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Quasibound states in a chaotic molecular system
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We show the influence of stable and unstable periodic orbits on the energy eigenstates of the HOCl molecule,
both below and above dissociation. The energy range considered is low enough to hold the HO bond fixed,
allowing a two-dimensional model of the molecule. Above dissociation unstable periodic orbits, in a chaotic sea,
anchor quasibound states of the molecule. Quasibound states are calculated using reaction matrix theory and are
found to have lifetimes ranging over five orders of magnitude.
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I. INTRODUCTION

Quasibound states are of great importance in molecular
systems because of their influence on scattering processes and
dissociation rates. Recent studies of the molecule HOCl, in the
electronic ground state, reveal quasibound states at energies
above the HO + Cl dissociation energy that have lifetimes
ranging over several orders of magnitude [1–4]. These studies
are all based on the use of absorbing potentials to locate
quasibound states. Also, for the most part, the studies focus on
quasibound states for cases where the molecule had significant
excitation in the HO bond. In the present work, we focus on
energies just above dissociation, where the dynamics is largely
governed by the motion of HO and Cl, with the very stiff HO
bond in its ground state. In this regime, the dynamics of the
molecule can be studied using a two-dimensional (2D) model
of HOCl in which the HO bond length is held fixed [5,6].
We use a reaction matrix to construct the scattering matrix (S
matrix) for the Cl-OH scattering process and determine the
quasibound states from poles of the S matrix. This approach
does not require the use of an absorbing potential and allows
us to compute scattering states without distortions introduced
by absorbing potentials. One of our goals is to show that
quasibound states are supported by unstable periodic orbits
(POs) in the chaotic sea that governs the dynamics above
dissociation.

The analysis of stable POs, and bifurcations in these
orbits, in the classical dynamics of HOCl has proven very
useful in understanding the energy eigenstates of HOCl below
dissociation [3,6,7]. However, no attempt has so far been made
to connect the quasibound states in HOCl to the underlying
classical dynamics. Recent studies of electron waveguides
and laser-driven atomic systems suggest that both stable and
unstable POs as well as homoclinic and heteroclinic tangles in
the classical phase space can influence the quasibound states of
a system [8,9]. The purpose of the current paper is to examine
the structure and lifetime of quasibound states using a 2D
model of HOCl and to illustrate how these states are influenced
by the classical dynamics of the system.

In subsequent sections, we compute both the bound states
and the quasibound states of the HOCl molecule. In Sec. II,
we derive the Hamiltonian that we use to obtain both types
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of states. In Sec. III, we describe the numerical methods
we use to construct the Hamiltonian matrix. In Sec. IV, we
obtain the bound states and show how they are influenced by
the classical stable and unstable POs. In Sec. V, we discuss
reaction matrix theory, in the context of the HOCl molecule,
and show how we obtain the scattering matrix. In Sec. VI,
we describe the quasibound states of the molecule and relate
them to the classical dynamics. In Sec. VII, we obtain the
Wigner-Smith delay time and in Sec. VIII we make some
concluding remarks.

II. TWO-DIMENSIONAL HAMILTONIAN

We consider a 2D model of HOCl in which the HO bond
length is held fixed. The classical Hamiltonian for this model is
discussed in [5]. We outline here the derivation of the quantum
mechanical Hamiltonian operator. Let t1 be a vector from the
center of mass of the HO dimer to Cl and t2 a vector from
H to O (see Fig. 1). With these definitions the kinetic energy
operator can be written as

K̂ = − h̄2

2M
∇2

RCM
− h̄2

2µ1
∇2

t1
− h̄2

2µ2
∇2

t2
, (1)

where M = mH + mO + mCl, µ1 = mCl(mH+mO)
M

, µ2 = mHmO
mH+mO

,
and RCM is the displacement of the HOCl center of mass in
the laboratory frame.

