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The continuous-variable controlled-Z gate is a canonical two-mode gate for universal continuous-variable
quantum computation. It is considered as one of the most fundamental continuous-variable quantum gates.
Here we present a scheme for realizing continuous-variable controlled-Z gate between two optical beams using
an atomic ensemble. The gate is performed by simply sending the two beams propagating in two orthogonal
directions twice through a spin-squeezed atomic medium. Its fidelity can run up to one if the input atomic state is
infinitely squeezed. Considering the noise effects due to atomic decoherence and light losses, we show that the
observed fidelities of the scheme are still quite high within presently available techniques.
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I. INTRODUCTION

Quantum computation (QC) is one of the most fascinating
and fruitful areas of research. It strives to utilize the prin-
ciples of quantum mechanics to improve the efficiency of
computation. In recent years, with the discoveries of many
quantum algorithms [1,2], QC has been shown to work faster
than any known classic computation. Though originally based
upon discrete variables (DV), QC over continuous variables
(CV) has also been addressed by Lloyd and Braunstein [3].
In analogy to DV QC based on gate operations, universal CV
QC can be carried out by executing a finite set of CV quantum
logic gates, including displacement gate, shearing gate, cubic
phase gate, and controlled-Z (CZ) gate [4].

CV CZ gate [also called quantum nondemolition (QND)
gate] is a canonical two-mode gate, which is a CV analog
of a two-qubit controlled-phase (CPHASE) gate. Like the DV
CPHASE gate, CV CZ gate is considered one of the most
fundamental CV quantum gates. Nowadays, much effort has
been devoted to the realization of such a gate in many physical
systems, especially in optical systems [5–13]. However, by
now the optical CV CZ gate is still experimentally challenging.
Initial approaches to realize optical QND interactions are
based on nonlinear optical systems [6–10]. The CZ gate is
performed by simply sending the beams through an optical
crystal or an optical fiber. These approaches, however, are
hampered by the weak nonlinearities in the nonlinear media.
Although the nonlinearities can be enhanced by embedding the
crystal inside a cavity or using a long fiber, such enhancement
techniques, on the other hand, make it difficult to inject
the light states into the system and cause large loss rates.
Recently, an alternative approach was proposed to circumvent
cumbersome nonlinear interactions by using only linear optical
elements and offline squeezed light beams [12]. This approach,
however, requires efficient homodyne detection techniques
and accurate feed forward control, which poses a challenge
to the experimental realization [13]. In recent years, with the
emergence of one-way QC [14], the interest in theoretical and
experimental realization of optical CZ gate is further fueled.

One-way QC is a new form of QC which eliminates unitary
evolution and relies solely on adaptive measurements on a
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suitably prepared multiparty entangled state. This model is
quite attractive because local projective measurements are
often easier to implement than unitary evolution. Most of the
challenging work of QC are then converted into the problem of
creating the multiparty entangled state—the so-called cluster
state. Cluster state in the CV regime is a multimode squeezed
Gaussian state and has proved to be a universal resource for
CV one-way QC. To date, several methods have been proposed
to construct such a state. One of them is called the canonical
method [15], which involves offline single-mode squeezers
and CZ gates. Although this method is conceptually simple, it
is not very practical because of the experimental challenges
associated with CZ gates. Shortly after this method, another
method, linear-optics method [16], has also been proposed
to eliminate the need for CZ gates. Any desired CV cluster
state can be created by using only offline squeezing and
linear optics. This method, however, suffers from drawback
that affects its scalability. Recently, Menicucci et al. proposed
the single-QND-gate method [17] which reintroduces the CZ

gates. Although this method has many distinct advantages
(i.e., it saves the resources needed greatly and eliminates the
need for long-time coherence of a large cluster state), still the
inefficiency of the experimental realization of CZ gates casts
it into the shade. Apparently, the only way to repolish the
CZ-based methods (and thus the CV one-way QC) is to devise
many new schemes which enable us to implement the CZ gate
more efficiently.

