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This work is an ab initio study of the 2p3 4So
3/2, and 2Do

3/2,5/2 states of C− and 2p2 3P0,1,2, 1D2, and 1S0 states
of neutral carbon. We use the multiconfiguration Hartree-Fock approach, focusing on the accuracy of the wave
function itself. We obtain all C− detachment thresholds, including correlation effects to about 0.5%. Isotope
shifts and hyperfine structures are calculated. The achieved accuracy of the latter is of the order of 0.1 MHz.
Intraconfiguration transition probabilities are also estimated.
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I. INTRODUCTION

Negative ions have always attracted broad attention from
the scientific community [1,2]. They challenge both the
experimentalists and theoreticians; the first because they are
weakly bound, and therefore fragile, and because they do not
possess many features allowing measurements, and the latter
because the binding of an extra electron is granted only by an
arrangement of the electrons in a highly correlated system [3].
Moreover, the fact that the electrons in negative ions are bound
by a short-range potential confer them unique properties.

C− is the lightest negative ion to have two bound terms:
its ground state 4So and the 2Do excited state which both arise
from the 2p3 configuration. The level diagram of the states
studied in this work is given in Fig. 1.

Carbon is among the most abundant components in the
universe and a key element in life chemistry. The carbon
negative ion is important in astrophysics and atmosphere
physics since nitrogen-like 2p3 4So-2Do forbidden lines are
recognized as useful transitions for abundances determination
[4–6]. It has also recently been suggested by Le Padellec
et al. [7] that C− negative ion could intervene in astrophysical
reactions. The photodetachment cross-sections of the C−
have been repeatedly studied, both theoretically [8] and
experimentally [9], for photon energies addressing valence
electrons and core electrons [10,11]. Recently, an isotope
separation method was tested by Andersson et al. [12], based
on the isotopic dependence of the Doppler shift of the C−
detachment thresholds in an accelerator.

A binding energy of 1.262119(20) eV for the C−(4So) has
been measured by Scheer et al. [13], who could not improve the
old value of 33(1) meV for the C−(2Do) detachment threshold,
measured by Feldmann [14]. The fine structure of the 2Do state
is not known. On the theoretical side, very accurate carbon
electron affinities were obtained with coupled-cluster-based
methods [15–17].

The structure of the C− has not been studied thoroughly and
especially little is known about the 2Do multiplet. In laboratory
plasmas, lifetimes of the order of the ms were measured for the
C−(2Do), the electron detachment being principally caused by
the black-body radiation and, to a lesser extent, to collisions

*tcarette@ulb.ac.be
†mrgodef@ulb.ac.be

[18]. Significantly longer lifetimes could be reached in the
cold and diluted interstellar media where molecular anions
have already been detected [19]. However, the C−(2Do) is,
for various reasons, very difficult to study experimentally. In
this context, a firm theoretical knowledge of this system is
particularly precious.

Elements from boron to fluorine are the next targets
after beryllium in the working line of “exact” calculations.
High accuracy can be achieved for systems with up to
four electrons using wave functions expanded in explicitly
correlated Gaussian or in Hylleraas coordinates [20–22].
Although the precision that can be achieved for atoms with
more electrons is limited by the complexity of the electron-
correlation mathematical treatment, the ground states of the
second period p-block atoms from B to F are satisfactorily
described by a nonrelativistic approach on top of which
relativistic corrections are added.

A critical benchmark quantity for highly correlated models
is the isotope shift (IS) on the electron affinity (eA) that is
doubly sensitive to correlation effects: through the negative
ion structure and through the specific mass shift parameter.
The multiconfiguration Hartree-Fock method has been suc-
cessfully used for calculating the IS on the eA of O [23], S [24],
and Cl [25].

The purpose of the present work is double. Our principal
objective is to obtain the crucial informations about the C−
electronic structure for stimulating experimental research on
the 2Do state. Therefore, we focus on quantities that are
especially difficult for experimentalists to measure: isotope
shifts, hyperfine structures, and transition probabilities. As for
the energy separations themselves, we do not try to compete
with either the observation or the previous coupled-cluster
calculations. We instead use these reliable reference data for
assessing the quality of our computational procedure.

Our second objective is to obtain nonrelativistic (NR) wave
functions as accurate as possible using the standard tools of
the ATSP2K package [26]. For getting the best estimation of the
accuracy, we choose to use the same systematical construction
of our C and C− models, avoiding any arbitrary compensation
of the “additional” electron correlation of the negative ion
compared to the neutral atom.

In Sec. II, we present large-scale numerical multiconfig-
uration Hartree-Fock (MCHF) calculations (Sec. II E) and
relativistic calculations, using the Breit-Pauli (BPCI) approach
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FIG. 1. Levels diagram of C and C−. The fine structures of C 3P

and C−2Do terms are magnified (×100).

(Sec. II F) [27] and the relativistic configuration (RCI) method
based on the Pauli approximation (Sec. II G) [28]. In Sec. III,
we present accurate results for hyperfine structures (Sec. III A),
total energies including the fine structures (Sec. III B), and
mass polarization shift parameters (Sec. III C) of C 2p2 3P ,
1D, 1S and C− 2p3 4So, 2Do. In Sec. III D, we present the
M1 and E2 transition probabilities within the 2p2 and 2p3

configurations of C and C−.

II. COMPUTATIONAL METHOD

A. The MCHF expansion

The multiconfiguration Hartree-Fock (MCHF) variational
approach consists in optimizing the one-electron functions
spanning a configuration space and the mixing coefficients
of the interacting configuration state functions (CSF) [27] for
describing a given term

�(γLSMLMS) =
∑

i

ci�(γiLSMLMS). (1)

B. Hyperfine interaction

The level hyperfine structure is caused by the interaction of
the angular momentum of the electrons (J) and of the nucleus
(I), forming the total atomic angular momentum F = I + J.
The theory underlying the computation of hyperfine structure
using MCHF wave functions can be found in Refs. [29–31]. It
is possible to express the nonrelativistic hyperfine interaction
in terms of the J -independent orbital (al), spin-dipole (asd),
contact (ac), and electric quadrupole (bq) electronic hyperfine
parameters defined as [29]

al ≡ 〈�LSMLMS |
N∑

i=1

l
(1)
0 (i)r−3

i |�LSMLMS〉, (2)

asd ≡ 〈�LSMLMS |
N∑

i=1

2C
(2)
0 (i)s(1)

0 (i)r−3
i |�LSMLMS〉, (3)

ac ≡ 〈�LSMLMS |
N∑

i=1

2s
(1)
0 (i)r−2

i δ(ri)|�LSMLMS〉, (4)

bq ≡ 〈�LSMLMS |
N∑

i=1

2C
(2)
0 (i)r−3

i |�LSMLMS〉, (5)

and calculated for the magnetic component ML = L and MS =
S [32]. The diagonal hyperfine interaction energy correction
is usually expressed in terms of the hyperfine magnetic dipole
(AJ ) and electric quadrupole (BJ ) constants as follows:

W (J,J ) = AJ

C

2
+ BJ

3C(C + 1) − 4I (I + 1)J (J + 1)

8I (2I − 1)J (2J − 1)
.

(6)

The first three parameters (2), (3), and (4) contribute to the
magnetic dipole hyperfine interaction constant through

AJ = Al
J + Asd

J + Ac
J , (7)

with [33]

Al
J = Gµ

µI

I
al

〈L · J〉
LJ (J + 1)

, (8)

Asd
J = 1

2
Gµgs

µI

I
asd × 3〈L · S〉〈L · J〉 − L(L + 1)〈S · J〉

SL(2L − 1)J (J + 1)
,

(9)

Ac
J = 1

6
Gµgs

µI

I
ac

〈S · J〉
SJ (J + 1)

, (10)

while the last one (bq) constitutes the electronic contribution
to the electric quadrupole hyperfine interaction

BJ =− GqQbq × 6〈L · J〉2 − 3〈L · J〉− 2L(L+ 1)J (J + 1)

L(2L− 1)(J + 1)(2J + 3)
.

