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Based on a rigorous quantum electrodynamics (QED) approach, a theoretical analysis is performed for the
two-photon transitions in heavy He-like ions. Special attention is paid to the interelectronic-interaction corrections
to the decay rates that are taken into account within the two-time Green-function method. Detailed calculations
are carried out for the two-photon transitions 2 1S0 → 1 1S0 and 2 3S1 → 1 1S0 in He-like ions within the range
of nuclear numbers Z = 28–92. The total decay rates together with the spectral distributions are given. The
obtained results are compared with experimental values and previous calculations.
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I. INTRODUCTION

The two-photon process involving simultaneous emission
of two photons was theoretically predicted by Göppert-Mayer
in 1931 [1]. It arises from a second-order interaction between
an atom and the electromagnetic field, resulting in a sharing
of the transition energy between the two photons. The energy
distribution of the two-photon spontaneous emission forms a
continuous spectrum in contrast to the one-photon process,
where the photon frequency is equal to the transition energy.
Various characteristics of the two-photon transitions, such
as total and energy-differential decay rates, and angular
and polarization correlations of the emitted photons, were
widely investigated for heavy hydrogenlike ions (see, e.g.,
Refs. [2–6]). Due to recent advances in the experimental tech-
nique, heavy He-like ions have become promising candidates
for studying two-photon decays in the high-Z domain. Here the
2 1S0 state is of special interest, since this state decays primarily
into the ground state via two-photon emission. The first
theoretical two-photon decay rate of the 2 1S0 state in helium
was presented by Dalgarno [7]. Later, accurate nonrelativistic
calculations, including the estimation of the relativistic effects,
of the two-photon transition rates 2 1S0 → 1 1S0 + 2γ (E1) for
He-like ions were performed by Drake [2]. The two-photon
decay 2 3S1 → 1 1S0 + 2γ (E1) was investigated theoretically
as well [8,9], although its rates are smaller than the corre-
sponding one-photon M1 rates by a factor of about 10−4.
Up to now, the most accurate fully relativistic calculations
of the two-photon decay rates of the 2 1S0 and 2 3S1 states
in the highly charged ions were performed using relativistic
configuration-interaction wave functions in Ref. [10]. Apart
from the total and energy-differential decay rates, the angular
correlations in the two-photon decay of He-like ions have also
been investigated recently [11].

The lifetimes of the metastable 2 1S0 level in He-like
ions have been measured up to Z = 41. The most precise
measurements have been made in Kr34+ [12], Br33+ [13],
and Ni26+ [14], where uncertainties of about 1% have
been reported. However, up to now the two-photon decay
of the 2 3S1 level in He-like ions has not been observed.
As opposed to the total decay rate measurements, the
observation of the energy-differential spectrum carries more

detailed information about the entire atomic structure. Several
experimental efforts have been made during the past two
decades to accurately determine the spectral shape of the
two-photon distribution for 2 1S0 decay in He-like ions
[15–17]. The cleanest spectrum has been obtained recently in
Refs. [18,19], unambiguously confirming predictions of rela-
tivistic many-body theory as compared to the nonrelativistic
calculations.

Since the two electrons in He-like ions are strongly corre-
lated, it is important to take into account the interelectronic-
interaction effects when studying two-photon decays. In
previous calculations, the correlation effects were accounted
for by means of nonrelativistic Hylleraas variational wave
functions [2], relativistic configuration-interaction (CI) wave
functions [10], or by means of relativistic wave functions in
screening potentials [11,19–21]. However, a rigorous descrip-
tion of high-Z systems requires the quantum electrodynamic
(QED) approach, which treats systematically radiative and
correlation corrections order by order. Future progress in
the experimental techniques will allow us to observe QED
corrections to the transition amplitudes. In particular, recent
precise measurements of the one-photon decay rates of the
(1s22s22p) 2P3/2 state in B-like Ar [22,23] have been shown
to be sensitive to the one- and many-electron QED effects
[24–26]. The QED treatment of the correlation effects differs
from the many-body perturbation theory by the frequency-
dependent contribution. The first QED evaluation of the
interelectronic-interaction correction of first order in 1/Z

to the one-photon decay rates was performed in Ref. [27]
employing the two-time Green-function method [28–30]; later
these calculations were confirmed in Ref. [31] by means of
the line profile approach [32]. The main goals of the present
paper are the derivation of formulas for the interelectronic-
interaction corrections to the two-photon decays from the
first principles of QED and the numerical evaluations of the
two-photon transitions 2 1S0 → 1 1S0 and 2 3S1 → 1 1S0 in the
He-like ions. The paper is organized as follows: In the next
section, the process of the two-photon emission is described
in the framework of the two-time Green-function method.
The calculation formulas for the first-order interelectronic-
interaction corrections to the two-photon transition amplitude
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are derived starting in the zeroth-order approximation with the
Coulomb potential of the nucleus and with a local screening
potential. In Sec. III, we present the numerical results for the
two-photon decay rates of 2 1S0 and 2 3S1 states in He-like ions.
Beyond the dominant channel of the emission of two electric-
dipole (E1) photons, the higher multipoles contributions are
also taken into account. The total and energy-differential decay
rates are presented within the range of nuclear numbers Z =
28 − 92. Comparison with previous theoretical calculations
and with experiment are given. We close with a short summary,
in which we point out the main achievements of the present
work.

Relativistic units (h̄ = 1, c = 1,m = 1) and the Heaviside
charge unit [α = e2/(4π ), e < 0] are used throughout the
paper.

II. BASIC FORMULAS

According to the basic principles of QED [33], the transition
probability from the electronic state A to B accompanied by
the emission of two photons with wave vectors kf1 , kf2 and
polarizations εf1 , εf2 , respectively, is given by

dWB;A(kf1 ,εf1 ,kf2 ,εf2 )

= 2π
∣∣τγf1 ,γf2 ,B;A

∣∣2
δ
(
EB + k0

f1
+ k0

f2
− EA

)
dkf1dkf2 , (1)

where τγf1 ,γf2 ,B;A is the transition amplitude, which is related
to the S-matrix element by

Sγf1 ,γf2 ,B;A = 〈
kf1 ,εf1 ,kf2 ,εf2 ; B

∣∣Ŝ∣∣A〉
= 2πi τγf1 ,γf2 ,B;A δ

(
EB + k0

f1
+ k0

f2
− EA

)
, (2)

where EA and EB are the energies of the initial state A and the
final state B, respectively. According to the standard reduction
technique, the S-matrix element can be written as

Sγf1 ,γf2 ,B;A = −Z−1
3

∫
d4y1d

4y2

ε
ν1∗
f1

e
ik

µ

f1
y1µ√

2k0
f1

(2π )3

ε
ν2∗
f2

e
ik

µ

f2
y2µ√

2k0
f2

(2π )3

×〈B|Tjν1 (y1)jν2 (y2)|A〉 , (3)

where jν(y) = (e/2)[ψ(y)γν,ψ(y)] is the Dirac current den-
sity operator and Z3 is a renormalization constant for the
emitted photon lines [34]. Here the electron-positron current
operator jν(y) as well as the initial and final state vectors are
given in the Heisenberg picture. Equation (3) can be written as

Sγf1 ,γf2 ,B;A = −2πZ−1
3 δ

(
EB + k0

f1
+ k0

f2
− EA

) ∫
dy1dy2A

ν1∗
f1

(y1)Aν2∗
f2

(y2)
∫ ∞

−∞
dt e

ik0
f1

t 〈B|Tjν1 (t,y1)jν2 (0,y2)|A〉

= −2πZ−1
3 δ

(
EB + k0

f1
+ k0

f2
− EA

) ∫
dy1dy2A

ν1∗
f1

(y1)Aν2∗
f2

(y2)

[∫ ∞

0
dt e

ik0
f1

t 〈B|jν1 (t,y1)jν2 (0,y2)|A〉

+
∫ 0

−∞
dt e

ik0
f1

t 〈B|jν2 (0,y2)jν1 (t,y1)|A〉
]

, (4)

where

Aν
f (x) = εν

f eikf ·x√
2k0

f (2π )3
(5)

is the wave function of the emitted photon.
To evaluate this S-matrix element, the information about the entire atomic structure is needed. This information is contained

in the Green functions. To obtain this information and to formulate perturbation theory, we employ the two-time Green-function
method [28–30]. We introduce the following Green function to describe the process of a two-photon emission by an N -electron
ion

Gγf1 ,γf2

(
E′,E,k0

f1
; x′

1, . . . ,x
′
N ; x1, . . . ,xN

)
δ
(
E′ + k0

f1
+ k0

f2
− E

)
=

(
i

2π

)2 1

N !