In this paper, we propose a simple and practical scheme to
realize optical CZ gate using a free-space macroscopic atomic
ensemble. We show that the CZ gate between two optical beams
can be performed by simply sending them perpendicularly to
each other twice through a spin-squeezed atomic ensemble
[see Fig. 1(a)]. The fidelities obtained in the scheme depend
solely on the degree of the atomic squeezing. The more the
amount of squeezing input, the higher the fidelity obtained.
Near-unity fidelity can be achieved under the condition
that the atomic state is infinitely squeezed. Unlike previous
measurement-based schemes [12,13,17], our scheme requires
neither homodyne detection nor feed-forward control during
the gate operation, which greatly simplifies its experimental
implementation. Within the presently experimentally available
parameters, we find that the observed fidelities are quite high
even with room-temperature atomic vapors.
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(a) (b)

FIG. 1. (Color online) (a) Scheme setup for realization of optical
CZ gate in an atomic ensemble. Two light beams L and M simultane-
ously enter a spin-squeezed atomic ensembles. The outgoing beams
then pass through a delay line. After the whole of the beams run
through the atomic sample, they enter the ensemble again. When the
beams exit, a CZ gate between L and M is performed. (b) Schematic
chart of the CZ gate. The two interactions do not overlap in the time
line. After them, the gate is performed.

The remainder of this paper is organized as follows. In
Sec. II we first review some basic theories, and then give details
of the CZ operation based on an atomic ensemble. In Sec. III
we will consider the noise effects. After that, the experimental
feasibility of the scheme is also discussed. Finally, Sec. IV
contains brief conclusions.

II. BASIC THEORY AND CONTROLLED-Z GATE

A. Basic theory

For a two-mode two-party system described by the quadra-
ture operators x̂1,2 and p̂1,2 satisfying the commutation
relation [x̂j ,p̂k] = iδjk , the QND-gate coupling Hamiltonian
can be written as ĤQND = h̄χp̂1p̂2, where χ is the coupling
coefficient. In the Heisenberg picture, one may deduce the ideal
QND input-output relations for both position and momentum
operators:

x̂out
1 = x̂ in

1 + Gp̂in
2 , p̂out

1 = p̂in
1 ,

(1)
x̂out

2 = x̂ in
2 + Gp̂in

1 , p̂out
2 = p̂in

2 ,

where G = χt is the gain of the interaction, and t represents
the interaction time. For nonzero G, these equations imply that
the two subsystems become Gaussian entangled [18]. Such
entanglement has been widely used in quantum information
processing [19–21]. Specifically, if we put the gain of the
interaction G = 1, then we obtain the CV CZ gate as desired.

To realize optical CZ gate in an atomic ensemble, let us first
investigate the interaction between light and atoms. Consider
a cell filled with a large number of atoms interacting with a
light pulse traveling along the z direction. The atoms in the
cell are initially prepared in a coherent spin state (i.e., a fully
polarized state along the x axis). As a result, we may treat the x

component of the collective spin as a c number, that is, Ĵx by Jx .
In this case, we can map the transverse spin components into
dimensionless canonical variables (x̂a,p̂a) = (Ĵy,Ĵz)/

√
Jx

obeying [x̂a,p̂a] = i. The light pulse interacting with atoms

is also linearly polarized along the x axis. Similarly, we may
define the optical canonical operators as (x̂ph(t),p̂ph(t)) =
(Ŝy(t),Ŝz(t))/

√
Sx , which satisfy the commutation relation

[x̂ph(t),p̂ph(t)] = iδ(t − t ′) and have the dimensions of 1/
√

t ,
where Ŝi (with i ∈ {x,y,z}) denotes the time-dependent Stokes
vector component. Under the condition that the frequency of
the beam was tuned far off resonance with atomic transition
[22], the interaction of light with atoms can be described by
the effective Hamiltonian Ĥ = κ̃0p̂php̂a , with κ̃0 = a

√
JxSx ,

where a is the effective coupling strength [19,22]. Obviously,
it is a QND type. An important, immediate application of
this Hamiltonian is quantum memory [23]. However, initially,
such interactions were extensively investigated to produce spin
squeezing [22,24].

We here briefly review the process of spin squeezing
based on QND detection. Following Eq. (1) the input-
output relations for light and atoms can be directly derived
as x̂out

ph = x̂ in
ph + κ0p̂

in
a ,p̂out

ph = p̂in
ph,x̂

out
a = x̂ in

a + κ0p̂
in
ph,p̂

out
a =

p̂in
a , with κ0 = κ̃0

√
T , where T is the duration of the pulse.