(11)

Expressing the electronic parameters al , asd, and ac in atomic
units (units of a−3

0 ) and µI in nuclear magnetons (units
of µN ), the magnetic dipole hyperfine structure constants
AJ are calculated in units of frequency (MHz) by using
Gµ = 95.41067. Similarly, the electric quadrupole hyperfine
structure constants BJ are expressed in MHz when adopting
atomic units (units of a−3

0 ) for bq , barns for Q and Gq =
234.96475. The expectation values of the angular momenta
scalar products are given by

〈L · J〉 = [J (J + 1) + L(L + 1) − S(S + 1)]/2, (12)

〈S · J〉 = [J (J + 1) − L(L + 1) + S(S + 1)]/2, (13)

〈S · L〉 = [J (J + 1) − L(L + 1) − S(S + 1)]/2, (14)

when calculated with nonrelativistic LSJ wave functions.
The expression for the off-diagonal hyperfine interaction,
depending on the hyperfine constants AJ,J−1, BJ,J−1, and
BJ,J−2, are developed in Ref. [31]. Hibbert [32] gives the
expressions of AJ,J−1 in terms of the hyperfine parameters
(2)–(5).

C. The isotope shift

The first-order isotope shift on an energy level is decom-
posed in a field shift (or volume shift) and a mass shift [34].
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The first is proportional to the change in nucleus rms radius
and change of the modified electron density at the origin. It is
negligible in our context.

The energy corrected for the first-order mass shift, on the
other hand, can be estimated using [35]

EM = M

m + M
E∞ + Mm

(M + m)2

h̄2

m
Ssms, (15)

where m is the electron mass, M is the bare nucleus mass, E∞
the infinite mass nucleus, and

Ssms = −〈�∞|
∑
i<j

∇i · ∇j |�∞〉. (16)

The first term contains the normal mass shift (NMS)

�ENMS = − m

m + M
E∞ (17)

and the second one is the specific mass shift (SMS). The mass
polarization parameter, Ssms, has the dimension of an inverse
square length.

D. Transition probabilities

The Einstein Aif coefficient of spontaneous emission is
defined as the total probability per unit of time for an atom in
a given energy level i to make a radiative transition to any of
the gf states of the energy level f [36].

A transition between levels of same parity is forbidden
in the electric dipole approximation, being in general many
orders of magnitude lower than an allowed transition. Two
interactions of the same order of magnitude can contribute
to the appearance of such transitions: the magnetic dipole
and the electric quadrupole radiation-matter interactions. At
the nonrelativistic level, a dipole magnetic transition (M1) is
governed by the electronic magnetic dipole operator that is

AM1 ∝ (Ei − Ef )3|〈�f Jf ||L + gs S||�iJi〉|2. (18)

In the monoconfiguration approximation, the above matrix el-
ement is nonzero only between states of the same configuration
and LS. This selection rule is relaxed by configuration and LS

mixings, the remaining constraints being that Jf = Ji,Ji ± 1
and that �i and �f have the same parity. For its part, an electric
quadrupole (E2) transition rate is proportional to the electric
quadrupole moment matrix element

AE2 ∝ (Ei − Ef )5|〈�f Jf ||
∑

k

r2
k C(2)(k)||�iJi〉|2, (19)

the sum running on all spatial electron coordinates k. Neglect-
ing the LS term mixing, a necessary condition for AE2 to be
nonzero is that Sf − Si = 0, |Lf − Li | � 2, |Lf + Li | � 2
and that the atomic parity is conserved.

E. Nonrelativistic calculations

We first select a zero-order set of CSFs, the multireference
(MR). For all studied states it is the set of single and double
excitations of the main configuration to the n = 2,3 shells. All
the CSFs interacting to first order with the MR are selected
and we choose the reverse order for the subshell coupling
[24]. The orbital active set is defined as the set of all orbitals
characterized by quantum numbers n � nmax and l � lmax, and
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FIG. 2. Bilogarithmic plot of the convergence of the C(3P ) mass
polarization expectation value versus the corresponding energy in
hartrees. The coordinates of the black squares are the differences (in
absolute value) between the results of the MR-I�nl� and MR-I�12k�
calculations, n = 6–11 from left to right. Similarly, the coordinates
of the white squares show the convergence of MRp-I�12k� toward
MR99.95-I�12k�, p = (99–99.9)% from left to right.

is denoted �nmaxlmax�. We perform MCHF calculations defined
in the spaces �4f � to �12k�, denoted MR-I�nmaxlmax�.

For each active space �10k�, �11k�, and �12k�, we order the
configurations according to their weight.1 We then construct
several new MRs following this hierarchy, independently for
each state and active set, by selecting the minimum group of
configurations that add up to a certain percentage p of the
total wave function. Those multireferences are denoted MRp

for each given MR-I wave function. Unsurprisingly, the MRp

sets are not sensitive to the used active set.
Configuration-interaction calculations (CI) that determine

the optimal mixing coefficients for a given orbital basis are
performed on each MRp-I CSF sets, p being limited to 99.8%
for C−(4So) and to 99.3% for C−(2Do). An example of the
convergence of the calculations with the number of correlation
layers (n − 2) and p is given in Fig. 2. It presents results on
the 2p2 3P state of neutral carbon. The black squares show
h̄2

m
δSsms with

δSsms = |Ssms(MR-I�nl�) − Ssms(MR-I�12k�)|, (20)

versus

δE = |E(MR-I�nl�) − E(MR-I�12k�)| (21)

for n = 6–11. Similarly, the white squares compare the E

and Ssms convergences of the MRp-I�12k�, p = 99.0–99.9,
results toward the MR99.95-I�12k� model. The energy always
decreases along a sequence of increasingly large calculations,
according to the variational principle, while the Ssms of
MRp-I�nl� calculations decreases with n and increases with
p. δSsms and δE show a close to linear correlation, i.e., the

1The weight of a configuration is defined as w = (
∑

i c
2
i )1/2, where

the sum runs over the CSFs belonging to the configuration.
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TABLE I. Results of the MCHF and CI calculations performed for the carbon 2p2 3P , 1D and 1S terms. The energies E are in units of Eh,
the Ssms in units of a−2

0 and the hyperfine parameters in units of a−3
0 . The final values are the results of the larger �12k� calculations on which

the impact of the 13th shell and l = 8 orbitals has been additively transferred.

Model 1s22s22p2 3P 1s22s22p2 1D 1s22s22p2 1S

nl p E Ssms al asd ac bq E Ssms al bq E Ssms

MCHF MCHF MCHF
HF −37.688618 −1.39418 1.69181 0.33836 0.0 0.67672 −37.631331 −1.35557 3.26420 −1.30568 −37.549610 −1.29745
4 −37.823094 −0.43410 1.68577 0.37538 0.26753 0.60177 −37.773728 −0.40151 3.23862 −1.14955 −37.720089 −0.38101
5 −37.834178 −0.40791 1.70216 0.36515 0.59931 0.61023 −37.786495 −0.37677 3.27425 −1.16232 −37.733658 −0.38198
6 −37.839793 −0.39926 1.70450 0.35943 0.46199 0.63127 −37.792593 −0.36238 3.27661 −1.20179 −37.740170 −0.35936
7 −37.842009 −0.40361 1.70480 0.36087 0.42598 0.63566 −37.795060 −0.36697 3.27734 −1.21478 −37.742742 −0.36255
8k −37.843075 −0.40499 1.70463 0.36235 0.44763 0.63110 −37.796285 −0.36842 3.27694 −1.20731 −37.743993 −0.36275
9k −37.843607 −0.40598 1.70460 0.36107 0.48183 0.63025 −37.796884 −0.36938 3.27673 −1.20173 −37.744656 −0.36358
10k −37.843885 −0.40637 1.70460 0.36122 0.46815 0.63195 −37.797231 −0.36991 3.27669 −1.20672 −37.745021 −0.36384
11k −37.844065 −0.40673 1.70461 0.36136 0.47197 0.63174 −37.797436 −0.37029 3.27665 −1.20611 −37.745234 −0.36417
12k −37.844170 −0.40695 1.70462 0.36137 0.47401 0.63133 −37.797556 −0.37051 3.27155 −1.20364 −37.745361 −0.36436

