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Properties of Fr-like Th3+ from spectroscopy of high-L Rydberg levels of Th2+
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Binding energies of high-L Rydberg states (L � 7) of Th2+ with n = 27–29 were studied using the resonant
excitation Stark ionization spectroscopy (RESIS) method. The core of the Th2+ Rydberg ion is the Fr-like ion
Th3+ whose ground state is a 5 2F5/2 level. The large-core angular momentum results in a complex Rydberg
fine-structure pattern consisting of six levels for each value of L that is only partially resolved in the RESIS
excitation spectrum. The pattern is further complicated, especially for the relatively-low-L levels, by strong
nonadiabatic effects due to the low-lying 6d levels. Analysis of the observed RESIS spectra leads to determination
of five properties of the Th3+ ion: its electric quadrupole moment Q = 0.54(4); its adiabatic scalar and tensor
dipole polarizabilities αd ,0 = 15.42(17) and αd ,2 = -3.6(1.3); and the dipole matrix elements connecting
the ground 5 2F5/2 level to the low-lying 6 2D3/2 and 6 2D5/2 levels, |〈5 2F5/2||D||6 2D3/2〉| = 1.435(10) and
|〈5 2F5/2||D||6 2D5/2〉| = 0.414(24). All are in atomic units. These are compared with theoretical calculations.
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I. INTRODUCTION

High-L nonpenetrating Rydberg electrons act as sensitive
probes of the properties of the core ion, such as permanent
moments and polarizabilities that control its long-range in-
teractions. The hydrogenic degeneracy of Rydberg levels of
common n, present when the only core property is net charge,
is broken by the presence of additional long-range interactions.
These produce a fine-structure pattern whose shape and scale
can be related to the core properties. The high-L Rydberg
eigenstates are characterized by the total angular momentum
exclusive of Rydberg spin,

�K = �L + �Jc, (1)

and levels are labeled by their n, L, and K values. In general,
the high-L binding energies are only slightly different from
hydrogenic and for that reason special experimental techniques
are needed to observe them. One method that has been used to
study many such fine-structure patterns is the resonant excita-
tion Stark ionization spectroscopy (RESIS) technique [1]. This
method was recently used to study Rydberg levels of Ni whose
complexity is comparable to the Th2+ levels studied here [2].

The Th3+ ion is Fr-like since it has a single valence electron
outside a closed-shell Rn-like core, but unlike neutral Fr
its ground state is not a 7 2S1/2 state. Instead the increased
nuclear charge leads to a 5 2F5/2 ground state [3,4]. Some
limited optical spectroscopy has been reported for Th3+ [5],
determining the relative positions of the lowest 24 levels, but no
other Th3+ properties have ever been measured. Measurements
of properties such as polarizabilities and permanent moments
provide a valuable test of the very challenging a priori
theoretical calculations used to predict the behavior of this
ion. Increased confidence in these calculations is important for
applications where the isolated ion is used directly [6], where
it interacts with other atoms or molecules [7], and where it is
imbedded in chemical compounds or solids [8].

Sec. II of this paper discusses the experimental technique
used in this study and reports the RESIS spectra observed.

Sec. III describes the analysis of the spectra with particular
attention on the strong nonadiabatic effects that are present.
Sec. IV compares the experimental measured properties with
theoretical calculations.

II. EXPERIMENT

The measurements reported here were carried out with a
method and apparatus used recently for studies of Pb2+, Pb4+
[9], and Th4+ [10]. The apparatus is illustrated schematically
in Fig. 1. For this study, a beam of 75-keV Th3+ is produced by
sputtering Th metal in a 14-GHz permanent magnet electron
cyclotron resonance ion source. The Th3+ beam is charge
and mass selected using a 20◦ magnet and focused by a set
of electrostatic quadrupole doublets. The Th3+ beam then
intersects a Rb Rydberg target where a small fraction of
the beam (∼1%–3%) captures a single Rydberg electron,
becoming a Th2+ Rydberg beam. The Th2+ Rydberg beam is
charge selected by a 15◦ magnet and focused by an electrostatic
lens. The electric field in this lens also serves to ionize very
weakly bound Rydberg states of Th2+ that would otherwise
be ionized in the Rydberg detector, producing an undesirable
background to the RESIS signal. A CO2 laser beam then
intersects the Rydberg beam and excites transitions from one n
level to a much-higher-n level. Several RESIS transitions were
studied for this work, exciting n = 27–29 levels. Table I shows
the transitions studied and the CO2 laser line used for each. The
CO2 laser is Doppler tuned by varying the angle of intersection
between the Rydberg beam and the fixed-frequency CO2

