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Polarization effects in the decay of orthopositronium to three photons
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We give results for the order-α radiative corrections to several polarization-related effects involving the decay
of ortho-positronium (o-Ps) to three photons. Specifically, we consider the decays of spin-polarized o-Ps from
states of specified spin component m into final states where the direction of the normal to the decay plane
is measured, the linear polarization of one photon is observed, and the two variables giving the energies, or
equivalently the relative orientations of the photons in the decay plane, are measured.
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I. INTRODUCTION

Positronium is an attractive system for the study of many
aspects of fundamental physics, including the effects of
polarization. Spin 1 ortho-positronium (o-Ps) is usually formed
as a uniform mixture of the three magnetic substates (m = +1,
0, −1). Polarized samples can be obtained either by depletion
of the m = 0 state through magnetic quenching (see below)
or by preferential production in one of the |m| = 1 states
due to the nonzero net polarization of slow positron beams
produced by weakly decaying radioactive nuclei. Each of the
three photons arising from the dominant decay mode of o-Ps
has a polarization that is observable in principle. In practice,
Compton scattering has been used to differentiate between the
polarization states of the decay photons, but usually for only
one of the three photons.

A number of polarization effects involving positronium
have been studied. Shortly following the original discovery of
positronium [1], Deutsch and Dulit [2] reported the observation
of magnetic quenching where the m = 0 state of o-Ps mixes
with spin 0 para-positronium (p-Ps) and participates in the
rapid decay of p-Ps, leaving the m = ±1 states behind. The
energy shift of the m = 0 state is related both to the magnetic
field strength and to the o-Ps to p-Ps energy difference (the
hyperfine splitting). Microwave excitation of the transition
from an m = ±1 state to the shifted m = 0 state causes the
m = ±1 states to quench as well [3]. Observation of this
microwave-induced quenching has been the basis of many
measurements of the hyperfine splitting. The angular distri-
bution of the decay photons relative to the spin quantization
axis for polarized o-Ps has been worked out to lowest order by
Drisko [4] and by Bernreuther and Nachtmann [5]. Platzman
and Mills [6] discussed the possibility of forming a Bose-
Einstein condensate from polarized o-Ps atoms. Radiative
corrections to the decay matrix for decays from polarized
o-Ps were obtained by Matsukevich and Metelitsa [7], and
Silenko [8] discussed a method for measuring the tensor
component of the o-Ps polarization. Cassidy, Meligne, and
Mills [9] have reported the production of a fully spin-polarized
o-Ps ensemble.

Other effects involving polarized positronium have been
vigorously pursued. Bernreuther and collaborators [10,11]
suggested using angular correlations of the photons produced

*gadkins@fandm.edu

from polarized o-Ps as tests of CP and CPT symmetries.
Several measurements using this approach have been done
[12–18]. Radiative corrections to angular correlations from po-
larized o-Ps were computed by Adkins et al. [19]. Baryshevsky
et al. [20] predicted the existence of quantum oscillations in the
orientation of the decay plane of polarized o-Ps in a magnetic
field, which was observed [21] and was used by Fan et al. [22]
in a measurement of the positronium hyperfine splitting.

The linear polarization of a decay photon can be measured
by subjecting the photon to a Compton scattering process.
Measurements of the polarization of a single decay photon
from o-Ps decay have been performed by Leipuner et al. [23],
Ye et al. [24], Jia et al. [25], and Tang and Tang [26].
Theoretical expectations have been worked out at lowest order
by Drisko [4], Bernreuther and Nachtmann [5], and Faraci and
Pennisi [27].

In this work we calculate the one-loop corrections to partial
decay rates from o-Ps with spin component m into a final state
where the orientation of the decay plane relative to the spin
quantization axis, the energies of the photons, and the linear
polarization of one of the decay photons are all specified. Our
results for the decay distributions have the general form

ρm ∝ Am + Bm(3 cos2 θ − 1) + Cm cos(2α)

+Dm(3 cos2 θ − 1) cos(2α) , (1)

where θ specifies the orientation of the decay plane relative
to the quantization axis and α represents the angle of the
polarization of one photon relative to the decay plane normal.
The coefficients depend on the value of the magnetic quantum
number m of the decaying o-Ps state as well as on variables
that specify the energies of the final-state photons. Our results
for Am, Bm, Cm, Dm agree with the known lowest-order
expressions but go beyond them by also including the one-loop
radiative corrections.