We assume, without loss of generality, that the center-of-
mass motion is at rest and introduce Jacobi coordinates: R, the
length of t1; r0, the length of t2; and θ , the angle between t1 and
t2. We denote the body frame (lab frame) coordinates (x,y,z)
[(x ′,y ′,z′)]. We assume that the total angular momentum vector
lies along the body ŷ axis and that the body ŷ and the laboratory
ŷ′ axes coincide. We also assume that the motion of HO and
Cl is confined to the (x,z) plane and that t1 always lies along
the ẑ axis, making an angle β with the ẑ′ axis in the laboratory
frame as shown in Fig. 1. The Jacobi coordinates and the angle
β can then be written in terms of t1 and t2 as follows:

R =
√

t2
1x + t2

1z, r0 =
√

t2
2x + t2

2z,

(2)

θ = cos −1

[
t2z√

t2
2x + t2

2z

]
− β, β = cos −1

[
t1z√

t2
1x + t2

1z

]
.
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FIG. 1. Jacobi coordinates R, r0, and θ . The body-fixed (x,z) and
laboratory (x ′,z′) axes differ by an angle β.

Using these relationships and the fact that r0 is held constant,
the kinetic energy operator can be rewritten as

K̂ = −h̄2

2

[
1

µ1

(
∂2

∂R2
+ 1

R

∂

∂R

)
− 2

µ1R2

∂

∂θ

∂

∂β

+ 1

µ1R2

∂2

∂β2
+

(
1

µ1R2
+ 1

µ2r
2
0

)
∂2

∂θ2

]
. (3)

Following the same procedure as above the total angular
momentum can be written as Ltot = ih̄ ∂

∂β
ŷ. We now further

restrict our analysis to motion in which the total angular
momentum is 0. This requires that the wave function be
independent of β and the 2D Hamiltonian operator for HOCl
becomes

Ĥ = −h̄2

2

[
1

µ1

(
∂2

∂R2
+ 1

R

∂

∂R

)
+

(
1

µ1R2
+ 1

µ2r
2
0

)
∂2

∂θ2

]

+V (R,θ ), (4)

where V (R,θ ) is the potential energy of interaction between
the atoms. The potential energy is derived from the 3D
potential energy studied in [3] by setting r0 equal to its
equilibrium value of 1.85 a0, where a0 = 0.52917 × 10−10 m
is the Bohr radius. A contour plot of the potential energy
is shown in Fig. 2(a). The exact expression for the potential
energy is given in [5]. Taking the minimum of the potential
energy to be V (Req,θeq) = 0, the classical dissociation energy
V (∞,θ ) = 20,312.3 cm−1. All energies in the remainder of
the paper are given relative to the potential energy minimum.

III. NUMERICAL METHODS

The energy eigenstates of the 2D HOCl molecule are ob-
tained by using a discrete variable representation (DVR) of the
Hamiltonian matrix. This method uses a spatially localized ba-
sis set in which the potential energy matrix is diagonal. We start
by defining a 1D primitive basis in R consisting of 320 sine
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FIG. 2. (a) Contour plot of the 2D potential energy function. (b–f)
Energy eigenstates (below dissociation) belonging to polyad P = 8,
with energies given in cm−1. Eigenstates in (b) and (f) are shown
with their corresponding periodic orbits [B] and [R], respectively.
Coordinate R is measured in units of a0.

functions, φR,n(R) =
√

2
R�R

sin [ n(R−Rmin)π
�R

], where �R =
Rmax − Rmin with Rmax = 10a0 and Rmin = 2a0. This primitive
basis is used to solve the 1D eigenproblem [− h̄2

2µ1
( ∂2

∂R2 +
1
R

∂
∂R

) + V (R,θeq)]ψR,n(R) = ER,nψR,n(R). The coordinate

matrix R with matrix elements Rm,n = ∫ Rmax

Rmin
ψR,mRψR,nRdR

is then diagonalized in the eigenbasis ψR,n(R), where n =
1...130. The eigenvectors of R form a unitary matrix TR
which transforms the eigenbasis ψR,n(R) to a DVR basis
ψ̃R,n(R) [10]. The DVR basis function ψ̃R,n(R) is localized
around Rn, the nth eigenvalue of R. Using the 1D eigenstates
to build the DVR basis produces a DVR basis that is optimized
for our potential energy function.

The potential energy is symmetric about θ = 0, allowing
us to treat even and odd parity states separately. For odd
states we use a primitive basis of 60 sine functions, φθ,n(θ ) =√

2
π

sin(nθ ). For even states we use 61 cosine functions,

φθ,n(θ ) =
√

1
π

if n = 0 and
√

2
π

cos(nθ ) otherwise. While there
is no coordinate operator for θ as there is for R, we can
still define a matrix with elements θm,n = ∫ π

0 φθ,mθφθ,ndθ

to determine our DVR basis. The θ matrix is diagonalized
to obtain a unitary matrix Tθ that transforms between the
primitive basis φθ,n(θ ) and the DVR basis φ̃θ,n(θ ) which is
localized around the eigenvalues of θ that span 0 � θ � π .
The Hamiltonian is symmetric about θ = 0, which allows
us to confine our attention to the upper half-plane in θ

when seeking energy eigenstates. The DVR basis we obtain
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from our primitive basis in θ yields more highly converged
eigenvalues for the 2D Hamiltonian than when we use a
“potential-optimized” DVR basis in θ .

