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Casimir-Polder repulsion near edges: Wedge apex and a screen with an aperture
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Although repulsive effects have been predicted for quantum vacuum forces between bodies with nontrivial
electromagnetic properties, such as between a perfect electric conductor and a perfect magnetic conductor,
realistic repulsion seems difficult to achieve. Repulsion is possible if the medium between the bodies has a
permittivity in value intermediate to those of the two bodies, but this may not be a useful configuration. Here,
inspired by recent numerical work, we initiate analytic calculations of the Casimir-Polder interaction between
an atom with anisotropic polarizability and a plate with an aperture. In particular, for a semi-infinite plate, and,
more generally, for a wedge, the problem is exactly solvable, and for sufficiently large anisotropy, Casimir-Polder
repulsion is indeed possible, in agreement with the previous numerical studies. In order to achieve repulsion,
what is needed is a sufficiently sharp edge (not so very sharp, in fact) so that the directions of polarizability of
the conductor and the atom are roughly normal to each other. The machinery for carrying out the calculation
with a finite aperture is presented. As a motivation for the quantum calculation, we carry out the corresponding
classical analysis for the force between a dipole and a metallic sheet with a circular aperture, when the dipole is
on the symmetry axis and oriented in the same direction.
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I. INTRODUCTION

There has been increasing interest in utilizing the quan-
tum vacuum force or the Casimir effect in nanotechnology
employing mesoscopic objects [1]. Although the original
Casimir effect, between parallel conducting or dielectric plates
separated by vacuum [2,3], always gives an attractive force
between the plates, introducing a material (liquid) with an
intermediate value of the dielectric constant can result in
repulsion [4], which has now been observed [5]; for precursors,
see [6–10]. [The first experimental test of the Lifshitz theory
with an intermediate liquid (helium) was that of Sabisky and
Anderson [11]; application of the Lifshitz theory to the melting
of water ice was considered by Elbaum and Schick [12].]
A recent experiment involving air bubbles in a liquid with
boundary walls is described in Ref. [13]. However, this type
of repulsion is unlikely to have many applications in building
devices.

There are well-known repulsive quantum forces in vacuum.
The first example was found by Boyer [14]. He computed
the self-stress of a perfectly conducting spherical shell due
to quantum electrodynamic field fluctuations and found a
repulsive result, but the meaning of such a self-energy is
extremely obscure. He later found [15] a more observable
effect, that the force between a perfect electrically conducting
plane (ε, the permittivity, goes to infinity) and a parallel
perfect magnetic conducting plane (µ, the permeability, goes
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to infinity) is repulsive. This, again, may be a difficult situation
to approximately replicate in practice, because the unusual
magnetic properties must persist over a wide frequency range.

There has been extensive interest in designing metamate-
rials that could give rise to Casimir repulsion by simulating
a magnetic response [16–21]. Despite some early optimism,
the conclusion seems to have transpired that repulsion is
impossible between metamaterials made from dielectric and
metallic components [22–24]. For recent attempts combining
dielectric and magnetic setups, see Refs. [25–27].

Several years ago there was an interesting suggestion
by Sopova and Ford [28] that the force between a small
dielectric sphere and a dielectric wall was oscillatory, so there
were a number of repulsive regimes. However, this effect
was canceled by plasmon modes leaving the usual attractive
result [29]. Earlier Ford had suggested [30] that the frequency
response of materials might be manipulated in order to achieve
repulsion, but this was proved to be impossible [31].

Thus it was extremely interesting when Levin et al.
showed examples of repulsion between conducting objects, in
particular between an elongated cylinder above a conducting
plane with a circular aperture [32]. (An analytic counterpart is
given in [33].) They first gave examples of repulsive forces
between arrays of electric dipoles, and an electric dipole
and a conducting plane with an aperture cut out. Then they
turned to quantum vacuum forces between conducting objects,
computed by quite impressive “brute force” finite-difference
time-domain and boundary-element methods.

The purpose of the present paper is to try to understand these
phenomena analytically. We first show, in Sec. II, that there
is no repulsion possible in the weak coupling regime, where
because the materials are dilute one may sum Casimir-Polder
interactions between atoms [34]. However, there is repulsion
in classical electrostatics between a system of three dipoles
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(Sec. III) and between a fixed dipole and a conducting plane
with an aperture, which we discuss in Sec. IV, both in two
and three dimensions. This is an interesting pedagogical
problem, for it involves mixed coupled integral equations,
like those for an electrified disk, or a plane with an aperture
with different constant electric fields at large distances above
and below the punctured plane [35]. These problems exhibit
closed form solutions, and clearly exhibit repulsion when
the dipole is directly above the aperture and is sufficiently
close. In Sec. V we turn to the real problem, that of the
Casimir-Polder force between an anisotropic polarizable atom
and a punctured dielectric plane. Because solving the integral
equations arising for the Green’s dyadic for the plate with
aperture is rather complicated, in Sec. VI we content ourselves
with computing the Casimir-Polder interaction between a
polarizable atom and a perfectly conducting wedge. When the
opening angle of the wedge approaches 2π , this describes the
interaction between an atom and a semi-infinite conducting
plane. We exhibit situations in which repulsive forces in
certain directions can arise for anisotropic atoms, in qualitative
agreement with numerical work [32]. In Appendix A we give
another derivation of the Casimir-Polder energy formula for
the wedge, based on a closed form for the Green’s dyadic, and
in Appendix B we give a classical calculation of a conducting
ellipsoid above a conducting plate with a circular aperture in
the presence of a background field.

A word about terminology: When we say “atom” we
mean any microscopic particle which may be described
by a polarizability tensor. Our calculations assume that
we are in the retarded regime, so that static (frequency-
independent) polarizabilities may be employed. Should lower
frequency transitions dominate (which could occur with some
molecules), so that the separations are in the nonretarded
regime, electrostatic results are valid [but for a factor of
1/2—See Eq. (4.15) below and Ref. [36]].

In this paper we set h̄ = c = 1, and all results are expressed
in Gaussian units except that Heaviside-Lorentz units are used
for Green’s dyadics.

II. WEAK COUPLING CALCULATION

A. Scalar field

We first illustrate the ideas by considering the case of a
massless scalar field in two dimensions. The quantum vacuum
energy between two weakly coupled potentials V1 and V2 is

U12 = − 1

32π2

∫
(dr)(dr′)

V1(r)V2(r′)
|r − r′|2 , (2.1)

the scalar analog of the Casimir-Polder force between atoms.
Here we consider the potentials as shown in Fig. 1, which
represents a needle of length L on the symmetry axis a distance
Z above a line with a gap of width a. The potentials are given
by

V1(x,z) = λ1δ(x)θ (z − Z + L/2)θ (Z + L/2 − z), (2.2a)

V2(x,z) = λ2δ(z)[θ (x − a/2) + θ (−x − a/2)]. (2.2b)

a

Z

L

FIG. 1. Two-dimensional geometry of a needle of length L a
distance Z above a line with a gap of width a.

This means that the interaction energy is

U12 = − λ1λ2

32π2

∫ Z+L/2

Z−L/2
dz

{∫ ∞

a/2
+

∫ −a/2

−∞

}
dx

1

x2 + z2
.