II. ORTHOPOSITRONIUM DECAY

The formula for the decay rate of o-Ps with spin component
m into three photons is

�m = 1

3!

1

2(2W )

∫
d3k1

(2π )32ω1

d3k2

(2π )32ω2

d3k3

(2π )32ω3

×(2π )4δ(P − k1 − k2 − k3)
∑

ε1,ε2,ε3

|Mm|2 , (2)
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where W is half the o-Ps mass, ωi = k0
i = |�ki | is the ith photon

energy, P = (2W,�0 ) in the o-Ps rest frame, and Mm is the
decay amplitude for initial spin component m. Momentum
conservation requires the three photons to emerge in a plane—
the decay plane—and the normal vector n̂ to this plane for
a given decay will have some angle θ with respect to the
spin quantization axis. Our approach for finding the rate for
decay into states with given values for θ and α (the angle of
polarization of photon 1 with respect to n̂) will be to start with
formula (2) for the rate into all final states, and just not perform
the sum over polarization ε1 or the integral over θ , which we
identify as one of the Euler angles describing the orientation
in space of the decay plane. We use the energy-momentum-
conserving δ function to perform four of the nine phase space
integrals. The five remaining integrals are separated into three
over Euler angles and two describing the relative orientation
of the three photons in the decay plane. After doing the �k3

integral using the three-momentum δ function, we obtain

�m = 1

3!4W

∫
d3k1 d3k2

(2π )68ω1ω2ω3
(2π )δ(2W − ω1

−ω2 − ω3)
∑

ε1,ε2,ε3

|Mm|2 . (3)

We parametrize the remaining integration variables as follows.
Before applying the Euler rotations, the decay plane is taken
to be the x ′y ′ plane. We orient photon 1 along the x ′ axis and
photon 2 at angle β to that axis:

k̂′
1 = (1,0,0), k̂′

2 = (cos β, sin β,0) . (4)

The normal to the decay plane is (0,0,1). The polarization
vector for photon 1 is taken to be three-dimensional and real,
and to have angle α with respect to the normal:

ε̂′
1 = (0, sin α, cos α). (5)

The xyz frame is obtained from this x ′y ′z′ frame by an Euler
angle rotation RE = Rz′(χ )Rx ′(θ )Rz′(φ) where the z axis is
taken to be the axis of spin quantization for describing the
o-Ps state. The momentum unit vectors in the xyz frame are

k̂1 = REk̂′
1, k̂2 = REk̂′

2, k̂3 = −(ω1k̂1 + ω2k̂2)

|ω1k̂1 + ω2k̂2|
, (6)

and the polarization vector of photon 1 is ε̂1 = REε̂′
1. The

volume element d3k1d
3k2, expressed in terms of energy

variables, Euler angles, and angle β, is

d3k1 d3k2 = (
ω2

1ω
2
2dω1dω2

)
(sin βdβ)(dχ sin θdθ dφ). (7)

We perform the β integral using the energy-conserving δ

function. We write xi = ωi/W , in terms of which energy
conservation states

x1 + x2 + x3 = 2 . (8)

Moreover, momentum conservation

�k1 + �k2 + �k3 = 0 (9)

allows us to express the angle αij between any two photons,
say i and j , in the decay plane in terms of the xi as

cos(αij ) = k̂i · k̂j = 1 − 2x̄k

xixj

, (10)

where (ijk) = (123) or a permutation thereof, and x̄k ≡ 1 −
xk . The decay rate is

�m = W

768π3

∑
ε1

∫ π

0

sin θdθ

2

∫
d�

{∫
dχdφ

(2π )2

∑
ε2,ε3

|Mm|2
}

,

(11)

where
∫

d� = ∫ 1
0 dx1

∫ 1
1−x1

dx2 is the “phase space” integral
over a triangular region in the x1x2 plane that specifies the
energies of the photons or equivalently the relative orientations
of those photons. The integrals and sums inside the curly
brackets will be done initially, but we will hold off on doing
the final polarization sum, the integral over θ , and the phase
space integral so that the dependence of the partial rate on
these variables can be studied. The final integrand depends on
ε1 only through the angle α between the decay plane normal
and the direction of ε1, so the sum over ε1 can be thought
of as a sum over any two values of α separated by π/2. We
note that W , half of the o-Ps mass, is nearly equal to m:
W = m[1 + O(α2)]. In our work here, which is only through
O(α) corrections, we can always take W → m.