CI CI CI
11k 99.0 −37.843780 −0.41241 1.70500 0.36141 0.47079 0.63192 −37.797309 −0.37136 3.27684 −1.20610 −37.744893 −0.36693

99.5 −37.844069 −0.40643 1.70495 0.36143 0.47529 0.63186 −37.797568 −0.36819 3.27677 −1.20604 −37.745357 −0.36179
99.7 −37.844179 −0.40455 1.70474 0.36139 0.46821 0.63181 −37.797740 −0.36500 3.27651 −1.20576 −37.745523 −0.35869
99.8 −37.844255 −0.40344 1.70510 0.36150 0.45312 0.63185 −37.797794 −0.36429 3.27653 −1.20581 −37.745561 −0.35805
99.9 −37.844291 −0.40282 1.70508 0.36151 0.45521 0.63183 −37.797830 −0.36388 3.27665 −1.20586 −37.745588 −0.35766
99.95 −37.844301 −0.40274 1.70507 0.36151 0.45549 0.63182 −37.797840 −0.36374 3.27661 −1.20583 −37.745600 −0.35750

12k 99.0 −37.843884 −0.41263 1.70501 0.36141 0.47288 0.63150 −37.797430 −0.37156 3.27675 −1.20574 −37.745020 −0.36712
99.3 −37.797596 −0.36938 3.27692 −1.20577 −37.745388 −0.36357
99.5 −37.844173 −0.40664 1.70495 0.36143 0.47731 0.63145 −37.797689 −0.36838 3.27668 −1.20567 −37.745483 −0.36198
99.7 −37.844284 −0.40476 1.70474 0.36140 0.47023 0.63140 −37.797860 −0.36523 3.27644 −1.20542 −37.745655 −0.35871
99.8 −37.844346 −0.40392 1.70510 0.36150 0.45486 0.63145 −37.797914 −0.36452 3.27649 −1.20550 −37.745689 −0.35821
99.9 −37.844396 −0.40303 1.70509 0.36152 0.45670 0.63143 −37.797951 −0.36407 3.27661 −1.20558 −37.745716 −0.35782
99.95 −37.844406 −0.40295 1.70507 0.36152 0.45698 0.63142 −37.797962 −0.36394 3.27657 −1.20556 −37.745728 −0.35766

13l 99.0 −37.844003 −0.41282 1.70505 0.36137 0.47353 0.63153 −37.797580 −0.37182 3.27690 −1.20549 −37.745181 −0.36736

Final −37.844525 −0.40314 1.70511 0.36148 0.45699 0.63144 −37.798111 −0.36420 3.27672 −1.20531 −37.745889 −0.35790

angular coefficients in the log-log figure is ∼1. The slope of
this correlation is slightly smaller than 1 for the convergence
in n and is about 10–20 for the convergence in p, as can be
seen from the offsets in the log-log figure. Similar behaviors
where found in the open-core CI calculations of S− [24],
Cl, and Cl− [25]. In general, we can make the following
observations [37]: The CSFs that are important for the energy
are accordingly important for the Ssms, and the Ssms value is
more sensitive to the choice of the CSF space than to the orbital
basis set.

The energy, Ssms, and hyperfine parameters calculated in
this work are presented in Table I for neutral carbon and in
Table II for C−. It should be stressed that the differences
between the results obtained with p = 99.9 and p = 99.95
are close to the expected numerical accuracy. We estimate that
the dominant error in the neutral carbon calculations is due
to the nl truncation of the active set. This is not the case in
the C− calculations for which the p truncation is the most
limiting.

From Tables I and II, we observe that the differences
between the MRp-I�11k� and MRp-I�12k� results do not
depend strongly on p. In fact, the error made by reporting the
impact of the 12th shell on the calculation with p = 99 on the

results of the largest MRp-I�11k� is smaller than 4 × 10−7 Eh

on the energy, smaller than 2 × 10−6a−2
0 on Ssms, and smaller

than 9 × 10−5a−3
0 on the hyperfine parameters.

Using this observation, we add a correction for the 13th

correlation layer and for the l = 8 orbitals. First MCHF
calculations are performed on the MR-I�13k� and MR-I�12l�
CSF spaces, fixing all one-electron radial functions at the
MR-I�12k� level and varying only the new orbitals. We use
the so-optimized orbitals in MR99-I�13l� CI calculations,
omitting the 13l subshell in the active set and using the
multireference obtained with the �12k� active set. The two
contributions (higher n and l) are of same order of magnitude,
as far as the energy is concerned. Still, the additional
correlation layer tends to dominate in C− while the additional
angular flexibility has the largest impact in the neutral carbon
calculations.

As mentioned, the convergences in either n or p of a state
energy and Ssms are monotone and correlated (see, e.g., Fig. 2).
This fact could help strongly for extrapolating the energy
and Ssms value. However, even for a two-electron system, the
precise behavior of the energy convergence with the principal
quantum number in the high-n limit is unknown [38,39].
Froese-Fischer used the following extrapolation function for
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TABLE II. Results of the MCHF and CI calculations performed for the C− 2p3 4So and 2Do terms. The energies E are in units of Eh, the
Ssms in units of a−2

0 , and the hyperfine parameters in units of a−3
0 . The final values are the results of the larger �12k� calculations on which the

impact of the 13th shell and l = 8 orbitals has been additively transferred.

Model 1s22s22p3 4So 1s22s22p3 2Do

nl p E Ssms ac E Ssms al asd ac bq

MCHF
HF −37.708844 −1.60530 0.0 −37.642589 −1.54597 2.35963 0.47193 0.0 0.0
4 −37.862042 −0.56521 0.33257 −37.810185 −0.51517 2.27217 0.50749 0.23109 0.10808
5 −37.876688 −0.56168 0.18050 −37.827492 −0.51410 2.28209 0.54068 0.23971 0.12912
6 −37.884109 −0.54166 0.55357 −37.836040 −0.49077 2.25909 0.52516 0.35738 0.15402
7 −37.887227 −0.54675 0.43564 −37.839993 −0.49006 2.23484 0.52138 0.31616 0.18659
8k −37.888691 −0.54785 0.41389 −37.841966 −0.49306 2.22493 0.52273 0.30328 0.19303
9k −37.889449 −0.54912 0.46136 −37.842933 −0.49444 2.21796 0.52136 0.32378 0.19962
10k −37.889853 −0.54975 0.45976 −37.843464 −0.49534 2.21563 0.51911 0.32252 0.20107
11k −37.890085 −0.55017 0.45517 −37.843751 −0.49583 2.21476 0.51910 0.32312 0.20291
12k −37.890213 −0.55042 0.45714 −37.843927 −0.49614 2.21462 0.51922 0.32144 0.20238

CI

11k 99.0 −37.890143 −0.54957 0.46140 −37.844634 −0.48786 2.20369 0.51222 0.30714 0.21266
99.3 −37.890301 −0.54774 0.45872 −37.844971 −0.48375 2.20081 0.51100 0.30452 0.21527
99.5 −37.890474 −0.54414 0.44761
99.7 −37.890640 −0.54204 0.43942
99.8 −37.890692 −0.54132 0.43823