laser beam. The conversion of the intersection angle into
the Doppler-tuned frequency is discussed in Ref. [10]. After
passing through the CO2 laser beam, the Rydberg ion beam
enters the Stark ionization detector where it encounters a
sequence of electrodes that are adjusted to fully ionize and
decelerate ions excited by the CO2 laser in order to distinguish
them from any Th3+ ions that may be present in the beam
due to autoionization or collisional ionization. The resulting
voltage labeled Th3+ ions is deflected into a channel electron
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FIG. 1. Diagram of the RESIS apparatus used in this work. An
electron cyclotron resonance source produces a 75-keV beam of Th3+,
charge and mass selected at (1) using a 20◦ magnet. The beam then
passes through a Rb target at (2) where it charge captures a highly
excite electron, becoming a beam of Th2+ Rydberg states. Then at (3)
the beam passes through a 15◦ magnet where it is charge analyzed and
the Th2+ Rydberg beam is selected, eliminating any remaining Th3+

beam. From there it passes through an einzel lens at (4) to remove any
weakly bound Rydberg states from the beam. Rydberg transitions are
then excited with a CO2 laser at (5), making transitions from one n
level to a higher n level. Then at (6) the upper n Rydberg state is Stark
ionized and at (7) it is steered and focused into the channel electron
multiplier (CEM).

multiplier and the current synchronous with chopping of the
CO2 laser is measured with a lock-in amplifier.

By scanning the frequency of the Doppler-tuned CO2 laser
through a range of frequencies near the hydrogenic transition
frequency it is possible resolve the fine structure of the lower-
n level. Three RESIS spectra were observed in this study,
exciting n = 27, 28, and 29. These are illustrated in Fig. 2. To
facilitate a comparison between the three spectra, the transition
frequencies are rescaled as quasiquantum defects, according
to

δ ≡ n3

2Z2

h (v − v0)

RM

, (2)

where v is the transition frequency, v0 is the nonrelativistic
hydrogenic frequency for the transition, and n is the principal
quantum number of the level being excited. The nonrelativistic
hydrogenic frequency v0 is defined by

v0 = Z2RM

(
1

n2
− 1

n′2

)
, (3)

where the Z is the charge of the core and RM is the
mass-corrected Rydberg constant. The quasiquantum defect
ignores the contribution to the excitation energy from the fine
structure in the upper level, which can be significant, but it
nevertheless accounts for most of the difference in magnitude
of the fine structure in the three levels excited. The range of
δ in Fig. 2 corresponds to a frequency range of -2–14 GHz
from hydrogenic. The scan range was limited by the speed of
the Th3+ beam and physical limitations of the Doppler-tuning
stages.

One obvious feature in all three spectra of Fig. 2 is the
large peak near δ = 0. This is due to the highest-L levels
being excited, whose quantum defects are very small. The
splitting of this peak into two resolved features is a signature
of the permanent quadrupole moment of the Th3+ ion, which is
the dominant feature of the structure at extremely high L. The
shape of this feature can give rough estimates of the quadrupole
moment and scalar dipole polarizability of the Th3+ ion. More
detailed information must rely on the resolved features at
larger δ, which are shown in Fig. 2 where the vertical scale is
magnified by a factor of 20.