The decay matrix element Mm can be expressed in terms of
three form factors F1, F2, and F3 [19,28,29]. These form fac-
tors are known to one-loop order, so all one-loop calculations
involving o-Ps decay to three photons are relatively easy to set
up. The matrix element is linear in each polarization vector. We
choose to write the polarization vectors in a three-dimensional
form with vanishing time coordinate. The matrix element then
is

Mm = ε∗
1i1

ε∗
2i2

ε∗
3i3

εm,aM
i1i2i3a(x1,x2,x3) , (12)

where ε̂j is the polarization vector of photon j and ε̂m is the
o-Ps polarization vector for spin component m. Specifically,
ε̂0 = (0,0,1) and ε̂± = ∓1√

2
(1, ± i,0). The Bose symmetry of

Mm can be displayed explicitly through

Mi1i2i3a(x1,x2,x3) =
∑
S3

Mi1i2i3a(x1,x2,x3), (13)

where the sum is over the six photon permutations. The tensor
Mi1i2i3a can be written in terms of the three scalar form factors
according to

Mi1i2i3a(x1,x2,x3) = 2iπα3

x1x2x3
{T1F1 + T2F2 + T3F3} (14)

with

T1 = x2

x̄2
k1ak3i2

(
k3i1k1i3 + 2x̄2δi1,i3

)
, (15a)

T2 = (
k1ak3i1 + 2x̄2δa,i1

)(
k1i2k2i3 + 2x̄3δi2,i3

)
+ 2x2

(
δa,i1k1i3 − δi1,i3k1a

)
k3i2 , (15b)

T3 = x̄3

x̄2

(
k1ak3i1 + 2x̄2δa,i1

)(
k3i2k2i3 + 2x̄1δi2,i3

)
, (15c)

where k1a , for example, is the ath component of �k1. The
decay matrix element is dimensionless, and in (15) the photon
momentum vectors are taken to be dimensionless so that
|�ki | = xi . Explicit calculation shows that the lowest-order (in
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α) contributions to F1, F2, and F3 are 0, 1, and 0, respectively
[29]. The expansions in α of the form factors Fi are

F1 = 0 + α

π
F

(1)
1 + O(α2), (16a)

F2 = 1 + α

π
F

(1)
2 + O(α2), (16b)

F3 = 0 + α

π
F

(1)
3 + O(α2). (16c)

The one-loop form factors are combinations of rational
functions of the xi times one of the functions

h1(x1) = log(2x1), (17a)

h2(x1) =
√

x1

x̄1
θ1, (17b)

h3(x1) = 1

2x1
{ζ (2) − Li2(1 − 2x1)}, (17c)

h4(x1) = 1

2x1

{(π

2

)2
− θ2

1

}
, (17d)

h5(x1) = 1

2x̄1
θ2

1 , (17e)

h6(x1,x3) = 1√
x1x̄1x3x̄3

{Li2(r+,θ̄1) − Li2(r−,θ̄1)}, (17f)

where

θ1 = arctan(
√

x̄1/x1), (18a)

θ̄1 = arctan(
√

x1/x̄1), (18b)

r± = √
x̄1

(
1 ±

√
x1x̄3

x̄1x3

)
. (18c)

The dilogarithm functions are defined by Lewin [30]. Explicit
expressions for the one-loop form factors F

(1)
i in terms of the

xi and hi can be found in the supplemental material depository
[31].

III. RESULTS

In this section we report our results and give some numerical
examples. We performed the algebra and integrals using
routines written with MATHEMATICA [32]. Our general result
for the decay rate of o-Ps with spin component m is

�m = 2mα6

9π

1

2

∑
ε1

∫ π

0

sin θdθ

2

∫
d�

1

(x1x2x3)2

×{Am + Bm(3 cos2 θ − 1) + Cm cos(2α)

+Dm(3 cos2 θ − 1) cos(2α)}. (19)

This formula displays explicitly the dependence of �m on
the angle θ between the normal to the decay plane and the
quantization axis and the angle α between the polarization
direction of photon 1 and the normal to the decay plane. The
polarization sum over ε1 is really just a sum over any two values
of α that differ by π/2. The coefficients Am, Bm, Cm, and Dm

have contributions at all orders in α. Including contributions

through order α, the coefficients have the form

Am = A(0)
m + α

π
A(1)

m

= A(0)
m + α

π
(x̄1x̄2x̄3)