The full 2D HOCl Hamiltonian is evaluated in three stages.
First, the kinetic energy matrix is built in a direct product basis
of ψR,n(R) and φθ,n(θ ). The potential energy matrix is then
built in a direct product DVR basis of ψ̃R,n(R) and φ̃θ,n(θ ). The
evaluation of the potential energy matrix in the direct product
DVR basis becomes trivial due to the localized nature of the
basis states, 〈ψ̃R,i φ̃θ,m|V (R,θ )|ψ̃R,j φ̃θ,n〉 ≈ V (Ri,θm)δi,j δm,n.
We estimate the error associated with this approximate
representation of the potential energy matrix to be no more than
a few percent. A discussion of the error associated with various
discrete variable representations can be found in [11]. Once
the potential energy matrix is obtained it is transformed to the
ψR,n(R) × φθ,n(θ ) basis using an unitary matrix T = TR × Tθ

and added to the kinetic energy matrix [12]. This gives us the
full Hamiltonian matrix in the ψR,n(R) × φθ,n(θ ) basis, which
can then be diagonalized to yield the energy eigenstates.

IV. BOUND STATES

We find 357 odd eigenstates and 365 even eigenstates with
energies below the classical dissociation energy. In this section
we relate the structure of these eigenstates to the classical
POs that exist at similar energies. The classical vibrational
dynamics is governed by a series of saddle-center and period
doubling bifurcations that occur as the energy is increased [5].
The new POs that are born from these bifurcations give rise to
new structures in the quantum eigenstates.

At low energies the system is largely integrable and the
eigenstates can be assigned approximate quantum numbers
nR and nB , representing the number of nodes the eigenstate
has along the “stretching” normal mode PO [R] and the
“bending” normal mode PO [B]. At low energies HOCl has an
approximate Fermi resonance between bending and stretching
motions making nB ≈ 2nR . The low-energy eigenstates can
thus be arranged into polyads, groups of states that share the
same polyad number P = nR + 2nB and thus have similar
energies. Figure 2 shows the five eigenstates belonging to
the P = 8 polyad. The lowest energy eigenstate in the
polyad has P/2 nodes arranged along PO [B]. Each higher
energy eigenstate in the polyad removes one node along [B]
and replaces it with two nodes along [R], with the most
energetic eigenstate having all P nodes arranged along PO
[R]. Eigenstates in other polyads continue to follow this simple
evolution of nodes along [B] and [R]. However, for energies
above E = 10,000 cm−1, the Fermi resonance causes PO [R]
to take on an increasingly curved shape. As a result, eigenstates
that are aligned along [R] also exhibit a pronounced curvature
as is evident in Fig. 3(a).

Just below E = 13,900 cm−1 the classical system under-
goes its first bifurcation, a saddle-center bifurcation giving
birth to a new PO [D] that replaces [R] as the PO that stretches
along the dissociation channel. Classically, this bifurcation
occurs at a specific energy giving birth to a fully formed PO
[D]. The quantum manifestation of this bifurcation is more
gradual and does not occur at one specific energy. Figures 3(b)
and 3(c) show two eigenstates whose structures are strongly
influenced by PO [D]. The eigenstate in Fig. 3(b) has an energy
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FIG. 3. Energy eigenstates (below dissociation) together with
their corresponding periodic orbits (POs) at the same energy. The
eigenstate in (b) resembles PO [D] but the PO does not exist at this
energy. The eigenstate in (h) is an example of a “chaotic” eigenstate
that does not have a corresponding PO. The energy of each state
(in cm−1) is indicated at the top. Coordinate R is measured in units
of a0.

below the classical bifurcation energy, and while its probability
is not as cleanly aligned as the eigenstate in Fig. 3(c), it is
clearly being influenced by the soon-to-be-born PO [D].