12k 99.0 −37.890271 −0.54982 0.46325 −37.844826 −0.48798 2.20269 0.51165 0.30450 0.21262
99.3 −37.890440 −0.54797 0.46098 −37.845165 −0.48386 2.19983 0.51040 0.30176 0.21519
99.5 −37.890603 −0.54438 0.44919
99.7 −37.890769 −0.54227 0.44080
99.8 −37.890822 −0.54151 0.43945

13l 99.0 −37.890429 −0.55003 0.46636 −37.845003 −0.48828 2.20286 0.51161 0.30547 0.21300

Final −37.890980 −0.54172 0.44257 −37.845343 −0.48415 2.20000 0.51036 0.30273 0.21557

studying four electrons systems [40]:

�En = a4/(n − δn)4 + a5/(n − δn)5 + a6/(n − δn)6, (22)

with the a4, a5, and a6 parameters and δn being chosen
such that a4 < 0 and |a4| ∼ |a5| ∼ |a6|. Fitting the n = 10–12
results of Table I to Eq. (22) for extrapolating to n → ∞,
we obtain −37.84465 Eh for the energy of the C(3P ) state.
This procedure does not extrapolate to l → ∞. The error
on the extrapolation is of the order of 10−5 Eh and the
truncation in l of about 10−4 Eh. We are in fair agreement
with the nonrelativistic energy of −37.8450 Eh estimated
by Chakravorty et al. [41]. To our knowledge, the values of
Table I are the best ab initio estimated energies, even without
the n = 13 and l = 8 corrections. Finally, let us mention that
Sarsa et al. [42] calculated the Ssms expectation value for the
carbon 3P state using the Monte Carlo (MC) approach with
an explicitly correlated wave function and obtained Ssms =
−0.38(2) a−2

0 . Our final estimated value (−0.40314 a−2
0 ) falls

a bit outside the statistical MC error bars.

F. Breit-Pauli calculations

A first way to include relativistic effects is to use the Breit-
Pauli Hamiltonian that includes the 1/c2 relativistic correction
operators to the nonrelativistic atomic Hamiltonian [27].

Since the radiative transitions we consider are essentially
authorized by L and S mixing, we need to have a good
description of the term mixing. On the other hand, it is the
calculation of the scalar relativistic effects that is needed
for estimating the relativistic effects on the electron affinity
since the fine structures of the involved species are usually
known experimentally. We therefore choose two distinct
Breit-Pauli models. The first BPCI CSF lists are used for the
term separation and detachment thresholds corrections while
the second approach is used for the transition probabilities
calculations.

Focusing on the correlation, we merge the MR99-I�10k�
lists of the studied terms for both C− and C. Then we extend
this model by adding the CSFs interacting to first order with the
CSFs 2p3p LS, LS = 3D, 3S, 1P for C and the CSFs 2p2 3p

LS, LS = 2P o, 2Fo, 4Do, 4P o for C−. For the neutral carbon
we test the impact of additional correlation on the relativistic
corrections by using the MR99-I�11k� and MR99.5-I�11k�
spaces. We finally diagonalize the Breit-Pauli Hamiltonian
in those CSF spaces using the corresponding active sets
optimized in the nonrelativistic calculations. The relativistic
corrections to the energy are summarized in Table III. We see
that the effect of the additional LS mixing on the energy levels
is so small that only the corrections on the fine structures are
meaningful.
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TABLE III. Relativistic corrections (in unit of µEh) to the total energies evaluated by BPCI calculations (see text).

Model C 1s22s22p2 C− 1s22s22p3

nl p 3P0
3P1

3P2
1D2

1S0
4So

3/2
2Do

3/2
2Do

5/2

Main spectroscopic terms only (see text)

10k 99 −14 437.25 −14 362.42 −14 239.95 −14 288.85 −14 256.62 −14 200.89 −14 192.92
11k 99 −14 409.01 −14 334.21 −14 211.76 −14 330.16 −14 296.56
11k 99.5 −14 455.75 −14 380.91 −14 258.35 −14 331.96 −14 299.28

With additional spectroscopic terms (see text)

10k 99 −14 437.25 −14 362.63 −14 240.02 −14 288.99 −14 256.62 −14 129.53 −14 201.14 −14 193.15
11k 99 −14 409.01 −14 334.42 −14 211.82 −14 330.30 −14 296.56

For the reasons expressed above, we also perform BPCI
calculations that focus on term mixing. For each LSJ and
active set �nl� (nl = 4f − 12k for C and 4f − 8k for C−),
the MR98-I list is merged with the MR-I set obtained using
the reference containing all allowed LS couplings of the
2s → 3d, 2p → 3p, and 2s2 → 2p2 excitations from the
main configuration.

G. Relativistic configuration interaction calculations

We use essentially the same method as in Ref. [33]. First,
we perform reference MCHF calculations with all single and
double configuration excitations (SD) of the ground state
in active sets ranging from �3d� to �8k�. The resulting
nonrelativistic radial orbitals Pnl(r) are then converted to Dirac
spinors using the Pauli approximation

Pnκ (r) = Pnl(r) (23)

Qnκ (r) = α

2

(
d

dr
+ κ

r

)
Pnl(r) (24)

where α is the fine-structure constant and κ is defined

κ =
{−l − 1 when j = l + 1/2

l when j = l − 1/2
. (25)

With these spinors, we finally perform the corresponding
RCI calculations, using the RCI2 program of the GRASP2K

package [28]. The corresponding calculations are labeled
“MCHF-RCI.” Expansions based on SD excitations of the
main configuration are first considered. Larger configuration
sets are also explored using the following multireference sets

MR(C−) = {1s22s22p3,1s22s12p33d1}, (26)

MR(C) = {1s22s22p2,1s22s12p23d1,1s22p4}. (27)

The relativistic effects are estimated from the differences
between the nonrelativistic CI and corresponding RCI results.

Table IV presents the relativistic corrections on the Ssms pa-
rameter. In the monoconfiguration model, the Ssms differences
between the Hartree-Fock (HF) and the corresponding HF-RCI
values are first reported and compared with the differences
obtained in the Dirac-Fock (DF) approach. The multicon-
figurational mono- and multireference relativistic corrections
deduced from the MCHF-RCI calculations are then presented
for increasing orbital active sets. Electron correlation plays an
important role in the estimation of these corrections, as could
be expected from an operator that measures the correlation

between the momenta of the electrons. A good convergence of
the monoreference approach with n is achieved but substantial
changes are observed between the mono- and multireference
results. In Table V, we present the corresponding corrections
for A I

µI
and B/Q that are both independent of the nuclear spin

I and multipole moments (µI ,Q).
Similarly to the nonrelativistic calculations, we note that

for neutral carbon, the impact of the 7th and 8th shells is not
much affected by the choice of reference. We then estimate
the final value as in the nonrelativistic case.

III. RESULTS AND COMPARISON TO EXPERIMENT

A. Hyperfine structures

In this work, we focus on the isotopes 13 and 11 of
carbon, respectively, of nucleus spin 1/2 and 3/2. The 11C
nucleus decays into 11B by e+ emission with a half-lifetime of
20.4 minutes. Haberstroh et al. [45] and Wolber et al. [43]
performed experimental studies of the hyperfine structures

TABLE IV. Relativistic corrections to the Ssms specific mass
shift parameter evaluated by MCHF-RCI calculations. Results are
presented in units of 10−6 a−2

0 .