∫ ∞

−∞
dx0dx ′0

∫
d4y1d

4y2 e
iE′x ′0−iEx0+ik0

f1
y0

1 +ik0
f2

y0
2 A

ν1∗
f1

(y1)Aν2∗
f2

(y2)

×〈0|T ψ(x ′0,x′
1) · · ·ψ(x ′0,x′

N )jν1 (y1)jν2 (y2)ψ(x0,xN ) · · · ψ(x0,x1)|0〉 , (6)

where ψ(x) is the electron-positron field operator in the Heisenberg representation. In a general case, we imply that to zeroth
approximation the vector A belongs to the sA-dimensional subspace 	A of degenerate (or quasidegenerate) states, and the state
B belongs to the sB-dimensional subspace 	B . P

(0)
A and P

(0)
B are the projectors onto the corresponding subspaces,

P
(0)
A =

sA∑
kA=1

ukA
u
†
kA

, P
(0)
B =

sB∑
kB=1

ukB
u
†
kB

, (7)
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and ukA
and ukB

are the unperturbed states of the N -electron system, constructed as linear combinations of one-determinant wave
functions. From the spectral representation, we find that the Green function Gγf1 ,γf2

(E′,E,k0
f1

) has isolated poles in the complex

planes E′ and E, at E′ ∼ E
(0)
B and E ∼ E

(0)
A , in the exact energies E′ = EkB

and E′ = EkA
, respectively,

Gγf1 ,γf2

(
E′,E,k0

f1
; x′

1, . . . ,x
′
N ; x1, . . . ,xN

)
δ
(
E′ + k0

f1
+ k0

f2
− E

)
= 1

2π

1

N !

sA∑
kA=1

sB∑
kB=1

1

E′ − EkB

1

E − EkA

∫
dy1dy2A

ν1∗
f1

(y1)Aν2∗
f2

(y2)〈0|ψ(0,x′
1) · · · ψ(0,x′

N )|kB〉

×
[∫ ∞

0
dt e

iE′t−iEkB
t+ik0

f1
t 〈kB |jν1 (t,y1)jν2 (0,y2)|kA〉 +

∫ 0

−∞
dt e

iEkA
t−iEt+ik0

f1
t 〈kB |jν2 (0,y2)jν1 (t,y1)|kA〉

]

×〈kA|ψ(0,xN ) · · ·ψ(0,x1)|0〉 + terms regular at E′ ∼ E
(0)
B or E ∼ E

(0)
A , (8)

where |kA〉 and |kB〉 denote the states corresponding to the
exact energies EkA

and EkB
from the subspaces 	A and 	B ,

respectively. Let us now project this Green function on the
subspace of initial (	A) and final (	B) states,

gγf1 ,γf2 ,B;A
(
E′,E,k0

f1

)=P
(0)
B Gγf1 ,γf2

(
E′,E,k0

f1

)
γ 0

1 · · · γ 0
NP

(0)
A .

(9)

Comparing Eq. (4) with Eq. (8) and taking into account the
definition (9), we obtain

Sγf1 ,γf2 ,B;A = Z−1
3 δ

(
EB + k0

f1
+ k0

f2
− EA

) ∮

B

dE′

×
∮


A

dE v
†
B gγf1 ,γf2 ,B;A

(
E′,E,k0

f1

)
vA , (10)

where vA and vB are solutions of a generalized eigenvalue
problem in the degenerate subspaces of the initial and
final states, respectively (see Ref. [30] for details), the
contours 
A and 
B enclose the poles corresponding to the
initial and final levels, respectively, and exclude all other
singularities of Green function gγf1 ,γf2 ,B;A. Equation (10)
represents the general relation between the S-matrix ele-
ment of the two-photon transition and the two-time Green
functions.

Afterwards, we consider the single initial and final states. In
this case, the vectors vA and vB simply appear as normalization
factors and the S-matrix element can be written as

Sγf1 ,γf2 ,B;A = Z−1
3 δ

(
EB + k0

f1
+ k0

f2
− EA

)
×

∮

B

dE′
∮


A

dE gγf1 ,γf2 ,B;A
(
E′,E,k0

f1

)

FIG. 1. The two-photon emission diagrams in the zeroth-order
approximation. The double line indicates the electron propagators
in the Coulomb field of the nucleus, while the photon emission is
depicted by the wavy lines with arrows.

×
[

1

2πi

∮

B

dE gBB(E)

]−1/2

×
[

1

2πi

∮

A

dE gAA(E)

]−1/2

, (11)

where the Green functions gAA and gBB are defined by

gAA(E) = 〈uA|G(E)γ 0
1 · · · γ 0

N |uA〉 ,
(12)

gBB(E) = 〈uB |G(E)γ 0
1 · · · γ 0

N |uB〉 ,

with

G(E; x′
1, . . . ,x

′
N ; x1, . . . ,xN )δ(E − E′)

= 1

2πi

1

N !

∫ ∞

−∞
dx0dx ′0 eiE′x ′ 0−iEx0〈0|T ψ(x ′ 0,x′

1) · · ·

×ψ(x ′0,x′
N )ψ(x0,xN ) · · · ψ(x0,x1)|0〉 . (13)

The Green function G(E) contains the complete information
about the energy levels of the ion [30]. The S-matrix element
Sγf1 ,γf2 ,B;A expressed in terms of the two-time Green functions
gγf1 ,γf2 ,B;A, gAA, and gBB via Eq. (11) can be calculated
order by order by applying perturbation theory to the Green
functions. The Feynman rules for the Green functions are given
in Ref. [30].

In the following, we consider the two-photon transitions in
He-like ions. The zeroth-order two-electron wave functions are
constructed in the jj -coupling scheme as linear combinations

(a) (b) (c)

(d)

FIG. 2. Feynman diagrams representing the first-order
interelectronic-interaction corrections to the two-photon emission.
Notations are the same as in Fig. 1.

062508-3



VOLOTKA, SURZHYKOV, SHABAEV, AND PLUNIEN PHYSICAL REVIEW A 83, 062508 (2011)

of the Slater determinants, A = (a1,a2)JAMA
, B = (b1,b2)JBMB

,
as

uA = FA

1√
2

∑
P

(−1)P |Pa1Pa2〉 , (14)

where FA denotes the shorthand notation for the summation
over the Clebsch-Gordan coefficients

FA|a1a2〉 =
∑

ma1 ,ma2

C
JAMA

ja1 ma1 ja2 ma2
|a1a2〉

{
1 , a1 	= a2

1/
√

2 , a1 = a2,

(15)

JA and ja are the total angular momenta of the two- and
one-electron wave functions, respectively, MA and ma are its
corresponding projections, and P is the permutation operator,
giving rise to the sign (−1)P of the permutation. The same
notations hold for the final state B. The one-electron wave

functions are found by solving the Dirac equation either with
the Coulomb potential of the nucleus or with a local effective
potential, which partly takes into account the interelectronic-
interaction effects.

Furthermore, we consider the pure (nonresonant) two-
photon decays. However, the question about cascades is
beyond the scope of the present paper. This question was
discussed in details in Ref. [35] and references therein. In
the following, we also assume that the states A and B have at
least one common one-electron state.

A. Zeroth-order approximation

To calculate the S-matrix element of the two-photon
transition according to Eq. (11), we expand the two-time Green
functions in perturbation series and combine the terms of the
same order. The zeroth-order two-photon transition amplitude
represented by diagrams in Fig. 1 is given by

S
(0)
γf1 ,γf2 ,B;A = δ

(
EB + k0

f1
+ k0

f2
− EA

) ∮

B

dE′
∮


A

dE g
(0)
γf1 ,γf2 ,B;A

(
E′,E,k0

f1

)
, (16)

where the superscript “(0)” indicates the order of the perturbation theory. According to the Feynman rules, we obtain

g
(0)
γf1 ,γf2 ,B;A

(
E′,E,k0

f1

)
δ
(
E′ + k0

f1
+ k0

f2
− E

)
= FAFB

∑
P

(−1)P
∫ ∞

−∞
dp0

1dp
0
2dp

′0
1 dp′0

2 dq0 δ
(
E − p0

1 − p0
2

)
δ
(
E′ − p′0

1 − p′0
2

)

×
{

〈Pb2| i

2π

∑
n1

|n1〉〈n1|
p′0

2 − uεn1

2π

i
Rf1δ

(
p′0

2 + k0
f1

− q0
) i

2π

∑
n2

|n2〉〈n2|
q0 − uεn2

2π

i
Rf2δ

(
q0 + k0

f2
− p0

2

)

× i

2π

∑
n3

|n3〉〈n3|
p0

2 − uεn3

|a2〉〈Pb1| i

2π

∑
n4

|n4〉〈n4|
p0

1 − uεn4

|a1〉δ
(
p′0

1 − p0
1

)

+〈Pb1| i

2π

∑
n1

|n1〉〈n1|
p′0

1 − uεn1

2π

i
Rf1δ

(
p′0

1 + k0
f1

− q0
) i

2π

∑
n2

|n2〉〈n2|
q0 − uεn2

2π

i
Rf2δ

(
q0 + k0

f2
− p0

1

)