Continuing to higher energies, PO [B] undergoes a period
doubling giving birth to PO [2B], which then period doubles
into PO [4B]. The classical PO [4B] becomes unstable very
quickly as the energy is increased. However, the unstable PO
[4B] continues to scar eight of the even eigenstates, one of
which is shown in Fig. 3(d). We find no odd eigenstates that
take their structure from PO [4B]. The eight even eigenstates
that are scarred by [4B] are the reason for the differing numbers
of even and odd bound states.

As the energy approaches the dissociation energy, PO
[D] becomes unstable. However, it continues to scar those
eigenstates that stretch farthest along the dissociation channel.
Figure 3(e) shows an eigenstate scarred by the now unstable
PO [D]. The eigenstate extends farther in R than [D] does and
curves down to lower θ values. The eigenstate crosses over a
slight hill in the potential energy near (R,θ ) = (6.33a0,0.35)
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FIG. 4. (a) Poincaré surface of section for E = 20,150 cm−1

(just below dissociation). (b) Stable periodic orbits (POs) for E =
20,150 cm−1. (c) Poincaré surface of section for E = 21,000 cm−1

(just above dissociation). (d) Stable PO for E = 21,000 cm−1.
Coordinates R and pR are measured in units of a0 and h̄/a0,
respectively.

to smaller θ values where the potential energy is lower.
The eigenstate is not localized along a single curve the
way [D] is and is thus influenced by the region of lower
potential energy near θ = 0. There are also two new types
of eigenstates that come into existence in this energy regime.
These eigenstates, shown in Figs. 3(f) and 3(g), take their
structure from the classical POs [DD] and [DDb] which are
born out of saddle-center bifurcations near E = 20,000 cm−1.
Classically [DD] represents the new “dissociation” PO at
these energies. However, because PO [D] continues to scar
eigenstates after going unstable, PO [DD] plays a much smaller
role in the quantum dissociation process.

The classical dynamics becomes increasingly chaotic as
the energy approaches the dissociation energy. The Poincaré
surface of section in Fig. 4(a) shows the classical phase space
almost completely engulfed by chaos at E = 20,150 cm−1.
The quantum system shows some evidence of this chaos. Of
the approximately 360 even or odd bound states, we find 5 or 6
eigenstates that are spread over a large region of configuration
space with no discernible nodal structure. Figure 3(h) shows
one of these “chaotic” eigenstates. HOCl does possess several
eigenstates with somewhat messy nodal structures. However,
these states are fairly well localized in R and θ and can be
associated with various classical POs. The high degree of
regularity in the quantum domain is consistent with the fact
that an integrable Fermi resonance Hamiltonian has been used
to successfully reproduce the quantum spectrum all the way up
to 98% of the dissociation energy [13]. The subject of classical
chaos versus quantum regularity for vibrational eigenstates in
HOCl has been discussed in [6].

V. REACTION MATRIX THEORY

The HO-Cl quasibound states are calculated using the
reaction matrix theory of Wigner and Eisenbud [14,15].
Reaction matrix theory, for the case of 2D polar coordinates,
is worked out in detail in [16]. Here we outline the application
of reaction matrix theory to our 2D model of HOCl following
the same notation as used in [16].

We start by partitioning configuration space into an
asymptotic region where the effect of the potential energy is
negligible and a reaction region where the potential energy
must be taken into consideration. For HOCl the potential
energy is essentially flat beyond R = 8a0 so we choose
the boundary of the reaction region to be at Rmax = 10a0.
The dynamics in the reaction region is described by a set
of orthonormal basis states ξj (R,θ ) that satisfy the zero-
slope boundary condition ∂ξj

∂R
|Rmax = 0. The basis states are

eigenvectors of the HOCl Hamiltonian which, due to the
boundary condition at R = Rmax, have discrete eigenvalues λj .

The reaction region eigenstates are calculated using DVR
as described in Sec. III. To satisfy the zero-slope boundary
condition we use Rmin = 0 and a primitive basis for R consist-
ing of 250 Bessel functions, φR,n(R) = C1,nJ1(α1,nR/Rmax),
where α1,n is the nth zero of dJ1

dR
and C1,n is the normalization

constant. The reaction-region eigenstates can be written as
ξj (R,θ ) = ∑60

m=1 ξj,m(R)φθ,m(θ ), where φθ,m(θ ) is defined in
Sec. III and ξj,m(R) = ∑130

n=1 aj,m,nψR,n(R). ψR,n(R) is the
nth eigenstate of the 1D eigenproblem obtained by setting
θ = θeq in the Hamiltonian and the coefficients aj,m,n come
from solving the 2D eigenproblem in the reaction region.