III. ANALYSIS AND RESULTS

A. Adiabatic model

Previous studies of Rydberg systems with anisotropic cores
include Ne and Ar (Jc = 3/2) [11,12] and Ni (Jc = 5/2) [2].
Each of these systems was adequately described by an effective
potential derived from an adiabatic expansion of the second-
order perturbation energies. This approach of finding the
effective potential was first developed by Drachman for helium
Rydberg levels [13]. The derivation of the effective potential
having to do with systems of higher Jc is discussed in Refs.
[1,14]. The most significant terms in such a potential are shown
in Eq. (4). Three core properties, the quadrupole moment Q,
and the adiabatic scalar and tensor dipole polarizabilities αd,0

and αd,2 determine the gross fine structure of any system
described by such a potential:

Veff = −
(

e2αd,0

2r4

)
−

⎛
⎜⎜⎝

(
eQ

r3
+ αd,2

2r4

)
X[2]

c (Jc) · C[2](�r )(
5/2 2 5/2

−5/2 0 5/2

)
⎞
⎟⎟⎠ .

(4)

A consequence of such a description is that the
fine-structure pattern would show only minor variations
in scale as the principal quantum number changed, showing
roughly constant quantum defects. Close examination of the
three spectra shown in Fig. 2 shows that this is not the case in
the Th2+ Rydberg levels studied here. In the relatively-well-
resolved portions of the three spectra, there are clear variations
in the appearance of the three spectra. This is an indication
that the adiabatic polarization potential cannot describe the
structure. The failure of the adiabatic polarization potential
was expected because it is known that the 6d levels of Th3+ lie
very close to the ground 5 2F5/2 level. The excitation energy of
the 6 2D3/2 level is 9193 cm−1 and that of the 6 2D5/2 level is
14 486 cm−1 [5]. A much larger excitation energy would be
required to ensure the adequacy of the adiabatic expansion. A

TABLE I. Specific RESIS transitions observed in this study are given in column 1. Listed in column 2 are the transition’s nonrelativistic
hydrogenic frequencies in cm−1. Column 3 shows the CO2 laser line used for the transition and column 4 gives its frequency.

Transitions observed v0 (cm−1) CO2 line CO2 laser frequency (cm−1)

n–n′

27–60 1080.4358 9R(24) 1081.0874
28–66 1033.0072 9P(34) 1033.4880
29–72 983.8404 10R(34) 984.3832
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FIG. 2. RESIS spectra of Th2+ Rydberg states for three different transitions; each spectrum is labeled to identify the specific transition. The
solid line on each graph is the original signal and the points with error on them are the signal times 20. The quasiquantum defect discussed in
the text is on the x axis. Each spectrum has a limited scan range. The large peak around zero is referred to as the high-L peak because it is made
up of all the transitions with little quantum defect, i.e., the higher-L levels that are unresolved. Letters without parentheses denote transitions
used during the fitting process, while letters with parentheses identify analogous lines not used in the fit.

similar circumstance was encountered in studies of Rydberg
levels of barium by Gallagher et al. [15] and Snow et al. [16].
In that system, the low-lying 5d levels produced strong
nonadiabatic effects in the quadrupole polarization of the
2S1/2 ground state of Ba+.

B. Nonadiabatic effects

To appreciate the limitations of the adiabatic model,
consider the portion of the second-order dipole perturbation
energy of a Rydberg state with quantum number n, L, or K due
to intermediate states where the Th3+ core ion is in the 6 2D3/2

level:

E
[2]
n,L,K (6 2D3/2)

= −
∑
n′L′

〈
5 2F5/2nL; K

∣∣⇀

D · ⇀
r
r3

∣∣6 2D3/2n
′L′; K

〉
�Ecore+�ER

2

, (5)

where

�ER = E(n′) − E(n),

�Ecore = E(62D3/2) − E(52F5/2) = 9193 cm−1.

The adiabatic expansion depends on the assumption that of
the two energy differences in the denominator of Eq. (5), the
second is much smaller than the first. If this is true then the
denominator can be formally expanded as

1

�Ecore + �ER

= 1

�Ecore
− �ER

(�Ecore)2
+ (�ER)2

(�Ecore)3
− · · · .