Next, a measurement of x̂out
ph is performed, giving a random

measurement outcome ξ . The momentum operator p̂out
a is then

displaced by an amount gξ , where g is a gain factor, resulting in
p̂out

a = p̂in
a − gxout

ph = (1 − gκ0)p̂in
a + gx̂ in

ph. If the light pulse is

initially in a coherent state such that �x in
ph

2 = �pin
ph

2 = 1/2,
the variance of p̂out

a can be easily calculated, giving (�p̂out
a )2 =

1
2 [(1 − gκ0)2 + g2]. Optimizing it, we get (�p̂out

a )2 = 1
2

1
1+κ2

0

for g = κ0/(1 + κ2
0 ). Obviously, for nonzero κ0, the atomic

momentum operator is then squeezed. Finally, we obtain the
squeezed spin state (SSS) as

x̂out
a =

√
1 + κ2

0 x̂ in
a , p̂out

a = 1√
1 + κ2

0

p̂in
a . (2)

B. Controlled-Z gate

Let us now consider the implementation of the optical CZ

gate in an atomic ensemble. Suppose that we have an atomic
ensemble prepared in the SSS described above, through which
two x-polarized light beams are transmitted simultaneously
from two perpendicular directions [see Fig. 1(a)]. For the
beam L propagating along the z direction, its interaction
with atoms can then be described by ĤL = κ̃Lp̂Lp̂a . The
second beam M propagates along the y direction, leading
to the second Hamiltonian ĤM = κ̃Mp̂Mx̂a [25,26]. Thus, the
complete Hamiltonian for this process can be written as

Ĥ1 = κ̃p̂Lp̂a + κ̃p̂M x̂a, (3)

where we have assumed κ̃L = κ̃M = κ̃ . Corresponding to this
Hamiltonian, one may straightly derive the Heisenberg equa-
tions for atoms and the Maxwell-Bloch equations (neglecting
the effects of light retardation) for light as [25,26]

∂t x̂a(t) = κ̃p̂in
L (t), (4)

∂t p̂a(t) = −κ̃p̂in
M (t), (5)

x̂out1
L (t) = x̂ in

L (t) + κ̃p̂a(t), (6)

p̂out1
L (t) = p̂in

L (t), (7)

062339-2



CONTINUOUS-VARIABLE CONTROLLED-Z GATE USING . . . PHYSICAL REVIEW A 83, 062339 (2011)

x̂out1
M (t) = x̂ in

M (t) + κ̃ x̂a(t), (8)

p̂out1
M (t) = p̂in

M (t), (9)

where ∂t stands for the partial derivative with respect to t .
Equations (4) and (5) can be readily solved by integrating over
t on both sides, giving

x̂a(t) = x̂a(0) + κ̃

∫ t

0
p̂in

L (τ ) dτ,

(10)

p̂a(t) = p̂a(0) − κ̃

∫ t

0
p̂in

M (τ ) dτ .

Inserting this set of equations into Eqs. (6) and (8), one will
obtain the expressions for x̂out1

L,M ,

x̂out1
L (t) = x̂ in

L (t) + κ̃p̂a(0) − κ̃2
∫ t

0
p̂in

M (τ ) dτ ,

(11)

x̂out1
M (t) = x̂ in

M (t) + κ̃ x̂a(0) + κ̃2
∫ t

0
p̂in

L (τ ) dτ.

Next, we define the dimensionless collective light modes x̂j =∫ T

0 f (t)x̂j (t)dt (j ∈ {L,M}) with [x̂j ,p̂j ] = i, where f (t) is
a temporal mode function specifying the mode in question.
For the symmetric mode with f (t) = 1/

√
T , Eq. (11) is then

changed into

x̂out1
L = x̂ in

L + κp̂a(0) − κ2

T 3/2

∫ T

0
(T − t)p̂in

M (t) dt,

(12)

x̂out1
M = x̂ in

M + κx̂a(0) + κ2

T 3/2

∫ T

0
(T − t)p̂in

L (t) dt,

where we have interchanged the order of the double integral
and defined the dimensionless coupling strength κ = κ̃

√
T .