(2.3)

To get the force on the needle, we simply have to integrate on
x, and differentiate with respect to the limits of the z integral:

F = − ∂

∂Z
U12 = λ1λ2

8π2a

[
arctan(2Z/a + L/a)

2Z/a + L/a

−arctan(2Z/a − L/a)

2Z/a − L/a

]
, (2.4)

which, because F < 0, always represents an attractive force
between the punctured line and the needle. Note that although
the force vanishes at Z = 0, the energy there, which represents
the work done in bringing the needle in from infinity, is not
zero.

B. Electromagnetic field

Now we consider the quantum vacuum force between dilute
dielectric media, which may be obtained from the Casimir-
Polder potential between isotropic polarizable atoms [34],

UCP = − 23

4π
α1α2

1

r7
, (2.5)

where r is the distance between the atoms. We might mention
that Eq. (2.5) is in general valid in the retarded limit where
the atomic polarizability can be regarded as constant. (For
more details, see the review [37].) The result is applicable
provided that the atom-plate separation is much greater than
the atomic transition wavelength (typically some hundreds of
nanometers for ground-state atoms). The media have dielectric
constants εi = 1 + 4πNiαi , where Ni represents the density of
atoms of type i. Specifically, we consider a three-dimensional
configuration, in which an atom of isotropic polarizability α

is placed on the symmetry axis a distance Z above a dielectric
plate of thickness t with a circular hole in the middle, as shown
in Fig. 2.
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•

2a

Z

α

ε t

FIG. 2. Three-dimensional geometry of a polarizable atom a
distance Z above a dielectric slab with a circular aperture of radius a.

The quantum interaction energy is

U = − 23

(4π )2
α(ε − 1)

∫
slab

(dr)
1

[(z − Z)2 + r2
⊥]7/2

= − 23

60πa4
α(ε − 1)

[
(t + 2Z)[6a2 + (t + 2Z)2]

[4a2 + (t + 2Z)2]3/2

+ (Z → −Z)

]
. (2.6)

It is easy to see that the force F = −∂U/∂Z is always negative
(i.e., attractive).

A more favorable case for possible repulsion would be an
anisotropic atom. It is easy to derive the appropriate gener-
alization of the Casimir-Polder potential in this case, starting
from the weak-coupling multiple scattering formula [38],

U12 = i

2
Tr �0V1�0V2, (2.7)

where the free Green’s dyadic is (ζ = −iω),

�0(r,r′) = (∇∇ − 1ζ 2)
e−|ζ ||r−r′|

4π |r − r′| . (2.8)

Following the procedure given in Ref. [38], we find for an
isotropic medium facing an anisotropic atom,

U = ε − 1

32π2

∫
slab

(dr)
1

|r − R|7

×
[

13 tr α + 7
(r − R) · α · (r − R)

(r − R)2

]
, (2.9)

where R = (0,0,Z) is the position of the atom, relative to the
center of the aperture. This may be easily checked to reduce
to the usual Casimir-Polder result (2.5) when α = α1.

Let us consider the extreme case when only αzz is
significant. Then the integrals may be easily carried out, with
the result,

U = αzz(ε − 1)

60πa4

[
t + 2Z

[4 + (t + 2Z)2]5/2
[156a4 + 70a2(t + 2Z)2

+7(t + 2Z)4] + (Z → −Z)

]
. (2.10)

This, again, always gives rise to an attractive force.

d1

d3d2

Z

a

FIG. 3. Configuration of three dipoles, two of which are antipar-
allel, and one perpendicular to the other two.

An interesting special case is when the aperture is small
compared to the thickness of the dielectric. Then the energy is
a step function,

U = − 7

30πa4
αzz(ε − 1)θ (t − 2|Z|), a � t, (2.11)

which gives rise to a δ-function force just when the atom enters
and exits the aperture. If the aperture is very large compared
to the thickness of the slab, t � a, the energy and force are
proportional to the thickness of the slab,

U = − 1

80πa4
αzz(ε − 1)

13a2 + 18Z2

(a2 + Z2)7/2
a4t. (2.12)

III. CLASSICAL DIPOLE INTERACTION

It is possible to achieve a repulsive force between a config-
uration of fixed dipoles. Consider the situation illustrated in
Fig. 3. Here we have two dipoles, of strength d2 and d3 lying
along the x axis, separated by a distance a. A third dipole of
strength d1 lies along the z axis. If the two parallel dipoles are
oppositely directed and of equal strength,

d2 = −d3 = d2x̂, (3.1)

and are equally distant from the z axis, and the dipole on the
z axis is directed along that axis,

d1 = d1ẑ, (3.2)

the force on that dipole is along the z axis:

Fz = 3ad1d2
a2/4 − 4Z2

(Z2 + a2/4)7/2
, (3.3)

which changes sign at Z = a/4; that is, for distances Z

larger than this, the force is attractive (in the −z direction)
while for shorter distances the force is repulsive (in the +z

direction). Evidently, by symmetry, the dipole-dipole energy
vanishes at z = 0. Consistent with Earnshaw’s theorem, the
point where the force vanishes is an unstable point with respect
to deviations in the x direction.

In view of this self-evident finding, it might seem surprising
that the interaction between a polarizable atom and a dilute
medium (made up of polarizable atoms) studied in Sec. II B
failed to exhibit a repulsive regime, but this is because the
medium is isotropic.
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IV. CLASSICAL INTERACTION BETWEEN A DIPOLE
AND A CONDUCTING PLANE WITH AN APERTURE

In this section, we consider the interaction between a
dipole and a perfectly conducting plane containing an aperture.
We first consider two dimensions. (As above, we denote
the Cartesian coordinates by x and z for uniformity with the
three-dimensional situation.)

A. Dipole above aperture in a conducting line

If we use the Green’s function which vanishes on the entire
line z = 0,

G(r,r′) = − ln[(x − x ′)2 + (z − z′)2]

+ ln[(x − x ′)2 + (z + z′)2], (4.1)

so

G(x,0; x ′,z′) = 0, (4.2)

we can calculate the electrostatic potential at any point above
the z = 0 plane to be

φ(r) =
∫

z>0
(dr′)G(r,r′)ρ(r′)

+ 1

4π

∫
ap

dS ′ ∂

∂z′ G(r,r′)
∣∣∣∣
z′=0

φ(r′), (4.3)

where the volume integral is over the charge density of the
dipole,

ρ(r) = −d · ∇δ(r − R), R = (0,Z). (4.4)

The surface integral extends only over the aperture because
the potential vanishes on the conducting sheet. If we choose d
to point along the z axis we easily find

φ(x,z > 0) = 2d

[
z − Z

x2 + (z − Z)2
+ z + Z

x2 + (z + Z)2

]

+ 1

π

∫ a/2

−a/2
dx ′ z

(x − x ′)2 + z2
φ(x ′,0), (4.5)

where a is the width of the aperture.
Now the free Green’s function in two dimensions is

G0(r,r′) = 4π

∫
(dk)

(2π )2

eikx (x−x ′)eikz(z−z′)

k2
x + k2

z

=
∫ ∞

−∞
dkx

1

|kx |e
ikx (x−x ′)e−|kx ||z−z′ |. (4.6)

Then the surface integral in Eq. (4.5) is∫ ∞

−∞

dkx

2π
eikxxe−|kx |zφ̃(kx), (4.7)

in terms of the Fourier transform of the field,

φ̃(kx) =
∫ ∞

−∞
dx ′e−ikxx

′
φ(x ′,0)

= 2
∫ a/2

0
dx ′ cos kxx

′φ(x ′,0), (4.8)

since φ(x,0) must be an even function for the geometry
considered. Thus we conclude

φ(x,z > 0) = 2d

[
z − Z

x2 + (z − Z)2
+ z + Z

x2 + (z + Z)2

]

+ 1

π

∫ ∞

0
dk cos kx e−kzφ̃(k). (4.9)

This becomes an identity as z → 0.
The electric field in the aperture is

Ez(x,z = 0+) = − ∂

∂z
φ(x,z)

∣∣∣∣
z=0+

= −4d
x2 − Z2

(x2 + Z2)2
+ 1

π

∫ ∞

0
dk k cos kx φ̃(k).