C 2p2 C− 2p3

Model 3P0
3P1

3P2
1D2

1S0
4So

3/2
2Do

3/2
2Do

5/2

Monoconfigurational
HF-RCI −47 −47 −47 −49 −53 −58 −61 −61
HF-DF −876 −560 65 −243 −233 −91 −57 −40

Multiconfigurational, monoreference
3 62 190 375 316 343 449 439 442
4 4555 4769 5143 4933 4859 5080 4993 5011
5 3996 4228 4636 4388 4413 4595 4678 4700
6 3837 4067 4473 4259 4376 4230 4131 4154
7 3918 4157 4579 4338 4324 4305 4180 4210
8 3939 4175 4593 4337 4338 4329 4272 4304

Multiconfigurational, multireference
3 98 225 412 351 390 441 442 449
4 4750 4967 5349 5128 5134 5201 5106 5128
5 4167 4402 4817 4559 4633 4713 4794 4820
6 3999 4233 4647 4426 4570 4347 4241 4268
7 4081 4323 4752 4506 4509

Final 4102 4341 4766 4506 4523 4446 4382 4418
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TABLE V. Relativistic corrections to A I

µI
(kHz per unit of µN ) and B/Q (kHz/barn) evaluated by MCHF-RCI calculations.

Model 2p2 3P 2p2 1D 2p3 4So 2p3 2Do

(nmax) A1 B1 A2 B2 A2 B2 A3/2 B3/2 A3/2 B3/2 A5/2 B5/2

Monoconfigurational
HF-RCI 93 2 118 90 −141 −82 2 0.1 69 855 −24 0
HF-DF −158 −10 164 −177 −26 150 −122 −0.2 −464 550 371 0

Multiconfigurational, monoreference
3 −221 −51 −52 38 −166 −130 −404 −0.4 −62 1317 −113 26
4 −226 −31 157 −111 −23 61 −301 −0.1 −18 1276 50 24
5 −256 −34 152 −121 −13 70 −322 0.0 −16 1280 68 23
6 −254 −35 163 −123 −3 64 −319 0.2 −19 1356 73 27
7 −279 −39 158 −135 6 71 −357 −0.1 −19 1393 77 36
8 −285 −35 160 −146 11 85 −368 −0.1 −16 1392 81 36

Multiconfigurational, multireference
3 −221 −52 −52 38 −168 −132 −414 −0.4 −66 1267 −117 25
4 −217 −34 166 −106 −24 52 −289 −0.1 −26 1210 52 25
5 −246 −37 162 −115 −14 59 −306 0.0 −25 1218 71 24
6 −242 −38 174 −116 −4 52 −298 0.1 −30 1291 78 28
7 −266 −42 170 −128 6 57

Final −272 −38 172 −138 10 71 −347 −0.1 −27 1328 86 38

of the carbon ground state of 11C and 13C, respectively.
In the latter article, a magnetic dipole-moment of 11C of
−0.964(1) µN was deduced from the then-available µ(13C)
value. We update this estimation by using the modern µ(13C)
value [46] combined with the two measured A(3P2) constants:

µ(11C) =
[
A2(11C) I11 µ(13C)

A2(13C) I13

]
expt

= −0.9642(2) µN. (28)

The error on this value is now dominated by the accuracy of
the A(3P2) hyperfine constants measurements.

As mentioned in Sec. II E, it is difficult to have a rigorous
estimate of the uncertainty on the hyperfine parameters. We,
however, advance a learned guess of their reliability. First, we
see in Table I that the integrals al , asd, and bq of C change less
than 0.05% after the addition of the �13l� correction. The ac

parameter of the 3P is only slightly more affected (∼0.1%).
These effects are representative of the accuracy of our results
for neutral carbon. In the case of C− we face two additional
limitations: The structure of the negative ion converges more
slowly and we are limited in our expansions. Moreover,

only the most troublesome contact term is responsible for
the nonrelativistic HFS of 2p3 4So. For these reasons, and
comparing the values of Table II with results obtained with
the active set �10k�, we must allow for relative uncertainties
on the HFS parameters roughly 10 times larger for C− than
for C.

In Table VI, we present the nonrelativistic A I
µI

and B/Q

results calculated using the final values of al,asd,ac, and bq

of Tables I and II. In the same table, we add the relativistic
corrections of Table V to those values. The A(3P1) constant is
the place of severe compensations between the orbital (al) and
spin-dipole (asd) contributions, and the uncertainties on those
sum up to an error of the order of 102 kHz/µN . The other
nuclear-parameter-independent hyperfine constants of neutral
carbon suffer of a nonrelativistic uncertainty of about 10–102

kHz/µN . These are larger than the fluctuations observed in
Table V. As far as C− is concerned, on the one hand, the
4So hyperfine structure is essentially due to the contact term,
itself arising only from correlation effects and, on the other
hand, the 2Do hyperfine constants are small but the achieved

TABLE VI. A I

µI
(kHz per unit of µN ) and B/Q (kHz/barn) theoretical values for carbon 3P , 1D and C− 4So, 2Do.

C C−

State A I

µI
B/Q State A I

µI
B/Q

Nonrelativistic
2p2 3P1 2296 74 184 2p3 4So

3/2 9394 0
2p2 3P2 105 883 −148 367 2p3 2Do

3/2 53 836 −35 455
2p2 1D2 156 317 283 206 2p3 2Do

5/2 107 317 −50 650
+Relativistic corrections

2p2 3P1 2024 74 145 2p3 4So
3/2 9048 0

2p2 3P2 106 055 −148 505 2p3 2Do
3/2 53 809 −34 128

2p2 1D2 156 327 283 276 2p3 2Do
5/2 107 403 −50 613
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TABLE VII. Comparison of our calculated hyperfine constants of 13C to other works. The experimental values are adjusted according to
our analysis of the off-diagonal JJ ′ interaction. All values are in MHz.

13C 13C−

A1(3P ) A2(3P ) A2(1D) A3/2(4So) A3/2(2Do) A5/2(2Do)

Original expt.a 2.838(17) 149.055(10)
This work 2.84 148.99 219.61 12.71 75.59 150.88
Prev. workb 2.28 148.1

aReference [43].
bReference [44].

convergence of the calculations is less good. Therefore the
relative nonrelativistic uncertainties on C− hyperfine structures
are larger as they sum up to about 50–100 kHz/µN (kHz/barn).
We conclude that the reliability of all normalized hyperfine
constants is of the order of 102 kHz/µN (kHz/barn) with the
exception of the B(4So) that is certainly negligible.

Our results are compared with observations in Tables VII
and VIII for 13C and 11C respectively. We observe a good
agreement with experiment, better than expected from the
above discussion. This represents a significant improvement
compared to the theoretical study of Jönsson et al. [44].

The observed hyperfine splittings arise from the diagonal
hyperfine interaction, parametrized by the AJ and BJ constants
and, to higher order, from the nondiagonal (JJ ′) interaction
of states of same F . If only two levels are involved, one must
diagonalize the matrix

[
0 W (JJ ′; F )

W (JJ ′; F ) �JJ ′E(LS F )

]
, (29)

where �JJ ′E(LS F ) = E(LSJ ′F ) − E(LSJF ) is dominated
by the fine-structure splitting and W (JJ ′; F ) is governed by
the off-diagonal hyperfine constants (here AJ,J−1, BJ,J−1, and
BJ,J−2; see Sec. II B). The off-diagonal electric quadrupole
interaction is negligible and, at the nonrelativistic level, we
obtain for C(3P )

IA1,0/µI = 50.47 MHz/µN, (30)

IA2,1/µI = 62.71 MHz/µN, (31)

while for C−(2Do) we have

IA5/2,3/2/µI = 34.20 MHz/µN. (32)

The hyperfine interaction between states belonging to different
terms is negligible.

Wolber et al. [43] measured two hyperfine splittings in the
13C 3PJ multiplet, allowing the determination of the A1 and
A2 diagonal constants but not of the off-diagonal constants so
that they had to deduce the contribution of the JJ ′ interaction
theoretically. The level shifts that they obtained from their
computations are significantly higher than ours. However,
the AJ constants that reproduce the experimental hyperfine
splittings when using our results for the JJ ′ interaction,
A1 = 2.829(17) MHz and A2 = 149.052(10) MHz, do not
differ largely from the experimental constants presented in
Table VII.