Equation (12) indicate that, besides the momentum operators
p̂in

M and p̂in
L , the position operators x̂out1

L and x̂out1
M also pick up

the information of the input atomic operators p̂a(0) and x̂a(0).
Such information brings unfavorable influence on our scheme,
since, for an ideal optical CZ gate, only the information of
p̂in

M and p̂in
L are allowed to be admixed into x̂out1

L and x̂out1
M ,

respectively.
In the next step, to eliminate the influence of the atomic

operators contained in Eqs. (12), we propose reflecting the
two beams back into the cell after they have completely passed
through the atomic ensemble [see Fig. 1(a)]. Before the second
interaction, two delay lines are used to make sure that the
two interactions do not overlap in the time line, as shown in
Fig. 2(b). For the second transmission, beam M still propagates
along y, leading to the same Hamiltonian as ĤM , while beam
L runs along −z and sees therefore −x̂A. As a result, its
interaction with atoms is changed into −ĤL. Consequently,
the second complete Hamiltonian reads as

Ĥ2 = −κ̃p̂Lp̂a + κ̃p̂M x̂a. (13)

From this Hamiltonian, one can easily derive the evolution
equations for both light and atoms along the same line outlined
above. Using the output state of the first interaction as the input
for the second interaction, we can get the final input-output
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FIG. 2. (Color online) The fidelity of the gate operation vs the
coupling strength κ0 for different squeezing of the input light. The
solid line denotes the coherent input.

relations for light,

x̂out2
L = x̂out1

L − κp̂a(T ) + κ2

T 3/2

∫ T

0
(T − t)p̂M (t) dt,

(14)

x̂out2
M = x̂out1

M + κx̂a(T ) − κ2

T 3/2

∫ T

0
(T − t)p̂L(t) dt,

Inserting Eqs. (10) and (12) into Eq. (14), we finally obtain

x̂out2
L = x̂ in

L + κ2p̂in
M, (15)

p̂out2
L = p̂in

L , (16)

x̂out2
M = x̂ in

M + κ2p̂in
L + 2κ√

1 + κ2
0

x̂ in
a , (17)

p̂out2
M = p̂in

M, (18)

where we have substituted the squeezed input atomic state (2)
into Eq. (17) and have assumed that the position quadrature
(but not the momentum quadrature) is initially squeezed. From
above one can clearly see that, if the input atomic state is
infinitely squeezed (such that κ0 → ∞), then we can neglect
the last terms of Eq. (17). In this case, if κ is equal to 1, then
an ideal CZ gate between light L and M is performed.

However, in reality, the strength of coupling of light to
atoms is always finite. As a result, the noise terms contained
in Eq. (17) cannot be completely eliminated. In this case, we
need to quantify the performance of the CZ operation. Often,
it can be done by calculating the fidelity F = 〈ψ |ρ̂out|ψ〉,
which is a measure of how well the output state ρ̂out compares
to the original input state |ψ〉. Besides, we note that both
the atomic state and the light states involved here are all
Gaussian. For an N -modes Gaussian state, the Wigner function
can be conveniently expressed in the form [18,27]: W =
1/(πN

√
detγ )exp[−(ξ − m)γ −1(ξ − m)T ], where γ stands

for the covariance matrix, and ξ denotes the N -dimensional
vector having the quadrature pairs of all N modes as its com-
ponents, while m represents the mean values. Mathematically,
the fidelity F can be calculated by the overlap of the pure input
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state Win with the mixed output state Wout,

F = (2π )N
∫ +∞

−∞
dx

∫ +∞

−∞
dpWin(x,p)Wout(x,p)

= 2N

πN
√

det γ det γ ′

∫ +∞

−∞
dx

∫ +∞

−∞
dpe−(ξ−m)γ −1(ξ−m)T

× e−(ξ−m′)γ ′−1(ξ−m′)T

= 2N

√
det (γ + γ ′)−1e−(m−m′)(γ+γ ′)−1(m−m′)T , (19)

where the output state is characterized by the mean value m′
and the covariance matrix γ ′. In the present case, we have
N = 2, and, if we assume the input variables x̂ in

a and p̂in
ph are

centered around zero such that m = m′ = 0, then the average
values of the output states in Eqs. (15)−(18) are conserved.
Consequently, the fidelity of Eq. (19) can be further simplified
as F = 4