× i

2π

∑
n3

|n3〉〈n3|
p0

1 − uεn3

|a1〉〈Pb2| i

2π

∑
n4

|n4〉〈n4|
p0

2 − uεn4

|a2〉δ
(
p′0

2 − p0
2

) + (f1 ↔ f2)

}

= i

2π

δ
(
E′ + k0

f1
+ k0

f2
− E

)
(
E′ − E

(0)
B

)(
E − E

(0)
A

)FAFB

∑
P

(−1)P
∑

n

{
〈Pb2|Rf1 |n〉〈n|Rf2 |a2〉δPb1a1

E′ − εa1 + k0
f1

− εn

+ 〈Pb1|Rf1 |n〉〈n|Rf2 |a1〉δPb2a2

E′ − εa2 + k0
f1

− εn

+ (f1 ↔ f2)

}
, (17)

where Rf is the transition operator, Rf = eανA
ν∗
f , αµ = γ 0γ µ = (1,α), E

(0)
A = εa1 + εa2 , and E

(0)
B = εb1 + εb2 , and u = 1 − i0

preserves the proper treatment of poles of the electron propagators; the shorthand notation (f1 ↔ f2) stands for the contributions
with interchanged photons f1 and f2. Substituting this expression into Eq. (16) and integrating over E and E′, one obtains

τ
(0)
γf1 ,γf2 ,B;A = −FAFB

∑
P

(−1)P
∑

n

{
〈Pb2|Rf1 |n〉〈n|Rf2 |a2〉δPb1a1

εPb2 + k0
f1

− εn

+ 〈Pb1|Rf1 |n〉〈n|Rf2 |a1〉δPb2a2

εPb1 + k0
f1

− εn

+ (f1 ↔ f2)

}
. (18)

The corresponding differential transition probability is given by

dW
(0)
B;A

(
kf1 ,εf1 ,kf2 ,εf2

) = 2π
∣∣τ (0)

γf1 ,γf2 ,B;A

∣∣2
δ
(
E

(0)
B + k0

f1
+ k0

f2
− E

(0)
A

)
dkf1dkf2 . (19)
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Summing over the photon polarizations and integrating over the photon energies and angles, one obtains the total decay rate

W
(0)
B;A = 1

2

∫ �
(0)
AB

0
dk0

f1
(k0

f1
)2

(
�

(0)
AB − k0

f1

)2
2π

∑
εf1 ,εf2

∫
d	kf1

d	kf2

∣∣τ (0)
γf1 ,γf2 ,B;A

∣∣2
, (20)

where �
(0)
AB = E

(0)
A − E

(0)
B . Equations (19) and (20) together with Eq. (18) describe the zeroth-order differential and total

two-photon transition probabilities, respectively. They coincide with the corresponding formulas employed for the calculation of
the two-photon decay rates in He-like ions [2,10,11,36] in the independent particle model approximation.

B. First-order interelectronic-interaction correction

With the formalism outlined above, we are ready now to derive the first-order interelectronic-interaction corrections to the
two-photon transition amplitude, which are defined by diagrams depicted in Fig. 2. According to Eq. (11), we start from

S
(1)
γf1 ,γf2 ,B;A = δ(EB + k0

f1
+ k0

f2
− EA)

[∮

B

dE′
∮


A

dE g
(1)
γf1 ,γf2 ,B;A

(
E′,E,k0

f1

) − 1

2

∮

B

dE′
∮


A

dE g
(0)
γf1 ,γf2 ,B;A

(
E′,E,k0

f1

)
×

(
1

2πi

∮

A

dE g
(1)
AA(E) + 1

2πi

∮

B

dE g
(1)
BB(E)

)]
, (21)

where g
(1)
AA and g

(1)
BB are defined by the first-order interelectronic-interaction diagram depicted in Fig. 3. Let us first consider the

contribution of the diagrams shown in Fig. 2(a). According to the Feynman rules, we obtain

g
(1A)
γf1 ,γf2 ,B;A

(
E′,E,k0

f1

)
δ
(
E′ + k0

f1
+ k0

f2
− E

)
=

(
i

2π

)3

FAFB

∑
P

(−1)P
∫ ∞

−∞
dp0

1dp
0
2dp

′0
1 dp′0

2 dq0
1dq0

2dωδ
(
E − p0

1 − p0
2

)
δ
(
E′ − p′0

1 − p′0
2

)

×
∑
n1,n2

{
δ
(
p′0

2 + k0
f1

− q0
1

)
δ
(
q0

1 + k0
f2

− q0
2

)
δ
(
q0

2 − ω − p0
2

)
δ
(
p′0

1 + ω − p0
1

)
(
p′0

1 − uεPb1

)(
p′0

2 − uεPb2

)(
p0

1 − uεa1

)(
p0

2 − uεa2

)
× 〈Pb2|Rf1 |n1〉〈n1|Rf2 |n2〉〈Pb1n2|I (ω)|a1a2〉(

q0
1 − uεn1

)(
q0

2 − uεn2

)
+ δ

(
p′0

1 + k0
f1

− q0
1

)
δ
(
q0

1 + k0
f2

− q0
2

)
δ
(
q0

2 − ω − p0
1

)
δ
(
p′0

2 + ω − p0
2

)
(
p′0

1 − uεPb1

)(
p′0

2 − uεPb2

)(
p0

1 − uεa1

)(
p0

2 − uεa2

)
× 〈Pb1|Rf1 |n1〉〈n1|Rf2 |n2〉〈n2Pb2|I (ω)|a1a2〉(

q0
1 − uεn1

)(
q0

2 − uεn2

) + (f1 ↔ f2)

}
, (22)

where I (ω) = e2αµανDµν(ω), and Dµν(ω) is the photon propagator. Equation (22) is conveniently divided into irreducible and
reducible parts. The reducible part is the one with εPb1 + εn2 = E

(0)
A in first term and with εPb2 + εn2 = E

(0)
A in the second term.

The irreducible part is the reminder. Thus, we obtain for the irreducible contribution

g
(1A,irr)
γf1 ,γf2 ,B;A

(
E′,E,k0

f1

) =
(

i

2π

)3

FAFB

∑
P

(−1)P
∫ ∞

−∞
dp0dp′0 1(

E′ − E
(0)
B

)(
E − E

(0)
A

)

×
⎧⎨
⎩

εPb1 +εn2 	=E
(0)
A∑

n1,n2

(
1

p0 − uεa1

+ 1

E − p0 − uεa2

)(
1

p′0 − uεPb1

+ 1

E′ − p′0 − uεPb2

)

× 〈Pb2|Rf1 |n1〉〈n1|Rf2 |n2〉〈Pb1n2|I (p0 − p′0)|a1a2〉(
E′ − p′0 + k0

f1
− uεn1

)(
E − p′0 − uεn2

)

+
εPb2 +εn2 	=E

(0)
A∑

n1,n2

(
1

p0 − uεa2

+ 1

E − p0 − uεa1

)(
1

p′0 − uεPb2

+ 1

E′ − p′0 − uεPb1

)

× 〈Pb1|Rf1 |n1〉〈n1|Rf2 |n2〉〈n2Pb2|I (p0 − p′0)|a1a2〉(
E′ − p′0 + k0

f1
− uεn1

)(
E − p′0 − uεn2

) + (f1 ↔ f2)

}
, (23)
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and for the corresponding reducible one

g
(1A,red)
γf1 ,γf2 ,B;A

(
E′,E,k0

f1

) =
(

i

2π

)3

FAFB

∑
P

(−1)P
∫ ∞

−∞
dp0dp′0 1(

E′ − E
(0)
B

)(
E − E

(0)
A

)

×
{εPb1 +εn2 =E

(0)
A∑

n1,n2

(
1

p0 − uεa1

+ 1

E − p0 − uεa2

) [
1

E − E
(0)
A

(
1

p′0 − uεPb1

+ 1

E − p′0 − uεn2

)

+ 1

(E′ − p′0 − uεPb2 )(E − p′0 − uεn2 )

] 〈Pb2|Rf1 |n1〉〈n1|Rf2 |n2〉〈Pb1n2|I (p0 − p′0)|a1a2〉
E′ − p′0 + k0

f1
− uεn1

+
εPb2 +εn2 =E

(0)
A∑

n1,n2

(
1

p0 − uεa2

+ 1

E − p0 − uεa1

)[
1

E − E
(0)
A

(
1

p′0 − uεPb2

+ 1

E − p′0 − uεn2

)

+ 1(
E′ − p′0 − uεPb1

)(
E − p′0 − uεn2

)
]

〈Pb1|Rf1 |n1〉〈n1|Rf2 |n2〉〈n2Pb2|I (p0 − p′0)|a1a2〉
E′ − p′0 + k0

f1
− uεn1

+ (f1 ↔ f2)