The scattering eigenstate, in the reaction region, can be
expanded in terms of the reaction-region basis states as

�E(R � Rmax,θ ) =
N∑

j=1

γj (E)ξj (R,θ ), (5)

where N = 60 × 130 is the total number of basis states used
in the reaction region. Coupling the reaction region to the
asymptotic region and requiring the scattering eigenstate to be
continuous at R = Rmax leads to the following equation for
γj (E):

γj (E) = h̄2Rmax

2µ1(λj − E)

60∑
m=1

ξ ∗
j,m(Rmax)

∂�m(kmR)

∂R

∣∣∣∣
Rmax

. (6)

In the asymptotic region the potential energy is taken
to be constant and equal to the dissociation energy De =
20,312.3 cm−1. The scattering eigenstate, in the asymptotic
region, can be written in terms of incoming and outgoing
cylindrical waves as

�E(R � Rmax,θ ) =
∑
m

�m(kmR)φθ,m(θ )

=
60∑

m=1

[
AmH (2)

m (kmR) + BmH (1)
m (kmR)

]
×φθ,m(θ ), (7)

where H (1,2)
m are Hankel functions and km =√

2µ1(E−De)/h̄2−m2µ1/µ2r
2
0 . We set the incoming amplitudes

Am equal to 0 for m > M , where M is the first angular
momentum value for which km is imaginary, and equal to 1
otherwise. The amplitudes of the incoming partial waves Am

are related to the amplitudes of the outgoing partial waves Bm

by the scattering matrix S so that B = S · A, where B(A) is a

062510-4



QUASIBOUND STATES IN A CHAOTIC MOLECULAR SYSTEM PHYSICAL REVIEW A 83, 062510 (2011)

column matrix containing amplitudes Bm(Am). The scattering
matrix can be written as

S = −H(2) · {1M + 2iRmaxv† · [Heff(E) − E1N ]−1 · x} · H(1).

(8)

Here H(1,2) are M × M diagonal matrices with elements
H (1,2)

m (kmRmax), 1M is the M × M identity matrix, v† =
(H(1)H(2))−1 · w†, and x = w · β. The matrix w has elements

wj,m =
√

h̄2

2µ1
ξ ∗
j,m(Rmax) and β is the imaginary part of

Ḣ(1)H(2). We have written the scattering matrix in terms of
a non-Hermitian effective Hamiltonian given by

Heff(E) = Hin − Rmaxw · Ḣ
(1) · (H(2))−1 · w†, (9)

where Hin is an N × N diagonal matrix of reaction-region
eigenvalues λj . From Eq. (8) it is clear that the poles of the
scattering matrix occur at complex energies corresponding to
the eigenvalues of the effective Hamiltonian. These complex
energy poles correspond to quasibound states of the system.

The (m,m′)th element of the scattering matrix couples the
m′th incoming partial wave to the mth outgoing partial wave.
The magnitude of Sm,m′ is a measure of how strongly the mth
and m′th partial waves interact during the scattering process.
Figure 5 shows the magnitudes |S1,1|, |S1,2|, and |S1,3| as a
function of energy. The peaks and dips in Fig. 5 represent
energies for which the partial waves are significantly affected
by the scattering process. Peaks and dips in |Sm,m′ | thus
correspond to quasibound states with the width of the peak
being inversely related to the lifetime of the quasibound state.
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FIG. 5. Magnitudes of scattering matrix elements (a) |S1,1|, (b)
|S1,2|, and (c) |S1,3|.

Each peak in Fig. 5 is centered around an energy matching the
real part of an eigenvalue of the effective Hamiltonian.

VI. QUASIBOUND STATES

The complex-energy eigenvalues of the effective Hamilto-
nian, En = En,0 − i�n/2, where En,0 and �n are real, represent
quasibound states with lifetimes τn = h̄/�n. For HOCl we
find quasibound states with lifetimes that range over 5 orders
of magnitude, from 10−12 to 10−7 s. In this section we connect
quasibound states with various lifetimes to the structures in
the underlying classical phase space that support them.