3∑
n=1

∑
S3

Aijk
m,nF

(1)
n (xi,xj ,xk) , (20)

with analogous expressions for Bm, Cm, and Dm. The index n

labels the three form factors, and the permutation sum is over
the six elements of the permutation group S3, e.g., ijk → 123,
etc. The lowest-order coefficients are

A
(0)
0 = (x1x̄1)2 + (x2x̄2)2 + (x3x̄3)2, (21a)

B
(0)
0 = 1

4
A

(0)
0 , (21b)

C
(0)
0 = 2x̄1x̄2x̄3, (21c)

D
(0)
0 = 1

2 x̄2x̄3(x2x3 + 2x̄2x̄3), (21d)

for m = 0. The |m| = 1 lowest-order coefficients are closely
related to the m = 0 coefficients:

A
(0)
1 = A

(0)
0 , (22a)

B
(0)
1 = −1

2
B

(0)
0 , (22b)

C
(0)
1 = C

(0)
0 , (22c)

D
(0)
1 = − 1

2D
(0)
0 . (22d)

The order-α factors Aijk

0,n, etc., are given in Table I for the
m = 0 state. The factors for |m| = 1 are given in terms
of the corresponding m = 0 factors by equations analogous
to (22).

There are a number of checks that we can make of our
results. If we go ahead and perform the sum over ε1 using

1

2

∑
ε1

{G + H cos(2α)} = G (23)

(for any G and H independent of ε1) we find

�m = 2mα6

9π

∫ π

0

sin θdθ

2

∫
d�

1

(x1x2x3)2

×{Am + Bm(3 cos2 θ − 1)}. (24)

At lowest order this is

�(0)
m = 2mα6

9π

∫ π

0

sin θdθ

2
fm(θ )

∫
d�

1

(x1x2x3)2
A

(0)
0 , (25)

where the angular probability distributions are f0(θ ) = 3
4 (1 +

cos2 θ ) and f±1(θ ) = 3
8 (3 − cos2 θ ). This agrees with the result

given in Appendix D of Bernreuther and Nachtmann [5]. If
instead we complete the integral over the Euler angle θ but
leave the polarization sum unevaluated, we find

�m = 2mα6

9π

1

2

∑
ε1

∫
d�

1

(x1x2x3)2
{Am + Cm cos(2α)}.

(26)
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TABLE I. Coefficients of the three form factors at order α for decays from the m = 0 state. The
|m| = 1 coefficients are obtained from these by equations analogous to (22).

Coefficient of F
(1)
1 (xi,xj ,xk) Coefficient of F

(1)
2 (xi,xj ,xk) Coefficient of F

(1)
3 (xi,xj ,xk)

Aijk

(0)1 = −x̄j Aijk

(0)2 = xj x̄j +xk x̄k

x̄i
Aijk

(0)3 = xi x̄i

x̄j

Bijk

(0)1 = − 1
2A

ijk

(0)1 Bijk

(0)2 = 1
4A

ijk

(0)2 Bijk

(0)3 = 1
4A

ijk

(0)3

C1jk

(0)1 = −x̄k C1jk

(0)2 = x1 C1jk

(0)3 = 0

Ci1k
(0)1 = x̄1 Ci1k

(0)2 = x̄k Ci1k
(0)3 = x̄k (x̄1+xk )

x̄1

Cij1
(0)1 = −x̄1 Cij1

(0)2 = x̄1 + xi Cij1
(0)3 = x̄1(x1+x̄j )

x̄j

D1jk

(0)2 = x1 x̄1+6x̄2 x̄3
4x̄1

D1jk

(0)3 = 3x1 x̄1
4x̄j

Dijk

(0)1 = − 1
2C

ijk

(0)1 Di1k
(0)2 = 2x̄1+xi

4 Di1k
(0)3 = 2x1 x̄1+xi x̄i

4x̄1

Dij1
(0)2 = x1−xj

4 Dij1
(0)3 = xi x̄i+2xj x̄j

4x̄j

This expression is the same for any value of m. At lowest order
this becomes

�(0)
m = 2mα6

9π

1

2

∑
ε1

∫
d�

{ (
x̄1

x2x3

)2

+
(

x̄2

x3x1

)2

+
(

x̄3

x1x2

)2

+ 2x̄1x̄2x̄3

(x1x2x3)2
cos(2α)

}
, (27)

which agrees with the result of Eq. (5) of Drisko [4]. Finally,
if we do both the final polarization sum and the integral over
θ , we find the decay rate

�m = 2mα6

9π

∫
d�

1

(x1x2x3)2

×
{

A(0)
m + α

π
(x̄1x̄2x̄3)

3∑
n=1

∑
S3

Aijk
m,nF

(1)
n (xi,xj ,xk)

}
.