(6)

Substituting this into Eq. (5) leads to

E
[2]
n,L,K (62D3/2)

= −
∑
n′L′

〈
52F5/2nL; K

∣∣⇀

D · ⇀
r
r3

∣∣62D3/2n
′L′; K

〉
�Ecore

2
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+
∑
n′L′

〈
52F5/2nL; K

∣∣⇀

D · ⇀
r
r3

∣∣62D3/2n
′L′; K

〉2
(�ER)

(�Ecore)2

+ · · · . (7)

The first term gives the adiabatic polarization energy due to the
6 2D3/2 state and the second gives a nonadiabatic correction.
In many Rydberg systems, the first term is dominant and
expresses the net result of dipole coupling to all possible
core-excited levels in a single constant. The resulting energy
shift is simply evaluated for any Rydberg without the need for
a specific calculation for each level.

Considering the many common factors in the two terms in
Eq. (7), it can be shown that the ratio of the second term to the
first is

E
[2]
1st nonad

E
[2]
ad

=
∑
n′

|〈n′L′|r−2|nL〉|2[E(n′) − E(n)]

(�Ecore)
∑
n′

|〈n′L′|r−2|nL〉|2 (8)

and using the properties of hydrogenic radial wave func-
tions, this can be simplified to

E
[2]
1st nonad

E
[2]
ad

= [4−L(L+1)+L′(L′+1)]〈r−6〉nL

2〈r−4〉nL

1

�Ecore[a.u.]
,

(9)

where n and L identify the Rydberg level in question, L′
is the angular momentum of the Rydberg electron in the
intermediate state, and �Ecore is the excitation energy of the
core state in atomic units. Table II evaluates this ratio for
several values of L within the n = 27 level of Th2+. Similar
results are found for other values of n. It is apparent from
the values shown in Table II that the adiabatic expansion
fails for the portion of the second-order dipole perturbation
energy coming from intermediate 6 2D3/2 core levels, at least
for Rydberg levels with L < 12. A similar conclusion can
be drawn for intermediate 6 2D5/2 core levels [�E(6 2D5/2) =
144 86 cm−1]. Additional contributions to the second-order
dipole perturbation energies from higher levels (7d, 8d, etc.)
would be expected to be described accurately by the adiabatic
expansion because of their higher excitation energies. Fortu-
nately, it is not difficult to calculate explicitly the second-order
dipole perturbation energies from a specific core intermediate
state. For example, the contribution from intermediate states
with the 6 2D3/2 core state is given by

E
[2]
n,L,K (62D3/2)

= − 〈
52F5/2

∥∥ �D∥∥62D3/2
〉2 ∑

n′ L′

{
K

1
L

3/2
5/2
L′

}2

×
〈
nL

∥∥ r̂
r2

∥∥ n′L′〉2
�E(62D3/2) + �ER

, (10)

where �E(6 2D3/2) is the known excitation energy of the
6 2D3/2 level. Except for the squared dipole matrix element at
the beginning of Eq. (10), everything else is known. The sum
can be done numerically using the Dalgarno-Lewis method
[17]. In this way, the full second-order dipole perturbation
energy for 6 2D3/2 intermediate core levels can be calculated
up to a constant that represents the square of the reduced

TABLE II. Estimate of the convergence of the adiabatic expansion
of the second-order dipole perturbation energy of the Th2+ Rydberg
states with n = 27 and 6 � L � 13 due to coupling to intermediate
states in which the Th3+ core is excited to the low-lying 6 2D3/2 level
at 9193 cm−1. The table shows the ratio of the first nonadiabatic term
to the adiabatic term, computed from Eq. (9). Column 1 gives the L
of the n = 27 Rydberg level in question. Columns 2 and 3 show the
ratios for intermediate levels with L′ = L+1 and L-1, respectively.
Notice that the second term is actually larger than the first in the
lowest-L level shown, but becomes gradually smaller as L increases,
indicating that the adiabatic model does not describe the lowest-L
levels but may be adequate for levels with L � 12.