(4.10)

On the other side of the aperture, there is no charge density, so
for z < 0 the potential is

φ(x,z < 0) = 1

π

∫ ∞

0
dk cos kx ekzφ̃(k), (4.11)

so the z component of the electric field in the aperture is

Ez(x,z = 0−) = − ∂

∂z
φ(x,z)

∣∣∣∣
z=0−

= − 1

π

∫ ∞

0
dk k cos kx φ̃(k). (4.12)

Because we require that the electric field be continuous in the
aperture, and the potential vanish on the conductor, we obtain
the two coupled integral equations for this problem,

4d
x2 − Z2

(x2 + Z2)2
= 2

π

∫ ∞

0
dk k cos kx φ̃(k),

0 < |x| < a/2, (4.13a)

0 =
∫ ∞

0
dk cos kx φ̃(k), |x| > a/2. (4.13b)

In fact, these equations have a simple solution [39]:

φ̃(k) = −4Zdπ

a

∫ 1

0
dx x

J0(kax/2)

(x2 + 4Z2/a2)3/2
. (4.14)

From this, we can work out the energy of the system from

U = −1

2
dEz(0,Z) = 1

2
d

∂φ

∂z

∣∣∣∣
z=Z,x=0

, (4.15)

where the factor of 1/2 comes from the fact that this must be
the energy required to assemble the system. In computing this
energy we must, of course, drop the self-energy of the dipole
due to its own field. We are then left with

Uint = − d2

4Z2
− d

2π

∫ ∞

0
dk k e−kZφ̃(k)

= − d2

4Z2
+ Z2d2

(
2

a

)4 ∫ 1

0

1

2
dx2 1

(x2 + 4Z2/a2)3

= − 4Z2d2

(a2 + 4Z2)2
, (4.16)

where to get the second line we used the derivative of
Eq. (4.17). This is exactly two times larger that the result

062507-4



CASIMIR-POLDER REPULSION NEAR EDGES: WEDGE . . . PHYSICAL REVIEW A 83, 062507 (2011)

quoted in Ref. [32].1 Since this vanishes at Z = 0 and Z = ∞,
the force must change from attractive to repulsive, which
happens at Z = a/2.

B. Three-dimensional aperture interacting with dipole

It is quite straightforward to repeat the above calculation in
three dimensions. Again we are considering a dipole, polarized
on the symmetry axis, a distance Z above a circular aperture
of radius a in a conducting plate.

The free three-dimensional Green’s function in cylindrical
coordinates has the representation,

1√
ρ2 + z2

=
∫ ∞

0
dk J0(kρ) e−k|z|, (4.17)

and so if we follow the above procedure we find for the
potential above the plate,

φ(r⊥,z > 0) = d

[
z − Z

[r2
⊥ + (z − Z)2]3/2

+ z + Z

[r2
⊥ + (z + Z)2]3/2

]

+
∫ ∞

0
dk k e−kzJ0(kr⊥)�(k), (4.18)

where the Bessel transform of the potential in the aperture is

�(k) =
∫ ∞

0
dρ ρ J0(kρ)φ(ρ,0). (4.19)

Thus the integral equations resulting from the continuity of
the z component of the electric field in the aperture and the
vanishing of the potential on the conductor are

d
r2
⊥ − 2Z2

[r2
⊥ + Z2]5/2

=
∫ ∞

0
dk k2J0(kr⊥)�(k), r⊥ < a,

(4.20a)

0 =
∫ ∞

0
dk kJ0(kr⊥)�(k), r⊥ > a. (4.20b)

The solution to these equations is given in Titchmarsh’s
book [40], and after a bit of manipulation we obtain

�(k) = −
(

2ka

π

)1/2
d

ka

∫ 1

0
dx x3/2J1/2(xka)

2Z/a

(x2 + Z2/a2)2
.

(4.21)

Then the energy (4.15) may be easily evaluated using∫ ∞

0
dk k3/2e−kZJ1/2(kax) = 2

√
2xa

π

Z

(x2a2 + Z2)2
. (4.22)

The energy can again be expressed in closed form:

U = − d2

8Z3
+ d2

4πZ3

[
arctan

a

Z

+Z

a

1 + 8/3(Z/a)2 − (Z/a)4

(1 + Z2/a2)3

]
. (4.23)

1This is not the factor of 1/2 in Eq. (4.15). It is not possible to trace
the origin of the discrepancy, since the authors of that reference quote
the result without details.

This is always negative, but vanishes at infinity and at zero:

Z → 0 : U → − 4

5π
d2 Z2

a5
. (4.24)

This means that for some value of Z ∼ a the force changes
from attractive to repulsive. Numerically, we find that the force
changes sign at Z = 0.742358a.

The reason why the energy vanishes when the dipole is
centered in the aperture is clear: Then the electric field lines
are perpendicular to the conducting sheet on the surface,
and the sheet could be removed without changing the field
configuration.

Our goal is to analytically find the quantum (Casimir)
analog of this classical repulsion.

V. STRONG COUPLING—FORCE BETWEEN AN ATOM
AND A PUNCTURED PLANE DIELECTRIC

Now we turn to the real problem. Our starting point is the
general expression for the vacuum energy [38]:

U = i

2
Tr ln ��−1

0 , (5.1)

where � is the full Green’s dyadic for the problem, and �−1
0 is

the inverse of the free Green’s dyadic (2.8), namely,

�−1
0 = 1

ω2
∇ × ∇ × −1. (5.2)

In the presence of a potential V, the full Green’s dyadic has
the symbolic form,

� = (1 − �0V)−1�0. (5.3)

Here we are thinking of the interaction between a dielectric
medium, characterized by an isotropic permittivity, so V1 =
ε − 1, and a polarizable atom, represented by a polarizability
dyadic, as shown in Fig. 2,

V2 = 4παδ(r − R), (5.4)

where R is the position of the dipole. We are only interested
in a single interaction with the latter potential, so we have for
the interaction energy,

U12 = Tr V2
δ

δV1

[
− i

2
ln(1 − �0V1)

]

= i

2
Tr(�1 − �0)V2, (5.5)

where we have used Eq. (5.3) for the potential V1 describing
the dielectric slab plus aperture and we have subtracted the
term that represents the self-energy of the atom with its own
field. This subtraction happens automatically if we start from
the “T GT G” form,

U12 = − i

2
Tr ln(1 − �1V1�2V2)

≈ i

2
Tr �1V1�0V2 = i

2
Tr(�1 − �0)V2, (5.6)

because V2 is weak. This implies the Casimir-Polder expres-
sion for the interaction between the polarizable atom and the
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dielectric,

UCP = −
∫ ∞

−∞
dζ tr α · (� − �0)(Z,Z). (5.7)

We could also derive this result from the formula for the force
on a dielectric body in an inhomogeneous electric field [36],

F = − 1

8π

∫
(dr)E2(r)∇ε, (5.8)

which classically says that a dielectric body experiences a force
pushing it into the region of the stronger field. This implies the
interaction energy,

U = − 1
2αE2(0,Z), (5.9)

and when we make the quantum-field-theoretic replacement,

1

4π
〈E(r)E(r′)〉 → 1

i
�(r,r′) = 1

i

∫
dω

2π
�(r,r′; ω), (5.10)

we recover the static isotropic version of Eq. (5.7) after the
self-energy is subtracted.