}
. (24)

The expression in the curly brackets in Eq. (23) is a regular function of E or E′ when E ≈ E
(0)
A and E′ ≈ E

(0)
B . Substituting

Eq. (23) into Eq. (21) and integrating over E and E′, we find

τ
(1A,irr)
γf1 ,γf2 ,B;A = −FAFB

∑
P

(−1)P

⎧⎨
⎩

εPb1 +εn2 	=E
(0)
A∑

n1,n2

〈Pb2|Rf1 |n1〉〈n1|Rf2 |n2〉〈Pb1n2|I
(
εa1 − εPb1

)|a1a2〉(
εPb2 + k0

f1
− εn1

)(
E

(0)
A − εPb1 − εn2

)

+
εPb2 +εn2 	=E

(0)
A∑

n1,n2

〈Pb1|Rf1 |n1〉〈n1|Rf2 |n2〉〈n2Pb2|I
(
εa2 − εPb2

)|a1a2〉(
εPb1 + k0

f1
− εn1

)(
E

(0)
A − εPb2 − εn2

) + (f1 ↔ f2)

⎫⎬
⎭ . (25)

A similar calculation for the diagrams shown in Figs. 2(b)–2(d) yields

τ
(1B)
γf1 ,γf2 ,B;A = −FAFB

∑
P

(−1)P
{∑

n1,n2

〈Pb2|Rf1 |n1〉〈Pb1n1|I
(
εa1 − εPb1

)|a1n2〉〈n2|Rf2 |a2〉(
εPb2 + k0

f1
− εn1

)(
E

(0)
B − εa1 + k0

f1
− εn2

)
+

∑
n1,n2

〈Pb1|Rf1 |n1〉〈n1Pb2|I
(
εa2 − εPb2

)|n2a2〉〈n2|Rf2 |a1〉(
εPb1 + k0

f1
− εn1

)(
E

(0)
B − εa2 + k0

f1
− εn2

) + (f1 ↔ f2)

}
, (26)

τ
(1C,irr)
γf1 ,γf2 ,B;A = −FAFB

∑
P

(−1)P

⎧⎨
⎩

εa1 +εn1 	=E
(0)
B∑

n1,n2

〈Pb1Pb2|I
(
εa1 − εPb1

)|a1n1〉〈n1|Rf1 |n2〉〈n2|Rf2 |a2〉(
E

(0)
B − εa1 − εn1

)(
E

(0)
B − εa1 + k0

f1
− εn2

)

+
εa2 +εn1 	=E

(0)
B∑

n1,n2

〈Pb1Pb2|I
(
εa2 − εPb2

)|n1a2〉〈n1|Rf1 |n2〉〈n2|Rf2 |a1〉(
E

(0)
B − εa2 − εn1

)(
E

(0)
B − εa2 + k0

f1
− εn2

) + (f1 ↔ f2)

⎫⎬
⎭ , (27)

τ
(1D)
γf1 ,γf2 ,B;A = −FAFB

∑
P

(−1)P
{∑

n1,n2

〈Pb1|Rf1 |n1〉〈Pb2|Rf2 |n2〉〈n1n2|I
(
εa1 − εPb1 − k0

f1

)|a1a2〉(
εPb1 + k0

f1
− εn1

)(
E

(0)
A − εPb1 − k0

f1
− εn2

)
+

∑
n1,n2

〈Pb1|Rf1 |n1〉〈n1Pb2|I
(
εa1 − εPb1 − k0

f1

)|a1n2〉〈n2|Rf2 |a2〉(
εPb1 + k0

f1
− εn1

)(
E

(0)
B − εa1 + k0

f1
− εn2

)
+

∑
n1,n2

〈Pb1Pb2|I
(
εa1 − εPb1 − k0

f1

)|n1n2〉〈n1|Rf1 |a1〉〈n2|Rf2 |a2〉(
εa1 − k0

f1
− εn1

)(
E

(0)
B − εa1 + k0

f1
− εn2

)
+

∑
n1,n2

〈Pb2|Rf2 |n2〉〈Pb1n2|I
(
εa1 − εPb1 − k0

f1

)|n1a2〉〈n1|Rf1 |a1〉(
εa1 − k0

f1
− εn1

)(
E

(0)
A − εPb1 − k0

f1
− εn2

) + (f1 ↔ f2)

}
. (28)
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In the case under consideration, only the diagrams depicted in Figs. 2(a) and 2(c) possess reducible parts. For the reducible
contribution coming from the Fig. 2(a) diagrams, we have

τ
(1A,red)
γf1 ,γf2 ,B;A = FAFB

∑
P

(−1)P
∑

n

{
〈Pb2|Rf2 |n〉〈n|Rf1 |a2〉δPb1a1(

εa2 − k0
f1

− εn

)2 + 〈Pb1|Rf2 |n〉〈n|Rf1 |a1〉δPb2a2(
εa1 − k0

f1
− εn

)2

}
�E

(1)
A

− i

2π
τ

(0)
γf1 ,γf2 ,B;AFA′FA′′

∫ ∞

−∞
dp0

[ 〈a′
1a

′
2|I (p0)|a′′

1a′′
2 〉

(p0 + i0)2
− 〈a′

2a
′
1|I (p0)|a′′

1a′′
2 〉

(p0 − �A + i0)2

]
, (29)

where �E
(1)
A = FA′FA′′

∑
P (−1)P 〈Pa′

1Pa′
2|I (εPa′

1
− εa′′

1
)|a′′

1a′′
2 〉 is the one-photon exchange correction to the state A and �A =

εa2 − εa1 . Combining this term with the reducible part of the Fig. 2(c) diagrams and with the second term in formula (21), we
obtain the total reducible contribution:

τ
(1,red)
γf1 ,γf2 ,B;A = FAFB

∑
P

(−1)P
∑

n

{
〈Pb2|Rf1 |n〉〈n|Rf2 |a2〉δPb1a1(

εPb2 + k0
f1

− εn

)2 �E
(1)
B + 〈Pb1|Rf1 |n〉〈n|Rf2 |a1〉δPb2a2(

εPb1 + k0
f1

− εn

)2 �E
(1)
B

+ 〈Pb2|Rf2 |n〉〈n|Rf1 |a2〉δPb1a1(
εa2 − k0

f1
− εn

)2 �E
(1)
A + 〈Pb1|Rf2 |n〉〈n|Rf1 |a1〉δPb2a2(

εa1 − k0
f1

− εn

)2 �E
(1)
A

}

+1

2
τ

(0)
γf1 ,γf2 ,B;A[FA′FA′′ 〈a′

2a
′
1|I ′(�A)|a′′

1a′′
2 〉 + FB ′FB ′′ 〈b′

2b
′
1|I ′(�B)|b′′

1b
′′
2〉], (30)

where �E
(1)
B and �B are defined similar to �E

(1)
A and �A, I ′(�) = [dI (ω)/dω]ω=�. The final expression for τ

(1)
γf1 ,γf2 ,B;A is given

by the sum of Eqs. (25)–(28) and (30):

τ
(1)
γf1 ,γf2 ,B;A = τ

(1A,irr)
γf1 ,γf2 ,B;A + τ

(1B)
γf1 ,γf2 ,B;A + τ

(1C,irr)
γf1 ,γf2 ,B;A + τ

(1D)
γf1 ,γf2 ,B;A + τ

(1,red)
γf1 ,γf2 ,B;A. (31)

Finally, the first-order interelectronic-interaction corrections to the differential and total transition probabilities can be expressed
according to the following equations:

dW
(1)
B;A

(
kf1 ,εf1 ,kf2 ,εf2

) = 4π Re
{
τ

(0)∗
γf1 ,γf2 ,B;Aτ

(1)
γf1 ,γf2 ,B;A

}
δ
(
E

(1)
B + k0

f1
+ k0

f2
− E

(1)
A

)
dkf1dkf2

+�dW
(0)
B;A

(
kf1 ,εf1 ,kf2 ,εf2

)
, (32)

W
(1)
B;A = 1

2

∫ �
(1)
AB

0
dk0

f1

(
k0
f1

)2(
�

(1)
AB − k0

f1

)2
4π

∑
εf1 ,εf2

∫
d	kf1

d	kf2
Re

{
τ

(0)∗
γf1 ,γf2 ,B;Aτ

(1)
γf1 ,γf2 ,B;A

} + �W
(0)
B;A , (33)

where E
(1)
A = E

(0)
A + �E

(1)
A , E

(1)
B = E

(0)
B + �E

(1)
B , �

(1)
AB = E

(1)
A − E

(1)
B , and

�dW
(0)
B;A

(
kf1 ,εf1 ,kf2 ,εf2

) = 2π
∣∣τ (0)

γf1 ,γf2 ,B;A

∣∣2
δ
(
E

(1)
B + k0

f1
+ k0

f2
− E

(1)
A

)
dkf1dkf2 − dW

(0)
B;A

(
kf1 ,εf1 ,kf2 ,εf2

)
, (34)

�W
(0)
B;A = 1

2

∫ �
(1)
AB

0
dk0

f1

(
k0
f1

)2(
�

(1)
AB − k0

f1

)2
2π

∑
εf1 ,εf2

∫
d	kf1

d	kf2

∣∣τ (0)
γf1 ,γf2 ,B;A

∣∣2 − W
(0)
B;A (35)

are the contributions originating from changing the transition energy �
(0)
AB in the zeroth-order transition probability to the energy

�
(1)
AB , which accounts for the interelectronic-interaction correction.