To relate quasibound states to structures in the classi-
cal phase space, we construct Husimi distributions for the
scattering energy eigenstates, �E(R,θ ), evaluated at the real
part E = En,0 of the quasibound state energies. A Husimi
distribution acts as a quantum mechanical analog to a clas-
sical Poincaré surface of section showing how the quantum
state’s probability is distributed in phase space [17]. Lu and
Kellman have shown Husimi distributions to be very useful
for organizing sequences of bound energy eigenstates and
assigning approximate quantum numbers to eigenstates when
the classical dynamics is a mixture of regular and chaotic
motion [18]. Here we apply Husimi distributions to a system
in which the classical dynamics is almost entirely chaotic.

There exists some freedom in how one defines a Husimi
distribution. We follow the definition used in [6] where
the Husimi distribution ρ for a scattering energy eigenstate
�E(R,θ ) is given by

ρ(q′,p′) = |〈�q′,p′ ,�E〉|2, (10)

where �q′,p′ is the product of 1D minimum uncertainty wave
packets

�1D(R′,p′
R) = 1

[2π (�R)2]1/4
exp

[
− 1

4(�R)2
(R′ − R)2

+ i

h̄
p′

R(R′ − R)

]
(11)

and

�1D(θ ′,p′
θ ) = 1

[2π (�θ )2]1/4
exp

[
− 1

4(�θ )2
(θ ′ − θ )2

+ i

h̄
p′

θ (θ ′ − θ )

]
. (12)

The half-widths of the wave packets are determined from the

classical Hamiltonian by �qi =
√

h̄
2 ( ∂2T

∂p2
i

)1/4( ∂2V

∂q2
i

)−1/4 evalu-

ated at the equilibrium coordinates. To project the Husimi
distribution onto the θ = θeq plane |〈�q′,p′ ,�E〉|2 is integrated
over R and θ , θ ′ is set equal to θeq, and p′

θ is determined by
requiring the classical energy to be equal to the real part of the
quasibound-state energy.

Figure 6(a) shows the state �E(R,θ ) at the energy of
the longest-lived quasibound state, E = E0 = 20,374.94 cm−1

with � = 3.15 × 10−5 cm−1 [we call states �E(R,θ ) quasi-
bound states when they have energies E = E0 corresponding
to the real part of the complex energies of the effective
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FIG. 6. Plots of scattering energy eigenstates |�E(R,θ )|2, and
their Husimi plots, at energies E = E0, the real part of a complex
eigenenergy of the effective Hamiltonian. (a, b) E = 20,374.94 −
i1.58 × 10−5 cm−1; (c, d) E = 20,343.17 − i8.48 × 10−5 cm−1;
(e, f) E = 20,782.74 − i3.36 × 10−4 cm−1; (g, h) E = 20,515.10 −
i6.84 × 10−4 cm−1. These states are fairly long-lived. Coordinates R

and pR are measured in units of a0 and h̄/a0, respectively.

Hamiltonian]. The quasibound state’s probability is greatest
along a curve resembling the classical PO [DD] shown in
Fig. 4(b). Comparing the Husimi distribution in Fig. 6(b) to
the classical surface of section in Fig. 4(a), we see that this
quasibound state is supported mainly by PO [DD]. However,
there is also a region of high probability near PO [DDb] in
phase space. The additional influence of [DDb] is likely the
reason for the somewhat messy nodal pattern in Fig. 6(a) as
well as the reason that the quasibound state is more compressed
in R than PO [DD]. The POs in Figs. 4(a) and 4(b) are
unstable for energies above the dissociation energy, however,
they continue to influence the quasibound states.

Slightly shorter-lived quasibound states are also strongly
influenced by various unstable POs in the classical dynamics.
The quasibound states in Figs. 6(c) and 6(e) correspond to
complex eigenvalues of the effective Hamiltonian given by
E = 20,343.17 − i8.48 × 10−5 cm−1 and E = 20,782.74 −
i3.36 × 10−4 cm−1 and are supported by POs [DDb] and
[2R], respectively. The quasibound state in Fig. 6(g) with E =
20,515.10 − i6.84 × 10−4 cm−1 is the longest-lived quasi-
bound state with even parity. This quasibound state is partially
supported by POs [B0] and [2R], however, its probability is
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FIG. 7. Plots of scattering energy eigenstates |�E(R,θ )|2, and
their Husimi plots, at energies E = E0, for short-lived quasi-
bound states. (a, b) E = 20,559.56 − i1.24 × 10−3 cm−1; (c, d)
E = 20,433.76 − i0.03 cm−1; (e, f) E = 20,682.37 − i2.00 cm−1.
Coordinates R and pR are measured in units of a0 and h̄/a0,
respectively.

spread over a wider region of phase space than is seen in the
longer-lived quasibound states.

