted by a constant (�H−4,β = 0.15 Ry), as compared to
the minority eigenvalues of Li. For each spin channel, the
atom for which the eigenvalues shift is the same one for
which the plateau is observed (see Fig. 2). The only seeming
discrepancy is that the F-related eigenvalues of Li0 · · ·F0

in the α spin are shifted by �H−1,α whereas the potential
for the same spin channel is shifted by �H−2,α . This is
again a consequence of the potential at the bottom part of
Fig. 2 having been plotted along the interatomic axis. As
discussed above (see Fig. 3), while HOMO-2 dominates the
interatomic axis, HOMO-1 is the orbital slowest to decay in
almost all directions, and therefore it controls the shift of the
eigenvalues.

An important consequence of the above argument is that
the relative alignment between the F- and the Li-related
eigenvalues in the spin-α channel of Li0 · · ·F0 is determined
solely by the value of �H−1,α . Unfortunately, in our xKLI
calculations this shift is not large enough, because it places the
F-related LUMO below the Li-related HOMO. This explains
why the Aufbau principle had to be violated in order to obtain
the correct neutral configuration. Had the Aufbau principle
been satisfied, the F-related LUMO would have been occupied
and the Li-related HOMO would have been unoccupied. Alas,
this would mean that the ionic configuration would have been
obtained.

Note that there are two different types of Aufbau violations
involved. The first one occurs within the Li atom (either as
an independent entity or as part of the stretched Li0 · · ·F0

dimer with R = 18 a.u.). The lowest unoccupied minority-spin
Li orbital is at −0.605 Ry or −0.454 Ry for the atom
or dimer, respectively (in agreement with a shift value of
�H−4,β = 0.15 Ry), i.e., lower in energy than the highest
occupied majority-spin orbital (see Table I). This is known
as obeying the Aufbau principle only in the broad sense
[55]. For the Li atom, this behavior persists even with the
exact exchange-correlation functional [56] and is ascribed
to the above-discussed nonuniqueness of the KS map for
spin-polarized DFT [52–54].

The second violation occurs within the α-spin channel,
where the F-related orbital, with an energy of −1.09 Ry, is
unoccupied despite being lower in energy than the Li-related
HOMO. This violation is more serious as it appears within
a given spin channel and thus is outside the formal KS map
even in the broad sense. Furthermore, this problem persists
even for interatomic distances small enough to avoid the atom
decoupling problem discussed above, i.e., it is inherent rather
than numerical. Recently, Giesbertz and Baerends [57] have
shown that generally the Aufbau principle should hold within
each spin channel, if fractional occupations are allowed in
the optimization. However, this is rarely done in practice (see
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Ref. [58] for a more detailed discussion) and was not attempted
here. Whether this violation would persist in the presence of
correlation and/or with a full OEP solution remains unknown
at present.

IV. CONCLUSIONS

In conclusion, we have examined the role of KS EXX
in curing the problem of fractional molecular dissociation.
This was achieved by performing EXX calculations for
the illustrative case of the LiF molecule. We showed that
by choosing the lowest-energy electronic configuration for
each interatomic distance, a qualitatively correct binding
energy curve, reflecting integer dissociation, was obtained.
We demonstrated that this correct result is enforced by the
local KS exchange potential via a plateau-like structure,
accompanied by two steps, as first suggested for the exact
exchange-correlation functional by Perdew [4].

Specifically, we numerically confirmed that the exact-
exchange potential of a diatomic molecule is not given by the
trivial sum of the corresponding atomic potentials, even when

the interatomic distance is arbitrarily large. Instead, one of the
atomic potentials is shifted by a constant while the other one
is not, depending on where the HOMO is localized, thereby
enforcing the integer configuration by preventing spurious
charge transfer. We further showed that this structure is an
inherent feature of the KLI approximation to the KS potential
associated with an orbital-dependent functional. However, this
structure becomes increasingly unstable numerically the larger
the interatomic separation is, reflecting the increasing ab-
sence of coupling between the atoms. Stretched-configuration
calculations are therefore numerically challenging, and we
have shown here how they can nevertheless be performed.
Finally, we discussed the important relation between the
step-structure in the KS potential and the accompanying
eigenvalue shifts. Our results demonstrate that the EXX
functional yields a lowest-energy configuration that correctly
dissociates Li and F to neutral atoms, but it does so by violating
the Aufbau principle. This is an explicit example of how
limited functionals—in our case the limitation is the severe
one of complete absence of correlation—can yield reasonable
physical results via peculiar detours.
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[23] S. Kümmel and L. Kronik, Rev. Mod. Phys. 80, 3 (2008).
[24] J. P. Perdew and A. Zunger, Phys. Rev. B 23, 5048 (1981).
[25] W. Kohn and L. J. Sham, Phys. Rev. 140, A1133 (1965).
[26] T. Körzdörfer, M. Mundt, and S. Kümmel, J. Chem. Phys. 129,

014110 (2008).
[27] R. T. Sharp and G. K. Horton, Phys. Rev. 90, 317 (1953).
[28] J. D. Talman and W. F. Shadwick, Phys. Rev. A 14, 36 (1976).
[29] T. Grabo, T. Kreibich, and E. K. U. Gross, Mol. Eng. 7, 27

(1997).
[30] E. Engel, A Primer in Density Functional Theory (Springer,

Berlin, 2003), Chap. 2, pp. 56–122.
[31] A. Görling, J. Chem. Phys. 123, 062203 (2005).
[32] Evidence for the special case of LiH, where both cation and

anion are effectively one-electron systems due to the use of
pseudopotentials, have been recently given in Ref. [22].
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