Haberstroh et al. [45] measured three hyperfine splittings
for 11C 3PJ , which is insufficient for determining all four AJ

and BJ of this term. Hence, they deduced the value of B1 from
the relation B2/B1 = −2 which is only valid in the Hartree-
Fock model. From Table VI, we see that this formula holds very
well at the nonrelativistic level but that, including relativistic
corrections, we have

B2/B1 = −2.0029. (33)

The effect of the refined B2/B1 ratio and JJ ′ interactions
cancel each other in the estimation of the diagonal hyperfine
constants so the resulting AJ constants do no differ signifi-
cantly from the experimental ones quoted in Table VIII. For the
electric quadrupole interaction, the accuracy of our results is
such that we can safely update the electric quadrupole moment
of the 11C nucleus with the formula

Q(11C) = [B2(11C)]expt

(B2/Q)theor
. (34)

TABLE VIII. Comparison of our calculated hyperfine constants of 11C to other works. The experimental values are adjusted according to
our analysis of the off-diagonal JJ ′ interaction and of B(3P1)/B(3P2). All values are in MHz.

11C

A1(3P ) B1(3P ) A2(3P ) B2(3P ) A2(1D) B2(1D)

Original expt.a −1.308(24) 2.475(14) −68.203(7) −4.949(28)
This work −1.30 2.474 −68.17 −4.955 −100.49 9.450

11C−

A3/2(4So) B3/2(4So) A3/2(2Do) B3/2(2Do) A5/2(2Do) B5/2(2Do)
This work 5.82 ≈ 0 34.59 −1.139 69.04 −1.688

aReference [45].
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Using the B2 constant of Haberstroh et al. [45], we obtain
a value of +0.03333(19)expt(2)theor barns but if we use our
theoretical parameters in the analysis of the observations, we
obtain

Q(11C) = +0.03336(19)expt(2)theor barns. (35)

This value is used for estimating the theoretical BJ constants
of this work presented in Table VIII. The difference between
theory and experiment for the B2 constant follows directly
from the fact that (35) includes the refinements of the
theoretical parameters needed in the analysis of the observed
hyperfine splittings.

Let us mention the previous calculations of the bq parameter
(we get bq = 0.6314 a−3

0 ): bq = 0.6325 a−3
0 [47] and bq =

0.6319 a−3
0 [31]. Using the experimental constant B2 quoted

in Table VIII, Sundholm and Olsen [47] proposed Q(11C) =
+0.03327(24) barns which would only tenuously agree with
our estimation if the [B2(11C)]expt value was to be improved.

In the case of C−, the small 2Do fine structure (1.75 cm−1,
see below), leads to JJ ′-interaction shifts on the energy levels
that are roughly 10 times larger than in the neutral atom ground
term, i.e., of the order of 0.1 MHz.

B. Energy differences

Table IX presents several calculated energy separations and
compares them to other works. Our C− term splitting is in very
good agreement with experiment but, as will be seen below,
this is partially accidental.

Our results on the neutral atom ground configuration
level spacings are systematically better than the ones of
Froese-Fischer and Tachiev [48]. It indicates that, in this
context, our relativistic corrections are reliable. For the 3P

fine structure, we obtain as accurate results as recent fully
relativistic calculations [49].

Our systematic procedure is not particularly efficient for
predicting the negative ion binding energy. In particular, for
the 4So detachment threshold, the coupled-cluster approaches
are much more impressive [15,16]. The recent value of Klopper
et al. [16] indeed achieves a submillielectron-volt (<8 cm−1)
agreement with the experimental electron affinities for all
first- and second-period atoms (H-Ne). A similar accuracy
had already been achieved more than 10 years before by
de Oliveira et al. [15] for the second and third period p-block
atoms.

By trying various extrapolation schemes on our C− calcu-
lations, we explain up to ∼20 cm−1 of the difference between
our calculation of the 4So binding energy and the experimental
value (about 5 cm−1 for each n and l extrapolations and
about another 10 cm−1 for the extrapolation to a complete
active set). Turning to the relativistic effects calculations,
we see that the scalar contributions calculated with the CC
methods give −21.54 cm−1 [16] and −22.83 cm−1 [15] while
we obtain −37.95 cm−1. The extrapolation being reliable to
about a couple of tenths of percentage points and since the
additional expected contributions are of the order of the cm−1,
we conclude that our BPCI relativistic corrections are still
unbalanced. The problem of our relativistic corrections on the
detachment thresholds is confirmed by the fact that, looking
to Table III, they are not well converged.

Aside from a possible unbalance in the relativistic effects
estimation, our error is roughly proportional to the correlation
contribution. We see that the differences between the HF and
experimental energy separations (see Table IX) are reproduced
to ∼0.1–0.7%, which is about the percentage of the C(3P )
correlation energy we get. It means that p and n are good
indicators of the percentage of the correlation effects included
in a model. However, the uncertainty on our relativistic
corrections and on the 2Do missing correlation is too large
for an extrapolation based on this observation to be useful,
e.g., for improving the experimental determination of the
position of the 2Do

J levels. Indeed, a 0.5% uncertainty on our
calculated correlation energies, which is no overestimation,
reflects in corrections ranging from ∼60 cm−1 in the case of
the largest HF-experiment discrepancy, to about 7.5 cm−1 for
the 2Do-1S threshold, i.e., of the same order of magnitude than
the experimental uncertainty.

We would like to stress another advantage of using the
number of correlation layers n and p as parameters for
preserving the balance between systems having different
numbers of electrons. Observing that our models converge
toward the exact solution of the Schrödinger equation, a larger
number of electrons demands larger active sets, and that for a
given orbital set, p is roughly proportional to the amount of
correlation in the model, we affirm that the results obtained
with increasing n and p will most often underestimate the
photodetachment thresholds. In other words, the detachment
thresholds are valuable references for estimating the accuracy
of the calculations since their behavior is monotone (as the
level energies themselves).

C. Mass isotope shifts

Table X reports the results for the (A′ = 13,A = 12) IS
on various energy differences and compares them to previous
works.

We have seen that the Ssms parameter is strongly correlated
to the energy, with negative and positive angular coefficients
with respect to p and n, respectively. The nonmonotonous
behavior of the SMS forbids us to generally conclude that
any calculation similar to ours will result in upper or lower
bounds to the differences in mass polarization expectation
values. In our particular case, however, Tables I and II and
Fig. 2 show that the convergence in n is better achieved than
in p (truncated to 99.8% or 99.3%). Therefore, we likely
overestimate Ssms. Since we have globally �Ssms > �E, the
estimations of the IS on the detachment thresholds presented
below, in particular on the eA, are probably overly negative.
Furthermore, we estimate that our nonrelativistic values of IS
are reliable to about 0.2 m−1 if the C−(2Do) is involved and
of the order of 10−2 m−1 if not. Hence we cannot explain the
disagreement between the isotope shift on the eA of Klopper
et al. [16] and ours. This is not an isolated discrepancy since
we can extract from their results an (18–16) IS on the eA of
oxygen of −11.7 m−1 which is in disagreement with the
experimental value of −7.4(18) m−1 [57]. Godefroid and
Froese-Fischer [23] obtained an IS of −5.73 m−1 with a MCHF
model, which is inside the experimental error bars (see also
Ref. [37]). The MCHF approach has also proven its usefulness
for the calculation of IS on the eA of heavier systems [24,25].
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TABLE IX. Comparison of the theoretical and experimental energy level separations. The MCHF – CI calculations of the energy differences
involving C− 4So and 2Do are obtained with p = 99.8% and 99.3%, respectively, while we take p = 99.95% for neutral carbon transitions
energies. Relativistic corrections (+rel) are estimated from Table III and the +�13l� column corresponds to the final results of Tables I and II.
All values are given in cm−1.