A. No aperture

When the aperture is not present, we are considering the
well-studied case of a dielectric slab, of thickness t , interacting
with a polarizable atom. Because the Green’s dyadic in this
situation, denoted �(0), then possesses translational invariance
in the x-y plane, we can express it in terms of a reduced Green’s
dyadic,

(0)(r,r′) =
∫

(dk⊥)

(2π )2
eik⊥·(r−r′)⊥g(z,z′; k⊥). (5.11)

In the case of an isotropic atom, the trace of the Green’s dyadic
occurs, which is for the reduced Green’s dyadic,

tr g(Z,Z) = −ζ 2gH (Z,Z)

+
(

∂

∂Z

∂

∂Z′ + k2
⊥

)
gE(Z,Z′)

∣∣∣∣
Z′=Z

, (5.12)

in terms of the transverse electric (H) and transverse magnetic
(E) Green’s functions. These subtracted quantities are for z,z′
above the dielectric,

gH,E(z,z′) − g
H,E
0 (z,z′) = 1

2κ
RH,Ee−κ(z+z′−t), (5.13)

in terms of the reflection coefficients,

RH = κ − κ ′

κ + κ ′ + 4
κκ ′

κ ′2 − κ2

1

D
, (5.14a)

RE = κ − κ̄ ′

κ + κ̄ ′ + 4
κκ̄ ′

κ̄ ′2 − κ2

1

D̄
, (5.14b)

where

κ2 = k2
⊥ + ζ 2, κ ′2 = k2

⊥ + εζ 2, κ̄ ′ = κ ′/ε, (5.15)

and

D =
(

κ + κ ′

κ − κ ′

)2

e2κ ′t − 1, (5.16)

with D̄ obtained from this by replacing κ ′ by κ̄ ′ except in
the exponent. These results are rather trivially obtained by
multiple scattering arguments.

Now the interaction energy is

U = −α

∫ ∞

−∞
dζ

∫
(dk⊥)

(2π )2
[−ζ 2RH + (2k2 + ζ 2)RE]

1

2κ
e−κ(2Z−t)

= − α

4π

∫ ∞

0
dζ

∫
dk2

⊥
1

κ
e−2κ(Z−t/2)

{
(ε − 1)ζ 4 e2κ ′t − 1

(κ + κ ′)2e2κ ′t − (κ − κ ′)2

+ε − 1

ε
(2k2 + ζ 2)

[
k2

(
1 + 1

ε

)
+ ζ 2

]
e2κ ′t − 1

(κ + κ ′/ε)2e2κ ′t − (κ − κ ′/ε)2

}
. (5.17)

This is precisely the result found, for example, by Zhou and
Spruch [41].

B. Integral equations for Green’s dyadic

We now specialize to the case where the plane z = 0
consists of a perfectly conducting screen with a circular
aperture of radius a at the origin. The Green’s dyadic satisfies
the differential equation,

(
1

ω2
∇ × ∇ × −1

)
· �(r − r′) = 1δ(r − r′), (5.18)

subject to the boundary conditions,

ẑ × �(r,r′)||r⊥|>a,z=0 = 0, (5.19)

which just states that the tangential components of the electric
field must vanish on the conductor. Following Levine and
Schwinger [42] we introduce auxiliary electric and magnetic
Green’s dyadics �(1,2)(r,r′) which satisfy the same differential
equation (5.18) but with the boundary conditions satisfied on
the entire z = 0 plane:

ẑ × �(1)(r,r′)|z=0 = 0, ẑ × [∇ × �(2)(r,r′)]|z=0 = 0.

(5.20)

These can be constructed in terms of the free Green’s dyadic
�0, subject only to outgoing boundary conditions at infinity,
as given in Eq. (2.8),

�0(r,r′) = (1ω2 + ∇∇)G(|r − r′|), (5.21)
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expressed in turn in terms of the Helmholtz Green’s function,

G(R) = ei|ω|R

4πR
. (5.22)

We can write, after the Euclidean rotation |ω| → iζ , the free
Green’s dyadic in the explicit form (R = r − r′),

�0(r,r′) = −G(R)

R2

[
1(1 + ζR + ζ 2R2)

−RR
R2

(3 + 3ζR + ζ 2R2)

]
. (5.23)

In terms of this last dyadic, the auxilliary Green’s dyadics have
the form,

z,z′ > 0 : �(1),(2)(r,r′)
= �(0)(r,r′) ∓ �(0)(r,r′ − 2ẑz′) · (1 − 2ẑẑ). (5.24)

Now using Green’s second identity, it is easy to prove

∇ × �(2)(r,r′) = [∇′ × �(1)]T (r′,r), (5.25a)

�(1),(2)(r,r′) = [�(1),(2)]T (r′,r), (5.25b)

where T signifies transposition. In the same way we may
derive the integral equations for the Green’s dyadic for the
screen with the aperture,

z,z′ > 0 : �(r,r′)

= �(1)(r,r′) − 1

ζ 2

∫
ap

dS ′′∇ × �
(2)
+ (r,r′′) · ẑ × �(r′′,r′),

(5.26a)

z < 0 < z′ : �(r,r′)

= − 1

ζ 2

∫
ap

dS ′′∇ × �
(2)
− (r,r′′) · ẑ × �(r′′,r′), (5.26b)

where the ± subscripts on �(2) indicate that the Green’s
function is defined in the domain above or below the z = 0
plane. The continuity of the z component of the electric field
in the aperture then leads to the integral equation:

ẑ · �(1)(r,r′)|z→0+

= 1

ζ 2

∫
ap

dS ′′ẑ · ∇ × (�(2)
+ + �

(2)
− )(r,r′′) · ẑ × �(r′′,r′).

(5.27)

The system of integral equations defining the Green’s
dyadic is rather more complicated than that describing the
corresponding (classical) static potential problem, so we will
defer the discussion of strategies for its solution to a subsequent
publication. We will here turn to a situation that can be solved
exactly.