L Ratio (L′ = L + 1) Ratio (L′ = L − 1)

6 3.58 −1.59
7 2.13 −1.07
8 1.37 −0.75
9 0.93 −0.54
10 0.65 −0.40
11 0.47 −0.31
12 0.35 −0.24
13 0.27 −0.19

dipole matrix element connecting the ground 5 2F5/2 level
and the 6 2D3/2 level. A similar calculation can be carried
out for the second-order dipole perturbation energy due to
6 2D5/2 intermediate levels. Of course, these calculations must
be carried out for each specific nLK level of interest.

This suggests a modification of the effective potential
method that could successfully describe the binding energies
of the Th2+ Rydberg levels studied here. The contributions
to the Rydberg binding energy due to the second-order
dipole energies from 6d intermediate core levels are not well
described by the αd,0 and αd,2 terms in Eq. (4). Therefore
these energy contributions must be calculated explicitly for
each nLK Rydberg level and they are known exactly except
for a constant that represents the square of the dipole matrix
element connecting the core ground state to each 6d level. The
total deviation of the Rydberg binding energy from hydrogenic
would then be given by the sum of these two explicitly
calculated terms and the expectation value of a modified
effective potential:

�E(nLK) = |〈52F5/2‖D‖62D3/2〉|2E
[2]
n,L,K (62D3/2)∗

+ |〈52F5/2‖D‖62D5/2〉|2E
[2]
n,L,K (62D5/2)∗

+ 〈(Jc)nLK |V mod
eff |(Jc)nLK〉, (11)

where E
[2]
n,L,K (62D3/2)∗ and E

[2]
n,L,K (62D5/2)∗ denote the second-

order dipole perturbation energies calculated from these two
core states assuming unit matrix elements. The modified
effective potential has the same form as Eq. (4),

V mod
eff

= −
(

e2αmod
d,0

2r4

)
−

⎛
⎜⎜⎝

(
eQ

r3
+αmod

d,2

2r4

)
X[2]

c (Jc) · C[2](�r )(
5/2 2 5/2
−5/2 0 5/2

)
⎞
⎟⎟⎠ ,

(12)
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FIG. 3. This figure illustrates the importance of nonadiabatic
effects in the second-order dipole perturbation energy. Shown on
the left of each panel are the energy levels calculated using the
adiabatic model with the theoretical values of Q, αd ,0 and αd ,2, for
n = 27 and L = 9, 11, and 13. On the right of each panel are the
nonadiabatic effects that were calculated and added to the model.
In both cases only the first-order quadrupole energies and second-
order dipole energies are included. It can be observed that these
nonadiabatic effects drastically affect the order of the energy levels for
L = 9, but by L = 13 the effect is limited to slight shifts in each level,
which would likely be described by the nonadiabatic terms of the
effect potential.

with αmod
d,0 and αmod

d,2 representing αd,0 and αd,2 with the
contributions of the 6d levels removed. This procedure is
similar to that used by Snow et al. in treating the nonadiabatic
quadrupole polarization energies in barium Rydberg levels
[16].

Figure 3 illustrates the importance of the strong nonadi-
abatic effects on the energies of n = 27 Rydberg levels of
Th2+. The six energy levels corresponding to L = 9, 11,
and 13 are shown. The left-hand panel for each L shows
the calculated energy levels predicted in the adiabatic model,
assuming theoretical values for Q, αd,0, and αd,2 [3], [18].
The right-hand panel shows the energy levels computed if
the 6d levels are treated separately and their contributions are
evaluated with Eq. (10) and its analog for the 6 2D5/2 level.
The importance of nonadiabatic effects is clear in the L = 9
levels, where they dramatically alter the order of levels. In the
L = 13 levels, the nonadiabatic effects are much smaller and
are approximated by the first nonadiabatic corrections. This
reinforces the conclusion, which could be drawn from Table II,
that the adiabatic model may be adequate for very-high-L
levels of Th2+, but not for levels with L < 12.