C. First-order interelectronic-interaction correction with
screening potential

In the preceding subsection, we presented the formulas for
the first-order interelectronic-interaction correction involving
electron states and propagators in the external Coulomb
potential of the nucleus as the zeroth-order approximation
(the original Furry picture). Now we consider an extended
Furry picture, which includes a local screening potential in the
unperturbed Hamiltonian. Since we consider the two-photon
decays from the single-excited state to the ground state of

He-like ions, we construct the screening potential for the
initial state A such that it takes into account partly the
interelectronic interaction between the electrons a2 and a1. By
employing the extended Furry representation, we relieve the
quasidegeneracy of the (1s2s)J and (1s2p1/2)J states already
at the zeroth-order level, and we improve the energy level
scheme of the first excited states in high-Z heavy ions. Two
different local screening potentials Vscr are used: the Kohn-
Sham potential and the core-Hartree potential. Both poten-
tials were successfully incorporated in previous calculations
[11,19,37,38].

062508-7



VOLOTKA, SURZHYKOV, SHABAEV, AND PLUNIEN PHYSICAL REVIEW A 83, 062508 (2011)

In the extended Furry picture, we solve the Dirac equation
with an effective spherically symmetric potential treating
the interaction with the external Coulomb potential of the
nucleus and the local screening potential exact to all orders.
The electron propagators in Figs. 1–3 have to be treated
in the effective potential (we indicate this diagrammatically
via the triple electron line). The formulas derived in the
previous subsection remain formally the same, but keeping

in mind that the Dirac spectrum is now generated by solving
the Dirac equation with the effective potential. However,
additional counterterm diagrams with the extra interaction
term −Vscr arise. In Figs. 4 and 5, the additional diagrams are
depicted, where the extra interaction term −Vscr is represented
graphically by the symbol ⊗. Thus, according to the Feynman
rules we derive the expressions for the counterterm diagrams
shown in Figs. 4(a)–4(c),

τ
(1A,irr)ext
γf1 ,γf2 ,B;A = FAFB

∑
P

(−1)P

⎧⎨
⎩

εn2 	=εa2∑
n1,n2

〈Pb2|Rf1 |n1〉〈n1|Rf2 |n2〉〈n2|Vscr|a2〉δPb1a1(
εPb2 + k0

f1
− εn1

)(
εa2 − εn2

)

+
εn2 	=εa1∑
n1,n2

〈Pb1|Rf1 |n1〉〈n1|Rf2 |n2〉〈n2|Vscr|a1〉δPb2a2(
εPb1 + k0

f1
− εn1

)(
εa1 − εn2

) + (f1 ↔ f2)

⎫⎬
⎭ , (36)

τ
(1B)ext
γf1 ,γf2 ,B;A = FAFB

∑
P

(−1)P
{∑

n1,n2

〈Pb2|Rf1 |n1〉〈n1|Vscr|n2〉〈n2|Rf2 |a2〉δPb1a1(
εPb2 + k0

f1
− εn1

)(
εPb2 + k0

f1
− εn2

)
+

∑
n1,n2

〈Pb1|Rf1 |n1〉〈n1|Vscr|n2〉〈n2|Rf2 |a1〉δPb2a2(
εPb1 + k0

f1
− εn1

)(
εPb1 + k0

f1
− εn2

) + (f1 ↔ f2)

}
, (37)

τ
(1C,irr)ext
γf1 ,γf2 ,B;A = FAFB

∑
P

(−1)P

⎧⎨
⎩

εn1 	=εPb2∑
n1,n2

〈Pb2|Vscr|n1〉〈n1|Rf1 |n2〉〈n2|Rf2 |a2〉δPb1a1(
εPb2 − εn1

)(
εPb2 + k0

f1
− εn2

)

+
εn1 	=εPb1∑

n1,n2

〈Pb1|Vscr|n1〉〈n1|Rf1 |n2〉〈n2|Rf2 |a1〉δPb2a2(
εPb1 − εn1

)(
εPb1 + k0

f1
− εn2

) + (f1 ↔ f2)

⎫⎬
⎭ . (38)

For the additional reducible contribution, we obtain

τ
(1,red)ext
γf1 ,γf2 ,B;A = −FAFB

∑
P

(−1)P
∑

n

{[
〈Pb2|Rf1 |n〉〈n|Rf2 |a2〉δPb1a1(

εPb2 + k0
f1

− εn

)2 + 〈Pb1|Rf1 |n〉〈n|Rf2 |a1〉δPb2a2(
εPb1 + k0

f1
− εn

)2

]
�E

(1)ext
B

+
[

〈Pb2|Rf2 |n〉〈n|Rf1 |a2〉δPb1a1(
εa2 − k0

f1
− εn

)2 + 〈Pb1|Rf2 |n〉〈n|Rf1 |a1〉δPb2a2(
εa1 − k0

f1
− εn

)2

]
�E

(1)ext
A

}
, (39)

where �E
(1)ext
A and �E

(1)ext
B are the counterterm contributions to the energy of the initial and final states, respectively,

�E
(1)ext
A = −FA′FA′′

∑
P

(−1)P
(〈Pa′

1|Vscr|a′′
1 〉δPa′

2a
′′
2
+ 〈Pa′

2|Vscr|a′′
2 〉δPa′

1a
′′
1

)
. (40)

Thus, in the extended Furry representation these extra terms
have to be added to the corresponding corrections to the tran-
sition amplitude as τ

(1A,irr)
γf1 ,γf2 ,B;A → (τ (1A,irr)

γf1 ,γf2 ,B;A + τ
(1A,irr)ext
γf1 ,γf2 ,B;A),

and, similarly, the remaining terms. Moreover, in Eqs. (32) and
(33) the employed energies E

(1)
A and E

(1)
B have to be corrected to

the counterterm contributions E
(1)
A = E

(0)
A + �E

(1)
A + �E

(1)ext
A

and E
(1)
B = E

(0)
B + �E

(1)
B + �E

(1)ext
B .

III. NUMERICAL RESULTS AND DISCUSSION

Now let us turn to the presentation and discussion of our
numerical results for the two-photon transitions 2 1S0 → 1 1S0

and 2 3S1 → 1 1S0 in He-like ions. The infinite summations
over the complete Dirac spectrum involved in the numerical

evaluations are performed employing the finite-basis set
method. The B-splines basis set was constructed utilizing
the dual kinetic balance approach [39]. The homogeneously
charged sphere model for the nuclear charge distribution is

FIG. 3. One-photon exchange diagram. The photon propagator is
represented by the wavy line.
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(a) (b) (c)

FIG. 4. The counterterm diagrams for the first-order interelectronic-interaction corrections to the two-photon emission. The triple lines
describe the electron propagators in the effective potential. The symbol ⊗ represents the extra interaction term associated with the local
screening potential.

employed together with the rms radii taken from Ref. [40],
except for the thorium and uranium ions, for which the
recent rms values are taken from Ref. [41]. The Kohn-Sham
and core-Hartree screening potentials are employed in the
zeroth-order approximation. The Kohn-Sham potentials are
constructed for the 2 1S0 state in the case of the 2 1S0 → 1 1S0

transition, and for the 2 3S1 state in the case of the 2 3S1 →
1 1S0 transition, while the core-Hartree potential is just a
Coulomb potential generated by the 1s electron. The screening
potentials are generated self-consistently by solving the Dirac
equation until the energies of the core and valence states
become stable on the level of 10−9. In our final compilation,
we employ the Kohn-Sham potential as a starting one, since
the transition energies are better reproduced in this case. The
gauge invariance serves as an accurate check of consistency of
the derived formulas and the numerical procedure. We analyt-
ically prove the gauge invariance of the obtained formulas. To
separate out the proper gauge invariant first-order contribution,
we replace the transition operator Rf2 with the first two terms of
the Taylor expansion in τ

(0)
γf1 ,γf2 ,B;A, as Rf2 (k0

f2
) 
 Rf2 (�(0)

AB −
k0
f1

) + R′
f2

(�(0)
AB − k0

f1
) × [�E

(1)
A − �E

(1)
B ], and with the first

term only in τ
(1)
γf1 ,γf2 ,B;A, as Rf2 (k0

f2
) 
 Rf2 (�(0)

AB − k0
f1

). In the
numerical procedure, we employ the Feynman and Coulomb
gauges for the photon propagator and the velocity and length
gauges for the emitted photons, and we demonstrate the gauge
independence of the final results. In Table I, we present the
numerical results for the individual contributions evaluated in
the different gauges for He-like thorium. As one can see from
the table, the gauge invariance is restored in the final values.
A detailed discussion of these questions will be presented
elsewhere.