This work

State HF MCHF – CI +rel +�13l� Expt. Prev. theor.

C−(4So
3/2) 0.0 0.0 0.0 0.0 0.0

C−(2Do
3/2) 9 921.01 9 916.63

14 541.11 9 936.73 9 913.5(82)a

C−(2Do
5/2) 9 922.76 9 918.39

C(3P0) 0.0 0.0 0.0 0.0 0.0 0.0
C(3P1) 0.0 0.0 16.39 16.39 16.42b 16.33c 16.4d

C(3P2) 0.0 0.0 43.31 43.31 43.41b 43.03c 43.3d

C(1D2) 12 573.20 10 193.42 10 220.55 10 213.76 10 192.63e 10 268.23c

C(1S0) 30 508.75 21 657.45 21 691.79 21 682.40 21 648.01e 21 818.60c

C−-C Detachment thresholds
4So

3/2-3P0 4 438.80 10 200.50 10 132.96 10 141.49 10 179.68(16)f 10 184.61g 10 185.8h

4So
3/2-1D0 17 012.00 20 391.04 20 356.04 20 357.77 20 372.31(16)f

4So
3/2-1S0 34 947.55 31 853.18 31 825.28 31 824.42 31 827.69(16)f

2Do
3/2-3P0 −10 102.31 240.39 194.77 207.67 266.2(81)a 436i

2Do
3/2-1D2 2 470.89 10 440.27 10 420.99 10 427.10 10 458.8(81)a

2Do
3/2-1S0 20 406.44 21 898.72 21 886.54 21 890.05 21 914.2(81)a

aReference [14].
bReference [50].
cReference [48].
dReference [49].
eReference [51].
fReference [13].
gReference [16].
hReference [15].
iReference [8].

With regard to the difficulty to calculate the mass shifts,
the discrepancy between the different calculations of the IS on
the neutral atom term separation, of the order of 0.1 m−1, is
understandable. From the comparison of our results and the
ones of Kozlov et al. [49], it is difficult to estimate an order of
magnitude for the contribution of the relativistic effects.

The neutral 3P fine structure has been much more studied.
It is known that the relativistic corrections to the mass shift
operator are crucial when studying the isotope shift on the
fine structure [58–61]. Veseth [53] and more recently Kozlov
et al. [49] performed calculations of the relativistic mass shifts
in the 3P multiplet of carbon, the first by treating perturbatively
the fine-structure and nucleus-mass-dependent Hamiltonians
up to the third order, the second by using an all-electron
CI method on the Dirac-Breit Hamiltonian and calculating
the expectation value of the relativistic MS operator valid to
the second order in αZ. We easily estimate the relativistic
corrections to the specific mass shift operator for the transition
3P1-3P 2 by comparing the equation (8) of Veseth to the
Breit-Pauli fine-structure operator.2 We obtain a correction

2From Ref. [53], we find that the relativistic corrections to the IS
on the fine structure can be estimated using the Table VI of Veseth’s
paper as 2/3[(8d) + (8e)] + (8f ).

of +0.0375 m−1 for the 13−12IS(3P1-3P2) which, combined
with our result of Table X, gives a total shift of +0.014 m−1.
This value is in good agreement with the observation and
with Veseth’s results. However, neither this observation nor
the stability of the corrections of Table IV demonstrates that
the scalar relativistic effects on the IS are reliable.

D. Transition probabilities

We study the M1 and E2 transition probabilities between
the LSJ levels of the ground configurations of C and C−. With
the exception of 1D2-1S0 and the transitions between states of
a same multiplet, the calculated Einstein coefficients are only
nonzero thanks to the LS relativistic mixing. The M1 channel
of the 4So

3/2-2Do
5/2 transition is itself only opened by LS mixing

of correlation CSFs. The nonrelativistic magnetic dipole
and electric quadrupole transition amplitudes are computed
using the BPCI wave functions based on the MR98-I model
described in the end of Sec. II F. For the calculation of the
Einstein A transition rates between states that are developed
in nonorthogonal orbital sets, we use the BIOTR program that
is part of the the ATSP2K package [26]. Although the velocity
form of the E2 transition probabilities is produced by this
program, we do not report the corresponding values since the

062505-10



THEORETICAL STUDY OF THE C− 4So
3/2 . . . PHYSICAL REVIEW A 83, 062505 (2011)

TABLE X. Comparison of our isotope shifts (A′ = 13,A = 12), in m−1, on various positive energy separations. The MCHF – CI calculations
of the energy differences involving C− 4So and 2Do are obtained with p = 99.8% and 99.3%, respectively, while p = 99.95% for neutral carbon
transitions. Relativistic corrections (+rel) are estimated from Table IV and the +�13l� column corresponds to the final results of Tables I
and II.

SMS NMS IS

Trans. MCHF – CI +rel +�13l� Expt. This work Other theor. Expt.

IS on the C− terms separations
4S

o

3/2-2Do
3/2 −4.965 −4.960 −4.953 3.500 −1.454

IS on the C− detachment thresholds
4S

o

3/2-3P0 −10.656 −10.629 −10.630 3.592 −7.038 −8.7a

2Do
3/2-1D2 −8.865 −8.875 −8.878 3.690 −5.185

IS on the C terms separations
3P0-1D2 −3.021 −3.052 −3.047 3.597 +0.550 +0.505b

3P0-1S0 −3.507 −3.540 −3.536 7.640 +4.103 +4.672b

+4.374c

IS on the C(3P ) fine structure
3P1-3P2 0 −0.033 −0.033 0.010 −0.023 +0.020b +0.0137(10)d

+0.014e +0.015f +0.0180(43)g

3P 0-3P1 0 −0.019 −0.019 0.006 −0.013 +0.009b +0.0077(7)h

+0.010f +0.0057(83)

aNonrelativistic coupled-cluster calculations [16].
bCalculations using the Dirac-Breit Hamiltonian and the relativistic mass shift operator [49]. Note that they used a different sign convention
than ours (Kozlov, private communication).
cMCHF-CI calculations [52]. SMS = −3.266 m−1.
dReference [50].
eOur results combined with the relativistic corrections of Veseth [53] (see text).
fMBPT calculations of the relativistically corrected mass shift operator [53]. Note that those values are quoted with the wrong sign in Ref. [54],
as pointed out in Ref. [55].
gReference [54].
hMeasurements of Ref. [56] and hyperfine splittings of Ref. [43].

length form is the only one strictly reliable for weak amplitudes
estimated in the Breit-Pauli scheme.

The results of our calculations on the neutral atom are
summarized in Table XI. The convergence of the A coefficients

with the active set is well achieved and the comparison
with the results of Froese-Fischer [62] is favorable. Still,
we can point out that, for the weak E2 transition rates
of interterm transitions (3P0-1D2 and 3P1-1D2), the relative

TABLE XI. Einstein A coefficients, in s−1, for the 2p2 intraconfiguration M1 and E2 transitions of carbon calculated using the BPCI wave
functions based on the MR98-I models for the active space �10k� and �12k�, compared with the calculations of Ref. [62]. Transitions vacuum
wavelengths (λ) are reported in angstroms. The notation (±n) represents ×10±n.