VI. CASIMIR-POLDER FORCE BETWEEN ATOM
AND A CONDUCTING WEDGE

The interaction between a polarizable atom and a perfectly
conducting half plane is a special case of the vacuum
interaction between such an atom and a conducting wedge.
For the case of an isotropic atom, this was considered by
Brevik et al. [43]. (This followed on earlier work by Brevik

x

z

•
ρ

Ω

θ

FIG. 4. Polarizable atom, located at polar coordinates ρ, θ , within
a conducting wedge with dihedral angle �.

and Lygren [44] and DeRaad and Milton [45].) In terms of the
opening dihedral angle of the wedge �, which we describe in
terms of the variable p = π/�, the electromagnetic Green’s
dyadic has the form (here the translational direction is denoted
by y, and one plane of the wedge lies in the z = 0 plane, the
other intersecting the xy plane on the line θ = �—see Fig. 4,

�(r,r′) = 2p

∞∑
m=0

′
∫

dk

2π

[
− MM′∗(∇2

⊥ − k2)
1

ω2
Fmp(ρ,ρ ′)

× cos mpθ cos mpθ ′

π
eik(x−x ′) + NN ′∗ 1

ω
Gmp(ρ,ρ ′)

× sin mpθ sin mpθ ′

π
eik(x−x ′)

]
. (6.1)

The first term here refers to TE (H) modes, the second to
TM (E) modes. The prime on the summation sign means that
the m = 0 term is counted with half weight. In the polar
coordinates in the xz plane, ρ and θ , the H and E mode
operators are

M = ρ̂
∂

ρ∂θ
− θ̂

∂

∂ρ
, (6.2a)

N = ik

(
ρ̂

∂

∂ρ
+ θ̂

∂

ρ∂θ

)
− ŷ∇2

⊥, (6.2b)

where the transverse Laplacian is

∇2
⊥ = 1

ρ

∂

∂ρ
ρ

∂

∂ρ
+ 1

ρ2

∂2

∂θ2
. (6.3)

In this situation, the boundaries are entirely in planes of
constant θ , so the radial Green’s functions are equal to the
free Green’s function,

1

ω2
Fmp(ρ,ρ ′) = 1

ω
Gmp(ρ,ρ ′)

= − iπ

2λ2
Jmp(λρ<)H (1)

mp(λρ>), (6.4)

with λ2 = ω2 − k2. We will immediately make the Euclidean
rotation, ω → iζ , where λ → iκ , κ2 = ζ 2 + k2, so the free
Green’s functions become −κ−2Imp(κρ<)Kmp(κρ>).

We start by considering the most favorable case for CP
repulsion, where the atom is only polarizable in the z direction,
that is, only αzz �= 0. In the static limit, then the only
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component of the Green’s dyadic that contributes is∫
dζ

2π
zz = 2p

4π3

∫
dk dζ

{
[ζ 2 sin2 θ sin2 mpθ − k2 cos2 θ cos2 mpθ ]

m2p2

κ2ρ<ρ>

Imp(κρ<)Kmp(κρ>)

− [k2 sin2 θ sin2 mpθ − ζ 2 cos2 θ cos2 mpθ ]I ′
mp(κρ<)K ′

mp(κρ>)

}
. (6.5)

Here we note that the off diagonal ρ-θ terms in � cancel.
We have regulated the result by point-splitting in the radial
coordinate. At the end of the calculation, the limit ρ< → ρ> =
ρ is to be taken.

Now the integral over the Bessel functions is given by∫ ∞

0
dκ κ Iν(κρ<)Kν(κρ>) = zν

ρ2
>(1 − ξ 2)

, (6.6)

where ξ = ρ</ρ>. After that the m sum is easily carried out by
summing a geometrical series. Care must also be taken with the
m = 0 term in the cosine series. The result of a straightforward
calculation leads to∫

dζ

2π
zz = −cos 2θ

π2ρ4

1

(ξ − 1)4
+ finite, (6.7)

where the divergent term, as ξ → 1, may, through a similar
calculation, be shown to be that corresponding to the vacuum
in the absence of the wedge, that is, that obtained from the
free Green’s dyadic. Therefore, we must subtract this term off,
leaving for the static Casimir energy (5.7):

Uzz
CP = −αzz(0)

8π

1

ρ4 sin4 pθ

[
p4 − 2

3
p2(p2 − 1) sin2 pθ

+ (p2 − 1)(p2 + 11)

45
sin4 pθ cos 2θ

]
. (6.8)

This result is derived by another method in Appendix A.
A small check of this result is that as θ → 0 (or θ → �) we

recover the expected Casimir-Polder result for an atom above
an infinite plane:

Uzz
CP → −αzz(0)

8πZ4
, (6.9)

in terms of the distance of the atom above the plane, Z = ρθ .
This limit is also obtained when p → 1, for when � = π we
are describing a perfectly conducting infinite plane.

A very similar calculation gives the result for an isotropic
atom, α = α1, which was first given in Ref. [43]:

UCP = − 3α(0)

8πρ4 sin4 pθ

[
p4 − 2

3
p2(p2 − 1) sin2 pθ

−1

3

1

45
(p2 − 1)(p2 + 11) sin4 pθ

]
. (6.10)

Note that this is not three times Uzz
CP in Eq. (6.8) because

the cos 2θ factor in the last term in the latter is replaced by
−1/3 here. This case was reconsidered recently, for example,
in Ref. [46].

A. Repulsion by a conducting half plane

Let us consider the special case p = 1/2, that is � = 2π ,
the case of a semi-infinite conducting plane. This was the
situation considered, for anisotropic atoms, in recent papers
by Eberlein and Zietal [47–49]. Note that in such a case,
for the completely anisotropic atom, Uzz

CP = 0 at θ = π/2,
that is, there is no force on the dipole when it is polarized
perpendicular to the half sheet and directly above the edge, as
observed in Refs. [48,49].

Consider a particle free to move along a line parallel to the
z axis, a distance X to the left of the semi-infinite plane; see
Fig. 5. The half plane x < 0, z = 0 constitutes an aperture of
infinite width. With X fixed, we can describe the trajectory by
u = X/ρ = − cos θ , in which the variable ranges from 0 to 1.
The polar angle is given by

sin2 θ

2
= 1 + u

2
. (6.11)

The energy for an isotropic atom is given by

UCP = −α(0)

32π

1

X4
V (u), (6.12)

where

V (u) = 3u4

[
1

(1 + u)2
+ 1

u + 1
+ 1

4

]
. (6.13)

The energy for the completely anisotropic atom is

Vzz = 1

3
V (u) + u4

2
(1 − 3u2). (6.14)

x

z

•
ρ

θ

X

FIG. 5. Polarizable atom, above a half conducting plane, free to
move on a line perpendicular to the plane but a distance X to the left
of the plane.
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0.0 0.2 0.4 0.6 0.8 1.0

0.5

0.0

0.5

1.0

1.5

2.0

2.5

u

f
u

FIG. 6. (Color online) The z component of the force between
an anisotropic atom (with ratio of transverse to longitudinal po-
larizabilities γ ) and a semi-infinite perfectly conducting plane,
z = 0, x > 0. Fz = −αzz/(32πX5)f (u) in terms of the variable
u = X/ρ = − cos θ . Here the atom lies on the line y = 0, x = −X,
and ρ is the distance from the edge of the plane and the atom. Here,
f > 0 corresponds to an attractive force on the z direction, and f < 0
corresponds to a repulsive force. The different curves correspond to
different values of γ , γ = 0 to 1 by steps of 0.1, from bottom to
top. For γ < 1/4 a repulsive regime always occurs when the atom is
sufficiently close to the plane of the conductor.

If we consider instead a cylindrically symmetric polarizable
atom in which

α = αzzẑẑ + γαzz(x̂x̂ + ŷŷ) = αzz(1 − γ )ẑẑ + γαzz1,

(6.15)

where γ is the ratio of the transverse polarizability to the
longitudinal polarizability of the atom, then the effective
potential is

(1 − γ )Vzz + γV, (6.16)

and the z component of the force on the atom is

Fγ
z = −αzz(0)

32π

1

X5
u2

√
1 − u2

d

du

×
[

1

2
u4(1 − γ )(1 − 3u2) + 1

3
(1 + 2γ )V (u)

]
, (6.17)

where V is given by Eq. (6.13). Note that the energy (6.16),
or the quantity in square brackets in Eq. (6.17), only vanishes
at u = 1 (the plane of the conductor) when γ = 0. Thus, the
argument given in Ref. [32] applies only for the completely
anisotropic case.