In Table II, we present the zeroth-order and final values of
the two-photon decay rates for the transitions 2 1S0 → 1 1S0 +
2γ (E1) and 2 3S1 → 1 1S0 + 2γ (E1) in He-like ions. These
results include only the dominant 2E1 channel of the two-
photon decay. The final results for the total two-photon decay
rates are evaluated according to the following formula:

WB;A = 1

2

∫ �
(1)
AB

0
dk0

f1

(
k0
f1

)2(
�

(1)
AB − k0

f1

)2
2π

×
∑

εf1 ,εf2

∫
d	kf1

d	kf2

∣∣τ (0)
γf1 ,γf2 ,B;A + τ

(1)
γf1 ,γf2 ,B;A

∣∣2

(41)

where in τ
(0)
γf1 ,γf2 ,B;A and τ

(1)
γf1 ,γf2 ,B;A, defined by Eq. (18) and

Eqs. (31) and (36)–(39), respectively, we separate out the
terms up to first order. The transition energies �

(1)
AB together

with the transition amplitudes τ
(1)
γf1 ,γf2 ,B;A consistently include

the first-order interelectronic-interaction corrections to the
two-photon decay rate WB;A. However, for high-Z ions it is
important also to take into account the radiative corrections.
In the framework of QED perturbation theory, one has to
evaluate radiative corrections to both the transition energy and
the transition amplitude. To account partially for the radiative
corrections, we employ the more accurate transition energies
taken from Ref. [42] for the transition energies �

(1)
AB in the

upper integral limit and in the factor (�(1)
AB − k0

f1
) in Eq. (41).

Including in this way the more accurate transition energies
does not violate the gauge invariance of the result, it just scales
the decay rates to another value of the transition energy. The
employment of the more accurate transition energies yields
corrections that are negligible for intermediate-Z ions, which,
however, become important for high-Z ions.

The results of calculations performed by starting with
the Coulomb, core-Hartree, and Kohn-Sham potentials are
presented in Table II. Comparing the zeroth-order values in
the Coulomb and screening potentials, one can observe that
the screening potentials account for a considerable part of
electron-electron interaction effects. However, the difference
between the zeroth-order results for the core-Hartree and
Kohn-Sham potentials is still quite large. Accounting for the
first-order interelectronic-interaction correction, we obtain the
decay rates WB;A, which depend much less on the screening
potential. The remaining difference between the final values
WB;A in the core-Hartree and Kohn-Sham potentials provides a
hint for the uncertainty due to unaccounted second- and higher-
order interelectronic-interaction corrections. In Table II, we
also compare the obtained decay rates WB;A with the results

FIG. 5. The counterterm diagrams for the one-photon exchange
correction. Notations are the same as in Fig. 4.
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TABLE I. Individual contributions to the total two-photon decay rates for the transitions 2 1S0 → 1 1S0 + 2γ (E1) and 2 3S1 → 1 1S0 +
2γ (E1) in He-like 232Th88+, in units s−1. The Kohn-Sham potential has been used as the starting potential. The velocity and length gauges have
been employed for the emitted photons, and Feynman and Coulomb gauges for the photon propagator. The more accurate transition energies
�

(1)
2 1S0;1 1S0

= 91 531 eV and �
(1)
2 3S1;1 1S0

= 91 291 eV are taken from Ref. [42]. Numbers in brackets denote powers of 10.

Gauges W
(0)
B;A �W

(0)
B;A W

(1,irr)
B;A W

(1,red)
B;A WB;A

2 1S0 → 1 1S0

Velocity and Feynman 6.439[12] −0.0862[12] 0.0165[12] 0.0123[12] 6.381[12]
Length and Feynman 6.439[12] −0.1610[12] 0.0054[12] 0.0982[12] 6.381[12]
Velocity and Coulomb 6.439[12] −0.0862[12] 0.0169[12] 0.0119[12] 6.381[12]
Length and Coulomb 6.439[12] −0.1610[12] 0.0058[12] 0.0978[12] 6.381[12]

2 3S1 → 1 1S0

Velocity and Feynman 1.686[10] −0.0972[10] 0.0115[10] 0.0349[10] 1.636[10]
Length and Feynman 1.686[10] −0.1746[10] 0.0369[10] 0.0868[10] 1.636[10]
Velocity and Coulomb 1.686[10] −0.0972[10] 0.0114[10] 0.0350[10] 1.636[10]
Length and Coulomb 1.686[10] −0.1746[10] 0.0369[10] 0.0869[10] 1.636[10]

of other theoretical calculations. In the case of the 2 1S0

state, our decay rates disagree slightly with the rates given
by Derevianko and Johnson [10]. For high-Z ions, this can
be explained by the radiative corrections, which are included
in our transition energies. The comparison with the results
obtained by Drake [2] gives a better agreement within the
indicated uncertainty. In the case of the 2 3S1 state, the
interelectronic interaction affects the two-photon decay rates
much stronger, and therefore our accuracy becomes slightly
worse. For this case, our results are in fair agreement with
those values of Ref. [10].

As one can see from Table II, the final values of the
total two-photon decay rates calculated with the core-Hartree
and Kohn-Sham potentials are very close to each other.
With this in mind, we restrict our further consideration to
the calculations performed with the Kohn-Sham screening
potential.

Beyond the dominant 2E1 decay channel, we consider also
the higher-multipole contributions to the two-photon decay

rates. In Table III, we present the contributions of higher
multipoles calculated in the zeroth-order approximation. In
the case of the 2 1S0 state, the contribution to the total
two-photon decay rate arises only from the photons with the
same multipole numbers. The correction due to the higher
multipoles rapidly increases with Z, but even for Z = 92
it is smaller by a factor 103 than the dominant 2E1 decay
rate. Unlike the 2 1S0 state, in the case of the two-photon
2 3S1 → 1 1S0 transition, the higher multipoles decay rates are
relatively large, as was first indicated by Dunford [43]. Our
results for the E1M2 decay rate are in reasonable agreement
with those of Ref. [43]. Moreover, we also evaluate the 2M1
channel, which contribution becomes comparable with the
E1M2 for high-Z ions. The contributions of higher multipoles
are included in our final compilations.

In Table IV, we compare the theoretical and experimental
two-photon decay rates of the 2 1S0 state. As one can see
from the table, for Br33+ and Nb39+ ions the theory is
in good agreement with the experiment, but for Ni26+ and

TABLE II. The zeroth-order and final values of the total two-photon decay rates (2E1 channel only) for the transitions 2 1S0 → 1 1S0

and 2 3S1 → 1 1S0 in He-like ions starting with the Coulomb, core-Hartree, and Kohn-Sham potentials, in units s−1. Comparison with other
theoretical calculations is also made. Numbers in brackets denote powers of 10.

Coulomb Core-Hartree Kohn-Sham Other theor.

Z W
(0)
B;A W

(0)
B;A WB;A W

(0)
B;A WB;A Ref. [10] Ref. [2]

2 1S0 → 1 1S0

30 1.164[10] 9.944[09] 9.903[09] 1.006[10] 9.900[09] 9.938[09] 9.88(3)[09]
50 2.370[11] 2.163[11] 2.152[11] 2.177[11] 2.152[11] 2.164[11] 2.15(1)[11]
70 1.655[12] 1.554[12] 1.545[12] 1.560[12] 1.544[12] 1.556[12] 1.55(1)[12]
90 6.728[12] 6.421[12] 6.382[12] 6.439[12] 6.381[12] 6.439[12] 6.41(6)[12]
92 7.580[12] 7.242[12] 7.199[12] 7.262[12] 7.199[12] 7.265[12] 7.24(8)[12]

2 3S1 → 1 1S0

30 9.06[05] 4.64[05] 4.15[05] 4.42[05] 4.13[05] 4.17[05]
50 1.02[08] 7.33[07] 6.88[07] 7.16[07] 6.85[07] 6.88[07]
70 2.13[09] 1.74[09] 1.67[09] 1.72[09] 1.66[09] 1.66[09]
90 1.96[10] 1.70[10] 1.64[10] 1.69[10] 1.64[10] 1.63[10]
92 2.38[10] 2.07[10] 1.99[10] 2.05[10] 1.99[10] 1.98[10]
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TABLE III. Contributions of the higher multipoles (MP) to the
total two-photon decay rates included in the zeroth-order approxima-
tion, in units s−1. Numbers in brackets denote powers of 10.