Short-lived quasibound states display messier nodal struc-
tures and probabilities that begin to stretch into the asymptotic
region. Figure 7(a) shows a quasibound state with E =
20,559.56 − i1.24 × 10−3 cm−1. This state has a messy nodal
structure and probability spread throughout the majority of
phase space. This quasibound state is influenced by the overall
chaotic nature of the classical phase space with a nodal pattern
and Husimi distribution that does not match any of the classical
POs. The quasibound states with the shortest lifetimes have
nodes that lie primarily along the dissociation channel and
Husimi distributions that are concentrated at very large R

values. Figures 7(c) and 7(e) show two such states, with E =
20,433.76 − i0.03 cm−1 and E = 20,682.37 − i2.00 cm−1,
respectively.

VII. WIGNER-SMITH DELAY TIME

The effective Hamiltonian in Eq. (9) provides a convenient
way of obtaining the Wigner-Smith delay time. The delay
time is a measure of the amount of time a particle incident
with energy E is delayed in the reaction region relative to free
motion. The Wigner-Smith delay time can be written in terms
of the eigenvalues of the effective Hamiltonian as [16]

τWS = −ih̄

[
M∑

m=1

H (1)
m (kmRmax)

H
(2)
m (kmRmax)

d

dE

(
H (2)

m (kmRmax)

H
(1)
m (kmRmax)

)

−
N∑

n=1

2i�n/2

(E − En,0)2 + (�n/2)2

]
. (13)
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FIG. 8. (a) Wigner-Smith delay time showing peaks correspond-
ing to quasibound states. (b) Enlargement of the very thin peak
in (a).

Figure 8(a) shows the Wigner-Smith delay time for a range of
energy containing three peaks. The very thin peak near E1 =
20,560 cm−1 represents a long-lived quasibound state, with
the broader peaks representing much shorter-lived quasibound
states. Figure 8(b) shows an enlargement of the very thin
peak. The peak occurs at the same energy as predicted by
the real part of the eigenvalue of the effective Hamiltonian.
The peak has a maximum of δT = 8.55 × 10−9 s and a
full-width at half-maximum of δE = 0.0024 cm−1. The
delay time can be related to the lifetime of the quasibound
state through δT = h̄/4� and δE = � [19]. The value of
� obtained from the delay time agrees very well with the
value obtained directly from the eigenvalue of the effective
Hamiltonian.

VIII. SUMMARY

We have used a potential-optimized DVR to calculate
the bound vibrational states of a 2D model of HOCl. The
structures of the vibrational eigenstates correspond closely to
the classical POs studied in [5]. A number of new types of
eigenstates appear at energies close to the bifurcation energies
in the classical system. While the classical system exhibits a
high degree of chaos at energies near the dissociation energy,
the quantum system remains predominantly ordered all the
way up to the HO + Cl dissociation energy.

Using the reaction matrix theory of Wigner and Eisenbud
together with a potential-optimized DVR, we have calculated
the HO-Cl quasibound states with energies slightly above the
dissociation energy. The lifetimes of these quasibound states
range over 5 orders of magnitude. By examining the structure
of quasibound states in configuration space and in Husimi
distributions, we find that many of the quasibound states are
supported by unstable POs in the classical system. The lifetime
of the quasibound state is loosely correlated with the amount
of motion along coordinate θ exhibited by the classical PO
that supports it.

The results presented here contribute to the growing body of
work on quantum-classical correspondence and semiclassical
methods in systems whose classical dynamics exhibit varying
degrees of chaos. It has been known that unstable POs can
support quantum eigenstates since Heller’s seminal work on
PO scars [20]. More recently there have been several successful
efforts to construct accurate semiclassical wave functions
based on the classical dynamics using POs, heteroclinic orbits,
and invariant tori and cantori [21–24]. These studies have all
focused on bound systems with mixed classical phase spaces.
The significant role played by unstable POs in supporting
long-lived quasibound states in HOCl suggests that these
methods may continue to be valuable tools for studying
unbound systems.
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