The force is plotted in Figs. 6 and 7. It will be seen that if
γ is sufficiently small, when the atom is sufficiently close to
the plane of the plate the z component of the force is repulsive
rather than attractive. The critical value of γ is γc = 1/4.
This is a completely analytic exact analog of the numerical
calculations shown in Ref. [32], where the interaction was
considered between a conducting plane with an aperture (cir-
cular hole or slit), and a conducting cylindrical or ellipsoidal
object. Our calculation demonstrates that three-body effects
are not required to exhibit Casimir-Polder repulsion.

It is interesting to observe that the same critical value of
γ occurs for the nonretarded regime of a circular aperture,

0.990 0.992 0.994 0.996 0.998 1.000

0.000

0.005

0.010

0.015

0.020

0.025

0.030

u

f
u

FIG. 7. (Color online) Same as Fig. 6. The region close to the
plane, 1 � u � 0.99, with γ near the critical value of 1/4. Here from
bottom to top are shown the results for values of γ from 0.245 to
0.255 by steps of 0.001.

as follows from a simple computation based on the result of
Ref. [49]. For example, applying the result there for an atom
with polarizability given by Eq. (6.15) placed a distance Z

along the symmetry axis of an circular aperture of radius a in
a conducting plane gives an energy,

U = − 1

16π2

∫ ∞

−∞
dζ αzz(ζ )

× 1

Z3

{
(1 + γ )

(
π

2
+ arctan

Z2 − a2

2aZ

)
+ 2aZ

(Z2 + a2)3

×
[

(1 + γ )(Z4 − a4) − 8

3
(1 − γ )a2Z2

]}
. (6.18)

It is easy to see that this has a minimum for z > 0, and hence
there is a repulsive force close to the aperture, provided γ <

γc = 1/4.

B. Repulsion by a wedge

It is very easy to generalize the above result for a wedge,
p > 1/2; that is, we want to consider a strongly anisotropic
atom, with only αzz significant, to the left of a wedge of the
opening angle,

β = 2π − �, (6.19)

as shown in Fig. 8. We want the z axis to be perpendicular to
the symmetry axis of the wedge so the relation between the
polar angle of the atom and the angle to the symmetry line is

φ = θ + β/2, (6.20)

where, as before, θ is the angle relative to the top surface of the
wedge. Then, it is obvious that the formula for the Casimir-
Polder energy (6.8) is changed only by the replacement of
cos 2θ by cos 2φ, with no change in sin pθ . Now we can ask
how the region of repulsion depends on the wedge angle β.

Write for an atom on the line x = −X,

Uzz
CP = −αzz(0)

8πX4
V (φ), (6.21)
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X

•ρ

β

θ

φ

FIG. 8. A polarizable atom outside a perfectly conducting wedge
of interior angle β. The atom is located at polar angles ρ, φ relative
to the symmetry plane of the wedge.

where

V (φ) = cos4 φ

[
p4

sin4
(

π
2

φ−β/2
π−β/2

) − 2

3

p2(p2 − 1)

sin2
(

π
2

φ−β/2
π−β/2

)
+ 1

45
(p2 − 1)(p2 + 11) cos 2φ

]
. (6.22)

At the point of closest approach,

V (π ) = 1
45 (4p2 − 1)(4p2 + 11), (6.23)

so the potential vanishes at that point only for the half-plane
case, p = 1/2. The force in the z direction is

Fz = −αzz

8π

1

X5
f (φ), (6.24a)

f (φ) = cos2 φ
∂V (φ)

∂φ
. (6.24b)

2.0 2.5 3.0

0.1

0.0

0.1

0.2

φ

f
φ

FIG. 9. (Color online) The z component of the force on a
completely anisotropic atom moving on a line perpendicular to a
wedge. The different curves are for various values of β from 0 to π

by steps of π/20, from bottom up. The last few values of β have a
markedly different character from the others.

Figure 9 shows the force as a function of φ for fixed X.
It will be seen that the force has a repulsive region for angles
close enough to the apex of the wedge, provided that the wedge
angle is not too large. The critical wedge angle is actually rather
large, βc = 1.87795, or about 108◦. For larger angles, the z

component of the force exhibits only attraction. Of course,
the force is zero for β = π because then the geometry is
translationally invariant in the z direction.

VII. CONCLUSIONS

This paper may be thought of as a counterpart to Ref. [32].
While that reference proceeded on the basis of numerical
calculations, we have used analytic approaches. After some
examples indicating that Casimir-Polder attraction is typical,
and always seems to occur in weak coupling, we demon-
strate that the quantum-vacuum Casimir-Polder interaction
for a sufficiently anisotropic atom above a conducting half
plane can exhibit regimes of repulsive forces for motion
confined to certain specified directions. This directly translates
into repulsion between such an atom and a plane with
an aperture for motion along a line perpendicular to the
plane. More complete analysis of that case will be presented
elsewhere.

Recently, Ref. [49] appeared, which demonstrates in the
nonretarded (van der Waals) regime, repulsion could occur
between an anisotropically polarizable atom and a conducting
plate with an aperture. The critical value of the anisotropy is
the same as found here.

Perhaps most remarkable here is that not only can we
achieve repulsion with a half plane, but also with a wedge
geometry, even when the interior angle of the wedge is greater
than 90◦. This indicates that while anisotropy in both the atom
and the conductor must be present for repulsion, the anisotropy
in the latter need not be too extreme, and that repulsion in other
geometries may be readily achievable. Three-body forces are
not required, nor is a high degree of symmetry, as was present
in Refs. [32,49].
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APPENDIX A: DERIVATION OF ANISOTROPIC WEDGE
CP FORCE FROM CLOSED-FORM GREEN’S FUNCTION

Many years ago Lukosz gave a closed form for the Green’s
functions for a perfectly conducting wedge [50]. The four-
dimensional Euclidean Green’s dyadic has the closed form,

�(τ − τ ′,y − y ′,ρ,ρ ′,φ,φ′) = −MM′GH + NN′GE, (A1)

where the transverse differential operators are [cf. Eq. (6.2)]

M = ρ̂
1

ρ

∂

∂φ
− φ̂

∂

∂ρ
≡ M, N = ρ̂

∂

∂ρ
+ φ̂

1

ρ

∂

∂φ
, (A2)
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where there is an additional contribution to N in the y direction.
This Green’s dyadic is the frequency Fourier transform of that
discussed in Sec. VI. Here the E (TM) and H (TE) Green’s
functions have the form,

GH,E = χ (y,ρ,τ ; y ′,ρ ′,τ ′; φ − φ′)
±χ (y,ρ,τ ; y ′ρ ′,τ ′; φ + φ′ − �), (A3)

for a wedge of dihedral angle �, with φ ∈ [−�/2,�/2]. Here

χ (y,ρ,τ ; y ′,ρ ′,τ ′; ψ)

= 1

8π�ρρ ′ sinh υ

sinh(πυ/�)

cosh(πυ/�) − cos(πψ/�)
, (A4)

where

sinh
υ

2
= 1

2

[
(τ − τ ′)2 + (y − y ′)2 + (ρ − ρ ′)2

ρρ ′

]1/2

. (A5)