MP Z = 30 Z = 50 Z = 70 Z = 90 Z = 92

2 1S0 → 1 1S0

M1M1 1.40[04] 2.65[06] 8.56[07] 1.14[09] 1.43[09]
E2E2 4.74[03] 8.19[05] 2.33[07] 2.71[08] 3.35[08]

2 3S1 → 1 1S0

E1M2 7.57[04] 1.32[07] 3.79[08] 4.51[09] 5.59[09]
1.26[07]a 3.62[08]a 4.30[09]a 5.32[09]a

M1M1 1.58[01] 2.46[04] 3.33[06] 1.46[08] 2.05[08]

aReference [43].

Kr34+ ions all theoretical calculations predict that the values
will be slightly larger than the experimental results. In the
worst case of the Kr34+ ion, this difference amounts to about
two standard deviations.

Finally, in Table V we present our total two-photon decay
rates for the transitions 2 1S0 → 1 1S0 and 2 3S1 → 1 1S0.

Besides the total decay rates, we present the spectral-
distribution functions dWB;A/dy for the two-photon tran-
sitions 2 1S0 → 1 1S0 and 2 3S1 → 1 1S0 in Tables VI and
VII, respectively. The photon energy distribution function
dWB;A/dy expressed as a function of the reduced energy
y = k0

f1
/�

(1)
AB transported by one of the two photons reads

dWB;A/dy

= y2(1 − y)2
(
�

(1)
AB

)5
2π

×
∑

εf1 ,εf2

∫
d	kf1

d	kf2

∣∣τ (0)
γf1 ,γf2 ,B;A + τ

(1)
γf1 ,γf2 ,B;A

∣∣2
, (42)

and then the total decay rate can be found via the following
equation:

WB;A = 1

2

∫ 1

0
dy (dWB;A/dy) . (43)

Since we employ the more accurate transition energy �
(1)
AB

from Ref. [42], our energy distribution function appears to
be not exactly symmetric with respect to the center point at
y = 0.5. This asymmetry comes mainly due to the higher-order
corrections included in the transition energy but neglected in
the transition amplitude. In Tables VI and VII and in Figs. 6
and 7, we present the spectral-distribution functions dWB;A/dy

TABLE V. The total two-photon decay rates for the transitions
2 1S0 → 1 1S0 and 2 3S1 → 1 1S0 in He-like ions, in units s−1. The
transition energies are taken from Ref. [42]. Numbers in brackets
denote powers of 10.

Z 2 1S0 2 3S1 Z 2 1S0 2 3S1

28 6.493[09] 2.40[05] 61 6.948[11] 5.56[08]
29 8.048[09] 3.44[05] 62 7.640[11] 6.49[08]
30 9.900[09] 4.88[05] 63 8.388[11] 7.56[08]
31 1.209[10] 6.84[05] 64 9.193[11] 8.77[08]
32 1.467[10] 9.46[05] 65 1.006[12] 1.02[09]
33 1.769[10] 1.30[06] 66 1.099[12] 1.17[09]
34 2.121[10] 1.76[06] 67 1.199[12] 1.35[09]
35 2.529[10] 2.36[06] 68 1.307[12] 1.56[09]
36 2.999[10] 3.13[06] 69 1.422[12] 1.79[09]
37 3.539[10] 4.13[06] 70 1.545[12] 2.04[09]
38 4.158[10] 5.40[06] 71 1.676[12] 2.33[09]
39 4.863[10] 7.01[06] 72 1.816[12] 2.66[09]
40 5.664[10] 9.04[06] 73 1.966[12] 3.03[09]
41 6.572[10] 1.16[07] 74 2.125[12] 3.44[09]
42 7.595[10] 1.47[07] 75 2.294[12] 3.90[09]
43 8.747[10] 1.86[07] 76 2.474[12] 4.41[09]
44 1.004[11] 2.33[07] 77 2.665[12] 4.98[09]
45 1.148[11] 2.91[07] 78 2.867[12] 5.61[09]
46 1.310[11] 3.61[07] 79 3.082[12] 6.32[09]
47 1.489[11] 4.46[07] 80 3.309[12] 7.10[09]
48 1.688[11] 5.49[07] 81 3.549[12] 7.96[09]
49 1.908[11] 6.71[07] 82 3.803[12] 8.92[09]
50 2.152[11] 8.18[07] 83 4.071[12] 9.98[09]
51 2.420[11] 9.91[07] 84 4.353[12] 1.11[10]
52 2.715[11] 1.20[08] 85 4.650[12] 1.24[10]
53 3.039[11] 1.44[08] 86 4.963[12] 1.38[10]
54 3.394[11] 1.73[08] 87 5.292[12] 1.54[10]
55 3.783[11] 2.06[08] 88 5.638[12] 1.71[10]
56 4.206[11] 2.45[08] 89 6.002[12] 1.90[10]
57 4.668[11] 2.90[08] 90 6.383[12] 2.10[10]
58 5.171[11] 3.43[08] 91 6.782[12] 2.32[10]
59 5.716[11] 4.04[08] 92 7.200[12] 2.57[10]
60 6.308[11] 4.75[08]

calculated as a half-sum of the contributions at the points y

and 1 − y. For the 2 1S0 state, the energy distribution function
has one maximum at y = 0.5, and in Table VI we give also
the reduced full width at half maximum (FWHM) values. The
behavior of the reduced FWHM values as a function of Z

TABLE IV. Comparison of theory and experiment for the two-photon decay rates of the 2 1S0 state in He-like ions, in units s−1. Numbers
in brackets denote powers of 10.

Z Expt. This work Ref. [10] Ref. [2]

28 6.406(66)[09]a 6.493[09] 6.517[09] 6.482(21)[09]
35 2.543(21)[10]b 2.529[10] 2.540[10]
36 2.934(30)[10]c 2.999[10] 3.012[10] 2.993(12)[10]
41 6.52(26)[10]d 6.572[10] 6.604[10]

aReference [14].
bReference [13].
cReference [12].
dReference [44].
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TABLE VI. The spectral distribution dWB;A/dy for the two-photon transition 2 1S0 → 1 1S0 in He-like ions, in units s−1. The reduced
photon energy y = k0

f1
/�

(1)
AB is the fraction of the total transition energy transported by one of the two photons. The reduced FWHM are also

given. Numbers in brackets denote powers of 10.

y Z = 28 Z = 36 Z = 41 Z = 50 Z = 64 Z = 70 Z = 80 Z = 90 Z = 92

0.025 2.48[09] 1.09[10] 2.28[10] 6.78[10] 2.43[11] 3.79[11] 7.19[11] 1.24[12] 1.37[12]
0.050 5.16[09] 2.31[10] 4.92[10] 1.52[11] 5.77[11] 9.17[11] 1.78[12] 3.11[12] 3.44[12]
0.075 7.33[09] 3.32[10] 7.14[10] 2.24[11] 8.83[11] 1.43[12] 2.84[12] 5.05[12] 5.61[12]
0.100 9.10[09] 4.14[10] 8.97[10] 2.85[11] 1.15[12] 1.88[12] 3.80[12] 6.90[12] 7.68[12]
0.125 1.06[10] 4.82[10] 1.05[11] 3.36[11] 1.38[12] 2.27[12] 4.66[12] 8.58[12] 9.58[12]
0.150 1.18[10] 5.39[10] 1.17[11] 3.79[11] 1.57[12] 2.61[12] 5.42[12] 1.01[13] 1.13[13]
0.175 1.28[10] 5.86[10] 1.28[11] 4.16[11] 1.74[12] 2.90[12] 6.09[12] 1.15[13] 1.29[13]
0.200 1.36[10] 6.26[10] 1.37[11] 4.47[11] 1.89[12] 3.15[12] 6.67[12] 1.27[13] 1.42[13]
0.225 1.43[10] 6.60[10] 1.45[11] 4.73[11] 2.01[12] 3.37[12] 7.19[12] 1.37[13] 1.55[13]
0.250 1.49[10] 6.89[10] 1.51[11] 4.96[11] 2.12[12] 3.57[12] 7.64[12] 1.47[13] 1.66[13]
0.275 1.54[10] 7.13[10] 1.57[11] 5.15[11] 2.21[12] 3.73[12] 8.03[12] 1.55[13] 1.75[13]
0.300 1.58[10] 7.34[10] 1.61[11] 5.31[11] 2.29[12] 3.87[12] 8.37[12] 1.63[13] 1.84[13]
0.325 1.62[10] 7.51[10] 1.65[11] 5.45[11] 2.36[12] 4.00[12] 8.66[12] 1.69[13] 1.91[13]
0.350 1.65[10] 7.66[10] 1.68[11] 5.57[11] 2.42[12] 4.10[12] 8.90[12] 1.74[13] 1.97[13]
0.375 1.67[10] 7.77[10] 1.71[11] 5.66[11] 2.47[12] 4.18[12] 9.11[12] 1.79[13] 2.02[13]
0.400 1.69[10] 7.87[10] 1.73[11] 5.74[11] 2.50[12] 4.25[12] 9.27[12] 1.82[13] 2.07[13]
0.425 1.71[10] 7.94[10] 1.75[11] 5.79[11] 2.53[12] 4.30[12] 9.40[12] 1.85[13] 2.10[13]
0.450 1.72[10] 7.99[10] 1.76[11] 5.83[11] 2.55[12] 4.34[12] 9.49[12] 1.87[13] 2.12[13]
0.475 1.72[10] 8.02[10] 1.77[11] 5.86[11] 2.56[12] 4.36[12] 9.54[12] 1.88[13] 2.13[13]
0.500 1.73[10] 8.03[10] 1.77[11] 5.87[11] 2.57[12] 4.37[12] 9.56[12] 1.89[13] 2.14[13]
FWHM 0.814 0.809 0.804 0.793 0.771 0.761 0.743 0.722 0.718