√
det(γ + γ ′)−1. For the case of cluster state creation,

the two beams before entering the CZ gate are always prepared
in a squeezed vacuum state [15,17]. Hence, without loss of
generality, we can assume that the two input light modes have
a normalized variance (�x̂ in

L,M )2 = 1/(�p̂in
L,M )2 = 1

2e−2s with
s the squeezing parameter. With this assumption, we finally
obtain the fidelity as

F = 1√
1 + 2e2s

1+κ2
0

, (20)

where we have put κ = 1. Corresponding to this expression,
in Fig. 2, we are able to show the fidelity of the gate operation
in its dependence on the coupling strength κ0 for different
squeezing of the input light (in dB). As can be seen from
the figure that large a coupling strength is required for the
achievement of high fidelities.

III. NOISE EFFECTS AND EXPERIMENTAL FEASIBILITY

A. Noise effects

So far, we have neglected the noise effects. As in reality,
atoms are usually contained in glass cells. Therefore, light re-
flections by the cell walls become inevitable. Such reflections,
however, can be modeled by a beam splitter type admixture
of vacuum components [25,28], which transforms the input
light quadrature as ϑ̂ in → ϑ̂ in′ = √

1 − rϑ̂ in + √
rϑ̂v with

ϑ̂ ∈ {x̂L,M,p̂L,M}, where r is the reflection coefficient and
ϑ̂v is the vacuum noise quadrature. On the other hand, due
to the weak excitation by the light beams, the atoms also
undergo dissipation. We assume that the spontaneous emission
happens at a rate of η/T [26]. With this modeling, the evolution
equations (4)−(9) are then changed into

∂t x̂a(t) = κ̃ ′p̂in
L (t) − η

2T
x̂a(t) +

√
η

T
x̂v

a (t),

∂t p̂a(t) = −κ̃ ′p̂in
M (t) − η

2T
p̂a(t) +

√
η

T
p̂v

a(t),

x̂out1
L (t) = x̂ in′

L (t) + κ̃ ′p̂a(t),
(21)

p̂out1
L (t) = p̂in′

L (t),

x̂out1
M (t) = x̂ in′

M (t) + κ̃ ′x̂a(t),

p̂out1
M (t) = p̂in′

M (t),

where x̂v
a and p̂v

a are Langevin noise operators with zero mean,
having 〈x̂v

a (t)p̂v
a(t ′)〉 = δ(t − t ′)/2. Here, we have defined the

reduced coupling strength κ̃ ′ = √
1 − rκ̃ . Corresponding to

this set of equations, one may derive the modified input-output
relations for light:

x̂out1
L = x̂ in′

L + κ ′p̂a(0) − κ ′2

T 3/2

∫ T

0
dt

× e− ηt

2T (T − t)

[
p̂in′

M (t) −
√

η

κ ′ p̂v
a(t)

]
,

(22)

x̂out1
M = x̂ in′

M + κ ′x̂a(0) + κ ′2

T 3/2

∫ T

0
dt

× e− ηt

2T (T − t)

[
p̂in′

L (t) +
√

η

κ ′ x̂v
a (t)

]
,

and for atoms,

x̂a(T ) = e− η

2 x̂a(0) + 1√
T

∫ T

0
dte− ηt

2T

[
κ ′p̂in′

L (t) + √
ηx̂v

a (t)
]
,

(23)

p̂a(T ) = e− η

2 p̂a(0) − 1√
T

∫ T

0
dte− ηt

2T

[
κ ′p̂in′

M (t) − √
ηp̂v

a(t)
]
.

Before reflecting back into the vapor, the two light pulses
will experience another two crossings of the cell wall [see
Fig. 1(a)], which transfers the light states of Eqs. (22) into
x̂out1

i → x̂out1′
i = √

1 − 2rx̂out1
i + √

2rx̂v
i with i ∈ {L,M}.