For the interaction with an atom possessing only an αzz

polarizability, we need

zz = cos(φ + φ′)
(

1

ρρ ′
∂

∂φ

∂

∂φ′ − ∂

∂ρ

∂

∂ρ

)
χ (φ − φ′)

+ 2

(
sin φ cos φ′ 1

ρ

∂

∂φ

∂

∂ρ ′ + sin φ′ cos φ
1

ρ ′
∂

∂φ′
∂

∂ρ

)
×χ (φ − φ′) − cos(φ − φ′)

×
(

1

ρρ ′
∂

∂φ

∂

∂φ′ + ∂

∂ρ

∂

∂ρ ′

)
χ (φ + φ′ − �). (A6)

Here, we have suppressed all the arguments in χ except for
the angular ones. For our application here, we are interested
in the coincidence limit, so from the outset we can set τ = τ ′
and x = x ′. Then,

sinh
υ

2
= 1

2

1 − ξ√
ξ

, ξ = ρ<

ρ>

, (A7)

which implies

υ = − ln ξ. (A8)

Now we expand first in φ − φ′, then after the differentiations
set φ = φ′, and then expand in υ, that is, in 1 − ξ . We
immediately note that the mixed derivative term in Eq. (A6)
does not contribute, because there is no linear term in φ − φ′.
The result of a straightforward calculation is

zz = − cos 2θ

16π2ρ4

{
16

(1 − ξ )4
− 1

45
(p2 − 1)(p2 + 11)

}

+ 1

16π2ρ4

{
p4

sin4 pθ
− 2

3

p2(p2 − 1)

sin2 pθ

}
, (A9)

where p = π/�, and we have switched to the angle from
the “upper” plate, θ = φ + �/2, which is chosen to run
from 0 to �. The first term in Eq. (A9) corresponds to the
χ (φ − φ′) contribution, and the second to the cos(φ + φ′ − �)
contribution. Note, the divergent term (as ξ → 1) is precisely

the vacuum term given in Eq. (6.7), and should be subtracted
off, and the rest, when multiplied by −2παzz, coincides with
Eq. (6.8).

APPENDIX B: ELECTROSTATIC ASPECTS: CONDUCTING
ELLIPSOID OUTSIDE A CONDUCTING PLATE WITH A

CIRCULAR HOLE

Consider a conducting uncharged solid ellipsoid with semi-
axes c > a > b, centered at X = Y = Z = 0. The ellipsoid
is orientated such that the major semiaxis c lies along the
Z axis. To describe the electrostatic potential φ in the external
region, one can make use of ellipsoidal coordinates ξ,η,ζ ,
corresponding to solutions for u of the cubic equation,

Z2

c2 + u
+ X2

a2 + u
+ Y 2

b2 + u
= 1. (B1)

The coordinate intervals are

∞ > ξ � −b2, − b2 � η � −a2, − a2 � ζ � −c2.

(B2)

The relationships between the ellipsoidal and the Cartesian
coordinates are given in Ref. [51] and will not be reproduced
here. We shall, however, need the line element,

dl2 = h2
1 dξ 2 + h2

2 dη2 + h2
3 dζ 2, (B3)

where

h1 = 1

2Rξ

√
(ξ − η)(ξ − ζ ), h2 = 1

2Rη

√
(η − ζ )(η − ξ ),

(B4)

h3 = 1

2Rζ

√
(ζ − ξ )(ζ − η), R2

u = (u+ c2)(u+ a2)(u+ b2),

(B5)

with u = ξ,η,ζ .
In the following we assume axial symmetry around the

Z axis. Then a → b, η → −b2, and the equation for the
surface of the ellipsoid becomes

Z2

c2
+ R2

b2
= 1, (B6)

with R2 = X2 + Y 2. We now have

Z = ±
[

(ξ + c2)(ζ + c2)

c2 − b2

]1/2

, R =
[

(ξ + b2)(ζ + b2)

b2 − c2

]1/2

.

(B7)

The ellipsoidal coordinates ξ,η,ζ reduce in the case of
axisymmetry to so-called prolate spheroidal coordinates ξ and
ζ , lying in the intervals,

∞ > ξ � −b2, − b2 � ζ � −c2. (B8)

Surfaces of constant ξ and ζ are prolate spheroids and hyper-
boloids of revolution, the surfaces intersecting orthogonally.
On the Z axis (R = 0) one has ζ = −b2,Z = ±

√
ξ + c2,
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whereas in the XY plane (Z = 0) one has ζ = −c2,R =√
ξ + b2. On the surface of the ellipsoid, ξ = 0.
In free space outside the ellipsoid the Laplace equation

reads

∇2φ ≡ 4

ζ − ξ

[
Rξ

ξ + b2

∂

∂ξ

(
Rξ

∂φ

∂ξ

)

− Rζ

ζ + b2

∂

∂ζ

(
Rζ

∂φ

∂ζ

)]
= 0. (B9)

Assume now that the ellipsoid is placed in an external
potential φ0, axisymmetric with respect to the Z axis so that
φ0 = φ0(ξ,ζ ). We write the resulting potential φ in the form,

φ(ξ,ζ ) = φ0(ξ,ζ )[1 + F (ξ )], (B10)

so that φ0F is the perturbation of the external field. As the
boundary condition ξ = 0 on the surface has to hold for all
values of ζ , it is natural to make the ansatz that F depends on
ξ only.

Inserting Eq. (B10) into Eq. (B9) we find that the terms
containing F as a factor sum up to zero, the reason being
the validity of Eq. (B9) also when φ is replaced by φ0.
The remaining terms containing F ′(ξ ) and F ′′(ξ ) yield the
equation,

d2F

dξ 2
+ dF

dξ

d

dξ
ln

(
Rξ φ2

0

) = 0. (B11)

When integrating this equation, in order to preserve the validity
of the ansatz F = F (ξ ), the coordinate ζ in φ0 has to be
regarded as a parameter. The integration thus has to extend
from ξ = 0 (the surface) in the outward direction, along a line
on the hyperboloid ζ = constant.

The solution of Eq. (B11) can be written as

F = A

∫ ∞

ξ

dξ

Rξφ
2
0

, (B12)

where the constant A is determined from the condition F (0) =
−1 on the ellipsoid surface. That means

φ = φ0

⎡
⎣1 −

∫ ∞
ξ

dξ

Rξ φ
2
0∫ ∞

0
dξ

Rξ φ
2
0

⎤
⎦ . (B13)

We now specify the form of φ0, as the potential from a
grounded conducting plate lying in the xy plane, when far
from the plate there are constant electric fields, directed normal
to the plate, having different values on either side. In the plate
there is a circular opening with radius a (this radius is not
to be confused with the semiaxis a mentioned above). The
center of the opening is at position x = y = z = 0. It is known
(Ref. [35], Sec. 3.13) that on the z axis,

φ0(z) = �00

[
1 − |z|

a
arctan

a

|z|
]
, (B14)

where �00 is a constant. At the origin, φ0 = �00. At infinity,
|z| → ∞, φ0 → 0.

The center of the vertically oriented ellipsoid is at position
z = z0. Thus z = z0 + Z. We will assume that the ellipsoid

is so slender that the variation of φ0 in the transverse x and
y directions can be neglected. Thus we adopt the expression
(B14) in the external field region of interest, φ0 = φ0(ξ,ζ ), ξ

and ζ being restricted to the same intervals (B8) as before.
We consider now the upper half of the ellipsoid, z � z0 or

Z � 0. The nonperturbed potential, called φ0+, is then

φ0+ = �00

[
1 − z0 +

√
ξ + c2

a
arctan

a

z0 +
√

ξ + c2

]
.