confirms those of Ref. [10]. For the 2 3S1 state, the energy
distribution function has two symmetric maxima in the first
and second half of the unit segment. In the center point
(equal energy sharing), the distribution function is zero for
the decay channels with the photons with the same multipole
numbers (e.g., for the 2E1 decay). This is a consequence of
the Bose-Einstein statistics, which forbids us to construct a
permutation symmetric two-photon state with total angular
momentum Jtot = 1. Therefore, near the center point the
distribution function is defined by the E1M2 channel, as was
noticed first in Ref. [43]. The value of y, where the first

0 0.1 0.2 0.3 0.4 0.5
y
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1

2

3

dW
B

;A
 /d

y

Z = 28
Z = 50
Z = 64
Z = 92

FIG. 6. (Color online) The 2 1S0 two-photon energy distribution
functions dWB;A/dy, normalized to the corresponding total decay
rates, plotted as a function of the reduced energy y for He-like nickel,
tin, europium, and uranium ions.

maximum is reached, is given in Table VII together with
the corresponding values of the reduced FWHM. In contrast
to the results reported in Ref. [10], we obtain a different
energy distribution due to accounting for the higher multipole
contributions.

IV. SUMMARY

In summary, we have presented a systematic quantum
electrodynamic description for the first-order interelectronic-
interaction corrections to the two-photon transition

0 0.1 0.2 0.3 0.4 0.5
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FIG. 7. (Color online) The 2 3S1 two-photon energy distribution
functions dWB;A/dy, normalized to the corresponding total decay
rates, plotted as a function of the reduced energy y for He-like nickel,
tin, europium, and uranium ions.
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TABLE VII. The spectral distribution dWB;A/dy for the two-photon transition 2 3S1 → 1 1S0 in He-like ions, in units s−1. The reduced
photon energy y = k0

f1
/�

(1)
AB is the fraction of the total transition energy transported by one of the two photons. The maximum point of the

distribution ymax together with the reduced FWHM are also presented. Numbers in brackets denote powers of 10.

y Z = 28 Z = 36 Z = 41 Z = 50 Z = 64 Z = 70 Z = 80 Z = 90 Z = 92

0.010 1.68[06] 2.27[07] 8.13[07] 5.12[08] 4.22[09] 8.62[09] 2.40[10] 5.71[10] 6.70[10]
0.015 1.94[06] 2.59[07] 9.32[07] 6.02[08] 5.21[09] 1.09[10] 3.13[10] 7.63[10] 8.99[10]
0.020 1.99[06] 2.64[07] 9.56[07] 6.30[08] 5.68[09] 1.21[10] 3.57[10] 8.92[10] 1.05[11]
0.025 1.95[06] 2.58[07] 9.37[07] 6.26[08] 5.85[09] 1.26[10] 3.83[10] 9.75[10] 1.16[11]
0.030 1.87[06] 2.46[07] 8.98[07] 6.08[08] 5.83[09] 1.28[10] 3.95[10] 1.03[11] 1.22[11]
0.035 1.78[06] 2.33[07] 8.52[07] 5.83[08] 5.72[09] 1.27[10] 3.99[10] 1.05[11] 1.26[11]
0.040 1.68[06] 2.19[07] 8.04[07] 5.55[08] 5.55[09] 1.24[10] 3.97[10] 1.06[11] 1.27[11]
0.045 1.58[06] 2.06[07] 7.57[07] 5.26[08] 5.35[09] 1.21[10] 3.91[10] 1.06[11] 1.28[11]
0.050 1.48[06] 1.94[07] 7.12[07] 4.98[08] 5.14[09] 1.17[10] 3.83[10] 1.05[11] 1.27[11]
0.075 1.10[06] 1.43[07] 5.30[07] 3.78[08] 4.10[09] 9.54[09] 3.27[10] 9.42[10] 1.14[11]
0.100 8.40[05] 1.09[07] 4.05[07] 2.93[08] 3.27[09] 7.72[09] 2.72[10] 8.08[10] 9.87[10]
0.125 6.58[05] 8.53[06] 3.17[07] 2.31[08] 2.63[09] 6.28[09] 2.26[10] 6.85[10] 8.41[10]
0.150 5.25[05] 6.81[06] 2.54[07] 1.86[08] 2.14[09] 5.15[09] 1.88[10] 5.80[10] 7.15[10]
0.175 4.26[05] 5.52[06] 2.06[07] 1.51[08] 1.77[09] 4.27[09] 1.58[10] 4.93[10] 6.08[10]
0.200 3.50[05] 4.54[06] 1.69[07] 1.25[08] 1.47[09] 3.57[09] 1.33[10] 4.20[10] 5.20[10]
0.225 2.91[05] 3.76[06] 1.41[07] 1.04[08] 1.23[09] 3.01[09] 1.13[10] 3.60[10] 4.46[10]
0.250 2.43[05] 3.15[06] 1.18[07] 8.75[07] 1.04[09] 2.55[09] 9.63[09] 3.09[10] 3.84[10]
0.275 2.06[05] 2.66[06] 9.97[06] 7.42[07] 8.88[08] 2.18[09] 8.28[09] 2.68[10] 3.33[10]
0.300 1.75[05] 2.27[06] 8.51[06] 6.34[07] 7.63[08] 1.88[09] 7.16[09] 2.33[10] 2.90[10]
0.325 1.51[05] 1.96[06] 7.33[06] 5.47[07] 6.61[08] 1.63[09] 6.25[09] 2.04[10] 2.54[10]
0.350 1.31[05] 1.70[06] 6.38[06] 4.77[07] 5.79[08] 1.43[09] 5.50[09] 1.80[10] 2.25[10]
0.375 1.15[05] 1.50[06] 5.63[06] 4.22[07] 5.14[08] 1.27[09] 4.90[09] 1.61[10] 2.01[10]
0.400 1.03[05] 1.34[06] 5.05[06] 3.79[07] 4.62[08] 1.15[09] 4.43[09] 1.46[10] 1.83[10]
0.425 9.42[04] 1.23[06] 4.61[06] 3.47[07] 4.24[08] 1.05[09] 4.08[09] 1.35[10] 1.69[10]
0.450 8.80[04] 1.15[06] 4.31[06] 3.24[07] 3.97[08] 9.87[08] 3.83[09] 1.27[10] 1.59[10]
0.475 8.43[04] 1.10[06] 4.14[06] 3.11[07] 3.82[08] 9.49[08] 3.68[09] 1.22[10] 1.53[10]
0.500 8.31[04] 1.08[06] 4.08[06] 3.07[07] 3.77[08] 9.36[08] 3.64[09] 1.21[10] 1.51[10]
ymax 0.020 0.019 0.020 0.019 0.024 0.030 0.035 0.041 0.043
FWHM 0.079 0.077 0.079 0.087 0.106 0.116 0.134 0.154 0.158

probabilities in He-like ions. A local screening potential
has been included in the zeroth-order approximation in the
framework of an extended Furry representation, and the
corresponding expressions for the counterterms have been
derived. Such a treatment of the electron-correlation effects
allows us to control the gauge invariance of each term in
the perturbation expansion and to estimate an uncertainty
due to the truncation of this expansion. The total two-photon
decay rates and the spectral distribution functions have been
evaluated for the transitions 2 1S0 → 1 1S0 and 2 3S1 → 1 1S0

in the He-like ions with nuclear charges in the range 28 �
Z � 92. The results of the calculations performed have been
compared with previous calculations and with experimental
data. The present calculations of the two-photon decays of the
2 1S0 and 2 3S1 states in He-like ions can be utilized to study the
parity nonconservation phenomena in He-like ions [21,45,46]

as well as for investigations of the contributions of higher
multipoles to the energy distribution.
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