C. Line identification and fits

Using the model described by Eq. (11), it is possible to
interpret the three RESIS spectra shown in Fig. 2. Fortunately,
theoretical estimates [3,18] of the five most significant core
properties are available, and these form a starting point:

Q = 0.62, αmod
d,0 = 8.582, αmod

d,2 = 0.054,

|〈52F5/2‖�D‖62D3/2〉| = 1.530,

|〈52F5/2‖�D‖62D5/2〉| = 0.412.

Using these initial estimates, a simulation of each of
the spectra is constructed. These initial spectra are a rather
poor match to the details of Fig. 2. The high-L features,
the split, and the sharpness of the left-hand side allow for
limits to be place on the possible values of Q and αmod

d,0 .
Using theses limits, the five parameters are varied until a
reasonable match is obtained for resolved structures in all
three spectra. In spite of the complexity of the spectra and
the limited experimental resolution, 14 lines are identified as
representing single resolved excitations. These 14 lines are
shown in Fig. 2 by 8 different letters signifying common
values of L and K in the lower state of the transition. Table III
identifies each of these transitions and reports the difference
of their transitions frequency from the appropriate hydrogenic
frequency. For example, the three lines labeled “a” in Fig. 2
represent excitation of the L = 10, K = 8.5 levels and are
visible in all three spectra at approximately the same quantum
defect. Referring to Table III, the transition frequency of the
three “a” lines exceed the hydrogenic frequency by 3288, 3133,
and 2903 MHz, respectively. The lines labeled “b” represent
excitation of L = 9, K = 8.5 levels in n = 27 and 28. The
analogous line in n = 29 is not well resolved and not used in
the fit, but its position is indicated by the “(b)” in Fig. 2.
Nonadiabatic effects are most noticeable in the excitation
lines originating from L = 7 or 8 levels. For example, the
excitation of L = 8, K = 5.5 levels, labeled “d” in Fig. 2,
shifts dramatically in quantum defect in the three spectra due
to non-adiabatic effects.

The frequencies of the 14 well-resolved single lines are fit
to determine the best values of the 5 parameters in Eq. (11).
Before the fit, the transition energies are corrected to remove
a small relativistic contribution

Erel(n,L) = α2q4

2n4

(
3

4
− n

L + 1
2

)
(13)

and those small corrections are listed in Table III. Possible
contributions due to second-order quadrupole coupling to
Rydberg levels bound to the 5 2F7/2 core level, at 4325 cm−1,
are found to be negligible for the purposes of this study [5].
The results of this fit are

Q = 0.54(4), αmod
d,0 = 9.67(15), αmod

d,2 = 1.5(1.3),

|〈52F5/2‖�D‖62D3/2〉| = 1.435(10),

|〈52F5/2‖�D‖62D5/2〉| = 0.414(24).

The error in each fitted parameter is the quadrature sum of
the error from the fit, expanded to reflect the quality of the fit,
and the error due to uncertainty in the calibrations of the beam
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TABLE III. Summary of observed positions, corrections, and fitted positions for the spectra in Fig. 2. In column 1 the transitions are
identified by (L, K) of the lower state. The transitions observed were to the upper states with L′ = L+1 and K′ = K+1. Column 2 identifies the
letter the transition is denoted by on Fig. 2. Column 3 gives the measured frequency with the error due to the fit of the peak and column 4 gives
the relativistic correction for each transition. Column 5 gives the relativistic corrected positions E[1]. Column 6 gives the fitted position of the
transitions and column 7 gives the difference between the fitted and corrected observed positions from column 5.

Transition (L, K) Fig. 2 identifier Emeasured (MHz) �Erel (MHz) E[1] (MHz) Fitted positions (MHz) Difference (MHz)