(B15)

Thus the potential φ+ in Eq. (B13) can be found numerically,
inserting φ0+ together with Rξ = (ξ + b2)

√
ξ + c2. [In prac-

tice the following expansion can here be useful [52]:

1

x
arctan x = 1 +

8∑
k=1

a2kx
2k + O(10−8), 0 � x � 1,

(B16)

with coefficients a2k of order unity or less.]
The induced surface charge density σ+ on the ellipsoid is

σ+ = −
[

ε0

h1

∂φ+
∂ξ

]
ξ=0

= −
[

2ε0bc√−ζ

∂φ+
∂ξ

]
ξ=0

, (B17)

since on the surface h1 = (b/2Rξ )
√−ζ = (1/2bc)

√−ζ . In
view of the relationships between the ellipsoidal and Cartesian
coordinates this can be reexpressed as

σ+ = −2ε0

[
Z2

c4
+ R2

b4

]−1/2[
∂φ+
∂ξ

]
ξ=0

. (B18)

From Eq. (B13) it follows that the derivative [∂φ0+/∂ξ ]ξ=0

does not contribute to σ+ [recall that F (0) = −1]. The
remaining term is[

∂φ+
∂ξ

]
ξ=0

= 1

b2c

1

[φ0+]ξ=0

[ ∫ ∞

0

dξ

Rξ φ2
0+

]−1

. (B19)

Thus for z � z0 we get as solution,

σ+ = σ0+
c

[
Z2

c4
+ R2

b4

]−1/2

, (B20)

where σ0+ is the constant,

σ0+ = −2ε0

b2

1

�00

[ ∫ ∞
0

dξ

Rξ φ2
0+

]−1

[
1 − z0+c

a
arctan a

z0+c

] (B21)

(recall again that a is the radius of the hole). The dependence
of σ+ on the coordinates Z and R in Eq. (B20) is actually
the same as for a charged ellipsoid in free space [51]. The
surface force density on the ellipsoid is (σ 2/2ε0)n, n being
the outward normal. The slope of the tangent to the surface
is dZ/dR = −(c2/b2)R/Z; the slope of n is accordingly
(b2/c2)Z/R. Denoting this as tan θ , we get, when going over
to ellipsoidal coordinates,

tan θ = b

c

[
ζ + c2

−ζ − b2

]1/2

. (B22)
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The component of n along the Z axis is, then,

nZ = sin θ = b√
c2 − b2

[
ζ + c2

−ζ

]1/2

, (B23)

and we can now find the total vertical force FZ+ on the upper
half of the ellipsoid by integrating over the actual surface. The
line element along the meridian is

h3dζ = 1

2

[
ζ

(ζ + b2)(ζ + c2)

]1/2

dζ, (B24)

and the surface element dA becomes

dA = 2πR h3 dζ = πb√
c2 − b2

[ −ζ

ζ + c2

]1/2

dζ. (B25)

As σ+ in Eq. (B20) can be reexpressed as

σ+ = σ0+
b√−ζ

, (B26)

we can calculate FZ+ as

FZ+ =
∫

Z�0

σ 2
+

2ε0
nZ dA = σ 2

0+
2ε0

πb4

c2 − b2

∫ c2

b2

d(−ζ )

(−ζ )

= σ 2
0+
ε0

πb4

c2 − b2
ln

c

b
. (B27)

The expression is positive as expected; the force is acting
upward. The only dependence on the position z0 lies in σ0+,
as σ0+ = σ0+(z0) according to Eq. (B21).

The lower half of the ellipsoid, Z < 0, can be treated in an
analogous way. A complicating element is here the presence of
the conducting plate in the xy plane, for radii ρ � a. It means
that we can no longer extend the integration over ξ in the
solution (B12) to infinity in a straightforward way. We observe
that the undisturbed potential in the xy plane can be written as

φ0(ρ,0) =
{

�00

√
1 − ρ2/a2, ρ � a

0, ρ > a,
(B28)

where ρ2 = x2 + y2, �00 being the potential at the center.
Our approach will be based on the following two assump-

tions:
(1) The ξ integration will be terminated on the xy plane,

this implying that the effect of the perturbation is assumed to
be small at that level. This approximation is expected to be
good except when the distance between the lower end of the
ellipsoid and the plane is small.

(2) Secondly, the integration over ξ will be assumed to run
over trajectories lying close to the z axis, corresponding to ζ =
−b2. This assumption simplifies the mathematical analysis. It
is supported by physical considerations also, since when the
ellipsoid is slender the hyperboloids ζ = constant emerging
from the surface of the ellipsoid near its lower end become
concentrated in the vicinity of the z axis.

As according to Eq. (B7) the plane position z = 0 in general
corresponds to

z0 =
[

(ξ + c2)(ζ + c2)

c2 − b2

]1/2

, (B29)

our approximations imply that the ξ integration is terminated
at

ξplane = z2
0 − c2, (B30)

that is, the same constant for the whole lower half of the
ellipsoid.

As solution for the perturbed potential we thus get

φ− = φ0−

⎡
⎣1 −

∫ ξplane

ξ

dξ

Rξ φ2
0−∫ ξplane

0
dξ

Rξ φ2
0−

⎤
⎦ , (B31)

where

φ0− = �00

[
1 − z0 −

√
ξ + c2

a
arctan

a

z0 −
√

ξ + c2

]
.

(B32)

The force FZ− on the lower half can now be calculated.
As before, Rξ = (ξ + b2)

√
ξ + c2. Equation (B26) becomes

replaced by

σ− = σ0−
b√−ζ

, (B33)

where now

σ0− = −2ε0

b2

1

�00

[ ∫ ξplane

0
dξ

Rξ φ2
0−

]−1

[
1 − z0−c

a
arctan a

z0−c

] . (B34)

The total force on the ellipsoid becomes

FZ = FZ+ + FZ− = σ 2
0+ − σ 2

0−
ε0

πb4

c2 − b2
ln

c

b
, (B35)

which can be rewritten as

FZ = 4πε0

�2
00

1

c2 − b2

⎧⎨
⎩

[ ∫ ∞
0

dξ

Rξ φ2
0+

]−2

[
1 − z0+c

a
arctan a

z0+c

]2

−
[ ∫ ξplane

0
dξ

Rξ φ2
0−

]−2

[
1 − z0−c

a
arctan a

z0−c

]2

⎫⎬
⎭ ln

c

b
. (B36)

In the limiting case of a sphere, b → c, the expression becomes
somewhat simpler,

FZ = 2πε0

�2
00

1

c2

⎧⎨
⎩

[ ∫ ∞
0

dξ

(ξ+c2)3/2 φ2
0+

]−2

[
1 − z0+c

a
arctan a

z0+c

]2

−
[ ∫ ξplane

0
dξ

(ξ+c2)3/2 φ2
0−

]−2

[
1 − z0−c

a
arctan a

z0−c

]2

⎫⎬
⎭ . (B37)

We have made some numerical checks of these expressions
(using MAPLE). They indicate that there is no change in the sign
of the force for various input parameters for the geometry. The
force is attractive, as expected. It turns out that the dependence
on the upper integration limit ξplane = z2

0 − c2 is weak, as
anticipated above.
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