(28)

Again, this is independent of initial state m. The lowest-order
rate is

�(0) = 2mα6

9π

∫
d�

{ (
x̄1

x2x3

)2

+
(

x̄2

x3x1

)2

+
(

x̄3

x1x2

)2 }

= 2

9π
(π2 − 9)mα6, (29)

in accord with the result of Ore and Powell [33]. The first-order
correction to the rate is

�(1) = 2mα6

9π

∫
d�

x̄1x̄2x̄3

(x1x2x3)2

3∑
n=1

∑
S3

Aijk
m,nF

(1)
n (xi,xj ,xk)

= �(0)I1, (30)

where the numerical value is I1 = −10.286 6148, in agree-
ment with the known result [28,34–36].

Specific results of physical interest can be computed readily
from formulas (19) and (20) using the coefficients listed in
Table I. For example, at the symmetry point x1 = x2 = x3 =
2/3, the m = 0 order-α coefficients are [37]

A
(1)
0 → −1.4060, (31a)

B
(1)
0 → −0.3696, (31b)

C
(1)
0 → −0.8107, (31c)

D
(1)
0 → −0.4652. (31d)

These are roughly 10 times the size of the corresponding
lowest-order coefficients. Since they must be multiplied by
α/π , the order-α corrections contribute about 2% to the total
result.

The polarization of one photon (photon 1) relative to the
decay plane normal has been measured in the configuration
where the angles between the measured photon and the
other two are equal (α12 = α13, or equivalently, x2 = x3)
[23–26]. The theoretical distribution is obtained from (19)
by performing the θ average:

ρm ∝ Am + Cm cos(2α). (32)

We note that this distribution is independent of m because the
Am and Cm coefficients are. The degree of linear polarization
is defined as

P = N⊥ − N‖
N⊥ + N‖

, (33)

TABLE II. Linear polarization for a single photon (photon 1) as
a function of the angle α23 between photons 2 and 3 (measured
in degrees). The lowest-order prediction is given in the second
column. The third column contains the order-α correction. The final
column is the full prediction through order-α: P (α23) = P (0)(α23) +
(α/π )P (1)(α23).

α23 P (0)(α23) P (1)(α23) P (α23)

0 0 0 0
15 0.01703 −0.0261 0.01697
30 0.06683 −0.1031 0.06659
45 0.14477 −0.2249 0.14425
60 0.24134 −0.3740 0.24047
75 0.34143 −0.5199 0.34022
90 0.42678 −0.6301 0.42531
105 0.48189 −0.6923 0.48028
120 0.50000 −0.7269 0.49831
135 0.48438 −0.7785 0.48257
150 0.44457 −0.9090 0.44246
165 0.39131 −1.2607 0.38838

062502-4



POLARIZATION EFFECTS IN THE DECAY OF . . . PHYSICAL REVIEW A 83, 062502 (2011)

where N⊥, N‖ are the numbers of photons with polariza-
tion perpendicular and parallel to the decay plane, and are
proportional to ρ(α = 0) and ρ(α = π/2), respectively. So
one has P = Cm/Am. The lowest-order approximation is
P (0) = C(0)

m /A(0)
m , and at order-α:

P (1) = C(0)
m

A
(0)
m

(
C(1)

m

C
(0)
m

− A(1)
m

A
(0)
m

)
. (34)

Numerical values for the lowest order, order-α correction, and
total polarization are shown in Table II for a number of angles,
including those for which measurements have been made.

IV. DISCUSSION

We have obtained a convenient form for the distribution for
the decay of o-Ps with spin component m into three photons as
a function of the angle (relative to the spin quantization axis)

of the decay plane normal, the angle (relative to the decay
plane normal) of the linear polarization of one photon, and the
two parameters giving the energies or relative orientation of
the three photons in the decay plane. Our result generalizes the
known lowest-order expression to include one-loop radiative
corrections. These corrections are typically smaller by a factor
of ≈ 10α/π than the lowest-order results, so they are not
crucial for the interpretation of experiments to date. There
has been significant ongoing interest in polarized positronium
and in the polarization properties of the decay photons from
positronium, so the results given in this paper should be useful
as experimental uncertainties continue to decrease.
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