n = 27–60
(10,8.5) a 3288(8) 44 3244 3295 51
(9,10.5) b 4428(16) 50 4378 4325 −53
(8,9.5) c 7514(8) 59 7455 7588 133
(8,5.5) d 8932(17) 59 8873 8848 −25
(8,7.5) e 108 74(9) 59 108 15 10 762 −53
(7,8.5) g 136 17(9) 69 13 548 13 501 −47
n = 28–66
(10,8.5) a 3133(8) 41 3092 3077 −15
(9,10.5) b 4030(8) 47 3983 3924 −59
(8,9.5) c 6905(17) 54 6851 6791 −60
n = 29–72
(10,8.5) a 2903(7) 38 2865 2891 26
(8,9.5) c 6320(16) 50 6270 6262 −8
(8,8.5) f 8851(8) 50 8801 8815 14
(7,8.5) g 11691(8) 59 11632 11643 11
(7,9.5) h 4695(8) 59 4636 4634 −2

speed and the intersection angle. Also shown in Table III is
the fitted position of each of the 14 lines and the difference
between the observed and best fits.

Additional Th3+ properties such as the Landé factor gJ , the
permanent hexadecapole moment �, and the scalar quadrupole
polarizability αQ,0, which occur in the full effective potential

FIG. 4. Comparison between observed and simulated spectra using the n = 29–72 spectrum. The top shows the simulated spectrum using
the fitted properties. The bottom is the actual experimental observation for n = 29–72. The solid line in both is the signal and the line with
points in both is the signal times 20. The x axis is the transition’s frequency minus the non-relativistic hydrogenic energy in gigahertz. The
simulated spectrum shows good agreement with the observed spectrum, with only slight variation in areas of overlapping signals.
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TABLE IV. Comparison between Th3+ properties derived from Th2+ Rydberg spectra and calculated properties. Theoretical predictions are
from Ref. [3] and include uncorrelated results from Dirac-Fock theory in column 2 and results from two levels of approximation of RMBPT
in columns 3 and 4. Column 3 represents RMBPT results complete through third order. Column 4 represents results from all-order RMBPT
including single and double excitations (SD). Numerical results for Q were obtained from Safronova [18]. Column 5 gives the results from this
study. All results are in atomic units.

Property Theory (DF) Theory (DF + 2 + 3) Theory (SD) Expt.

Q 0.91 0.62 0.54(4)
αd ,0 13.523 15.073 15.42(17)
αd ,0

mod 8.562 8.582 9.67(15)
αd ,2 −4.763 −6.166 −3.6(1.3)
αd ,2

mod −0.018 0.054 1.5(1.3)
|〈5 2F5/2||D||6 2D3/2〉| 2.428 1.337 1.530 1.435(10)
|〈5 2F5/2||D||6 2D5/2〉| 0.639 0.362 0.412 0.414(24)

[2], were included on a trial basis in the fit. These additional
properties all failed to improve the fit and their fitted values
were not significantly different from zero. In addition, the
possible effects of Stark shifts in the upper-n levels due to a
constant stray electric field �0.05 V/cm were considered and
did not improve the fit. The average difference between the
measured and fitted positions was on the order of 50 MHz.
Although this exceeds the precision of the observations by
a factor of 5, it is probably consistent with a combination
of small errors in the beam speed or the calibration of the
intersection angle, drifts of the laser frequency (�30 MHz) or
beam trajectory, small stray electric fields, and contributions
of higher terms in Veff .

The fitted parameters are used to estimate the positions
of all excitation lines, including those unresolved in Fig. 2,
and simulations of each of the observed spectra are prepared.
One example is shown in Fig. 4. The simulated spectrum
matches the observed spectrum quite well. All observed
features are represented in the simulation, and the simulation
contains no features that are not seen in the data. Some minor
differences are seen, especially in regions where there are
multiple overlapping lines.

IV. DISCUSSION

Table IV compares the properties derived here from the
Rydberg spectra to theoretical estimates. The three properties
that are most directly reflected in the spectra, and which
are therefore most precisely determined, are the quadrupole

moment Q, the portion of the scalar dipole polarizability not
due to 6d levels αmod

d,0 , and the dipole matrix element connecting
the ground 5 2F5/2 level to the 6 2D3/2 level. The fitted values,
shown in column 5 of Table IV, are significantly different from
the initial theoretical estimates shown in column 4 of Table IV.
The measured value of Q, determined to about 8%, disagrees
with the Dirac-Fock (DF) estimate by almost a factor of 2, but
is in much better agreement with the all-order result from
relativistic many-body perturbation theory (RMBPT). The
dipole matrix element from 5 2F5/2 to 6 2D3/2 follows a similar
pattern. The measured value is nearly a factor of 2 smaller
than the DF estimate, but is in much better agreement with the
all-order RMBPT result. The measured result for αmod