This work

n = 10 n = 12 Froese-Fischer [62] NIST [63]

States Type λ Aki λ Aki λ Aki λ

3P0-3P1 M1 6072(+3) 8.033(−8) 6070(+3) 8.041(−8) 6052(+3) 8.114(−8) 6097(+3)
3P1-3P2 M1 3703(+3) 2.656(−7) 3701(+3) 2.660(−7) 3700(+3) 2.662(−7) 3704(+3)

E2 3.529(−15) 3.536(−15) 3.633(−15)
3P0-3P2 E2 2300(+3) 1.696(−14) 2299(+3) 1.700(−14) 2296(+3) 1.754(−14) 2304(+3)
3P2-1D2 M1 9805 2.370(−4) 9814 2.358(−4) 9735 2.245(−4) 9853

E2 1.210(−6) 1.209(−6) 1.140(−6)
3P1-1D2 M1 9779 7.513(−5) 9788 7.504(−5) 9710 7.544(−5) 9827

E2 1.050(−7) 1.037(−7) 1.576(−7)
3P0-1D2 E2 9763 7.789(−8) 9772 7.836(−8) 9694 6.242(−8) 9811
3P2-1S0 E2 4604 2.138(−5) 4606 2.130(−5) 4587 2.250(−5) 4629
3P1-1S0 M1 4598 2.368(−3) 4600 2.367(−3) 4581 2.381(−3) 4623
1D2-1S0 E2 8679 6.148(−1) 8681 6.135(−1) 8730
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TABLE XII. Einstein A coefficients, in s−1, for the intraconfiguration M1 and E2 transitions of all C− bound states, calculated using
the BPCI wave functions based on the MR98-I models for the active space �4f � to �8k�. We compare these results with the corresponding
nitrogen and nitrogen-like oxygen A coefficients. Transitions vacuum wavelengths (λ) are reported in angstroms. The final set is obtained by
renormalizing the transition probabilities �8k� with the experimental (4So-2Do) and calculated (2Do

3/2−5/2) energy differences. The notation (±n)
represents ×10±n.

4So
3/2-2Do

3/2
4So

3/2-2Do
5/2

2Do
3/2-2Do

5/2

λ M1 E2 λ M1 E2 λ M1 E2

C− (Z = 6)
n = 4 8813 1.177(−6) 7.628(−7) 8815 4.823(−8) 1.118(−6) −5716(+4) 8.664(−11) 3.108(−22)
n = 5 9356 1.130(−6) 8.915(−7) 9357 4.197(−8) 1.297(−6) −1245(+5) 8.415(−12) 3.912(−23)
n = 6 9590 1.126(−6) 1.019(−6) 9590 3.999(−8) 1.470(−6) −6509(+5) 5.893(−14) 2.141(−26)
n = 7 9801 1.123(−6) 1.125(−6) 9800 3.802(−8) 1.605(−6) 1519(+5) 3.092(−12) 4.209(−23)
n = 8 9930 1.080(−6) 1.192(−6) 9929 3.663(−8) 1.688(−6) 9908(+4) 1.109(−11) 5.206(−22)

Final 1.030(−6) 1.102(−6) 3.493(−8) 1.559(−6) 5.771(−11)
N (Z = 7)

FFTa 5199 1.595(−5) 4.341(−6) 5202 9.710(−7) 6.595(−6) −1148(+4) 1.071(−8)
BZ nrb 1.716(−5) 3.822(−6) 1.046(−6) 5.880(−6) −1085(+4) 1.239(−8)
BZb 1.896(−5) 2.445(−7) 1.239(−8)

O+ (Z = 8)
FFTb 3727 1.414(−4) 2.209(−5) 3730 7.416(−6) 3.382(−5) −5071(+3) 1.241(−7)
Z87 nrc 1.45(−4) 2.13(−5) 7.58(−6) 3.30(−5) −5119(+3) 1.30(−7)
Z87c 1.58(−4) 2.00(−6) 1.30(−7)

aReference [48].
bReference [67]; nr denotes that the nonrelativistic form of the M1 operator is used.
cReference [68]; nr denotes that the nonrelativistic form of the M1 operator is used.

change between the results of Froese-Fischer and ours is quite
large.

The results for the C− are displayed in Table XII. There
is no other value available in the literature. To fill this gap,
we compare our transition probabilities with others for the
first elements of its isoelectronic sequence, i.e., N I and O II.
A priori, the omission of the relativistic corrections to the
M1 transition operator [4,64] could be a serious limitation
of our calculations. Indeed, Eissner and Zeippen [65] showed
that for transitions between terms of the 2p3 configuration, in
particular, the relativistic corrections are of the same order of
magnitude as the usual nonrelativistic amplitude (see N I and
O II data of Table XII).

However, as can be seen from Table XII and in Ref. [66],
if the M1 channel becomes rapidly dominant with increasing
Z along the nitrogen-like sequence, the E2 channel remains,
for low Z, of the same order of magnitude as the M1 channel.
Furthermore, in the case of the C− system, the relativistic
mixing of the 2Do

3/2 and 4So
3/2 is even further suppressed by the

diffuse nature of the 2Do state. The M1 channel is then only a
small correction to the total A in the C−(4So

3/2-2Do
5/2) transition,

being of the same order of magnitude as the uncertainty with
respect to the convergence with the active set (�8k�–�7i�).

The inversion of the fine-structure splitting of the 2Do

term in C− with increasing active set reflects the difficulty to
calculate this quantity for half-filled shell systems, particularly
in highly correlated systems. From this regard, it is also
interesting to note that this fine structure is “normal,” i.e.,
not inverted as in the heavier isoelectronic systems. In other
words, it tends to behave like a less-than-half-filled-shell
system.

The experimental (4So
3/2-2Do

J ) transition is at 10087(9) Å,
and the 2Do calculated fine structure that we recommend
(see Table IX) is +5703 104 Å. Table XII presents the
final A coefficients calculated with the �8k� active set and
renormalized by the experimental (4So-2Do

J ) energy separation,
and our theoretical value for the 2Do fine structure (see
Table IX).

IV. CONCLUSION

We performed large-scale MCHF-CI calculations of the
energy levels belonging to the lowest configuration of neutral
carbon and all bound states of C−, including the fine structures,
hyperfine structures, and isotope shifts. In addition, we
calculated all M1 and E2 transition rates between the studied
LSJ states.

The overall precision of the nonrelativistic expectation
values is estimated to be about 0.3–0.8%. However, this
imprecision on the total energy and Ssms leads to a larger
uncertainty on the differential effects. To our knowledge, the
obtained nonrelativistic energies are the most accurate ab initio
values to date. We obtained an extrapolated energy for the
C(3P ) state of −37.84465 Eh, in good agreement with the
semiempirical “exact” value of −37.8450 Eh [41].

We conducted a careful study of the relativistic corrections
deduced from the comparison of relativistic CI calculations
with the corresponding nonrelativistic calculations. Even if
the so-deduced corrections do permit a relevant theory versus
experiment comparison and that the correlation effects still
dominate our uncertainties in many cases, an estimation of the
relativistic effects on a firmer basis should be performed in
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more accurate studies. We also note that the C− negative ion
is very little affected by relativity.

We check the experimental hyperfine constants of the neu-
tral carbon by replacing the theoretical parameters used in the
original papers [43,45] by our values. The resulting hyperfine
constants and 11C nuclear magnetic moments are in good
agreement with previous experimental and theoretical studies.

As far as the transitions probabilities calculations are
concerned, we find a good agreement of our neutral carbon
A coefficients with the ones of the literature. For the C− intra-
configuration transitions, we expect the relativistic corrections
to the M1 operator to be less important than in higher Z

isoelectronic systems. Once more, the missing correlation
effects are equally limiting.

We find that the parametrization of the model in terms of the
number of correlation layers (∼n) and percentage of the wave
function accounted by the MR in subsequent CI calculations
(=p) provides useful tools for including a fixed percentage
of the total correlation effects. It allows us to establish lower

bounds on detachment thresholds and, for calculations that
are sufficiently converged with respect to n, upper bounds on
�Ssms (lower bound on Ssms).

Note added in proof. Seth et al. [69], recently reported
the total energy and Ssms values computed with the Quantum
Monte Carlo method, in agreement with our results. The
uncertainty they obtained on their ab initio energy is similar
to ours while it is significantly larger for the Ssms.
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