d,0 agrees
to within about 10% with the RMBPT result. Almost all of this
comes from the polarizability of the Rn-like Th4+ core of Th3+
[4]. This quantity has been independently measured in a recent
experiment and agrees with a relativistic random-phase ap-
proximation calculation to within 5% [10]. The portion of the
tensor dipole polarizability not due to the 6d levels, αmod

d,2 , is not
very precisely determined from the spectra, but appears to be
very small, in agreement with the RMBPT. In other words, the
tensor polarizability is almost entirely due to coupling to the 6d
levels.

Although αd,0 and αd,2 , the full adiabatic dipole polariz-
abilities, do not directly describe the levels studied here, they
can still be calculated from the fitted results. Given the fitted
dipole matrix elements, the contribution of both 6d levels to the
adiabatic scalar and tensor polarizabilities can be calculated,
as indicated in the Appendix,

αd,0 = αmod
d,0 + α

D3/2

d,0 + α
D5/2

d,0 = 9.67(15) + 5.46(8) + 0.29(3) = 15.42(17), (14a)

αd,2 = αmod
d,2 + α

D3/2

d,2 + α
D5/2

d,2 = 1.5(1.3) − 5.46(8) + 0.33(4) = −3.6(1.3). (14b)

The total scalar polarizability agrees with the RMBPT result
to within 2%, but this appears to be fortuitous since agreement
for the major contributions is not nearly so close. The total
tensor polarizability is found to be slightly smaller than the
theoretical prediction.

In general, the fitted parameters confirm the predictions
of the best RMBPT theoretical calculations at about the

10%–20% level, but are in clear disagreement with predictions
based on the DF model. This is probably not surprising since
the 7s, 5f, and 6d orbitals are nearly degenerate for thorium [4],
indicating that correlation effects, omitted in the DF model, are
likely to be especially important in thorium. In other words,
even though the DF model is fully relativistic, it is a poor choice
for describing this ion when even moderate precision is needed.
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The detailed description of the RMBPT calculations in Refs.
[3,4] (and the references cited therein) provides more detail
about the challenges of describing such a system in an a priori
model.

The Th3+ properties measured here represent a substantial
addition to the experimental knowledge base for Fr-like atoms
and ions. Optical spectroscopy of Fr-like ions of any charge
is very limited [5]. Aside from optical spectroscopy, the only
other measured properties of any Fr-like system are a few life-
times measured in neutral Fr [19–21]. Therefore, the properties
reported here provide important tests of atomic structure the-
ory in these highly relativistic one-valence-electron systems.
Although the thorium ions may present an especially difficult
case because of the near degeneracy of several orbitals, this
example clearly demonstrates that experimental measurements
have an important role to play in clarifying the accuracy of such
calculations.

Given the preliminary estimates of the Th2+ fine-structure
patterns provided by the present study, it appears feasi-
ble to obtain much more precise measurements using the
RESIS+microwave method [12]. Such measurements would
be immune to most of the factors limiting the precision of
the present study. They should also be able to fully resolve
the structures studied here and explore higher-L levels that are
completely unresolved here.
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APPENDIX

The scalar dipole polarizability αd,0 and the tensor dipole
polarizability αd,2 are given by

αd,0 ≡ 1

9

∑
γ J ′

c

〈52F5/2‖�D‖γ J ′
c〉2

�E(γ J ′
c)

and

αd,2 ≡ −
√

50

63

∑
γ J ′

c

〈52F5/2‖�D‖γ J ′
c〉2

�E(γ J ′
c)

(−1)J
′
c−5/2

×
{

J ′
c

2
1

5/2
5/2
1

}
,

where
�D ≡

87∑
i=1

riC
[1](r̂i).
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