Using the light state x̂out1′
i and the atomic state of Eq. (23)

as the input states, the second interaction occurs, resulting in
the final output states,

x̂out2
L = √

1 − 3r

[
x̂ in

L + ε−
1 κ2p̂in

M

+ ε−
2 κ2 ˆ̃p

in
M + η

2
κp̂a(0)

]
+ f̂v1,

p̂out2
L = √

1 − 3rp̂in
L +

√
3rp̂v

L,
(24)

xout2
M = √

1 − 3r

[
x̂ in

M + ε+
1 κ2p̂in

L

+ ε+
2 κ2 ˆ̃p

in
L + 2κ

(
1 − η

4

)
x̂a(0)

]
+ f̂v2,

p̂out2
M = √

1 − 3rp̂in
M +

√
3rp̂v

M,

where ε±
1 = (1 − r)(1 ± 2r)(1 − η

2 ∓ 2r
1±2r

) and ε±
2 = (1 −

r) (1±2r)√
3

( η

2 ± 2r
1±2r

), and we defined the total vacuum noise f̂v1

and f̂v2, which are a function of the vacuum operators x̂v
i and

p̂v
i , with i ∈ {a,L,M}. Here, ˆ̃pL,M are new defined collective

light modes with a temporal mode function f (t) = (1 −
2t/T ), satisfying [ ˆ̃xj , ˆ̃pj ] = i with j ∈ {L,M}. It is easily
checked that they are independent from all other modes [28].
Unlike the ideal case, Eq. (24) show that, besides the atomic
position quadrature, the momentum quadrature p̂a(0) now
also appears. This term arising because of the decoherence of
atoms, as we shall see, will lead to the optimal implementation
of the scheme. Finally, after taking the end reflection losses
into account (because of the fourth crossing of a cell wall) by
damping Eqs. (24) with a factor

√
1 − r and adding appropriate

noise terms, the covariance matrix of the final output state
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FIG. 3. (Color online) (a) Gate operation fidelity F vs coupling
κ0 in the presence of atomic decay and light reflection. The input light
states are assumed to be polarization squeezed with the degree of 5
dB. (b) Optimized fidelity vs decay rate η for different reflection
coefficient. The inset shows how the optimal coupling κ0 varies
with η.

(and, thus, the fidelity) can then be calculated directly. Putting
κ = 1, the fidelity versus coupling strength κ0 for squeezed
input light with s = 1

4 ln10 (corresponding to 5 dB) in the
presence of noises is depicted in Fig. 3(a) for parameters r =
η = 0.01, r = η = 0.05, and r = η = 0.1. In each case, there
exists an optimal fidelity, F = 0.89, F = 0.66, and F = 0.54,
for κ0 = 19.90, κ0 = 8.78, and κ0 = 6.12, respectively. As
illustrated by the graph, decay and reflections losses have a
significant effect on the quality of the gate operation. Losses
of the latter kind, however, can be greatly reduced down
(to about 0.5%) with improved antireflection coating [29].
Figure 3(b) shows the κ0-optimized fidelity versus η for dif-
ferent (small) values of the reflection parameter r . For η = 0.1
(corresponding to the experimental conditions of [30]) and r =
0.005, a fidelity F = 0.71 would be possible corresponding
to κ0 = 6.05.

B. Experimental feasibility

To successfully and efficiently implement the CZ gate, it
is required that (i) T < TDL, where TDL represents a time in
which the two beams pass through the delay lines, (ii) the
coupling strength κ = 1, and (iii) large interaction strength
κ0 is achievable. Condition (i), as analyzed in Ref. [31], is

feasible within presently established techniques (i.e., by using
a 1-µs delay line [32] and a sub-µs pulse [33]). Condition
(ii) has been realized in many physical systems (e.g., room
temperature atomic vapors [23]). Condition (iii), however, is by
now still an experimental challenge. Although, theoretically,
one can always enhance the coupling strength by increasing
the intensity of the light beams, or, the density of atoms,
such enhancement, on the other hand, will cause high decay
rate, and thus will lower the efficiency of the current scheme.
To overcome this limitation, we propose to inject squeezed
light instead of coherent light during the spin-squeezing
process, which transfers the input quadratures (x̂ in

ph,p̂
in
ph) into

(e−sx in
ph,e

sp̂in
ph). With this setting, the spin state of Eq. (2) is

then changed into

x̂out
a =

√
1 + e2sκ2

0 x̂ in
a , p̂out

a = 1√
1 + e2sκ2

0

p̂in
a . (25)

Note that the coupling strength is now enhanced by a factor
es . We can define the effective coupling strength κeff

0 = esκ0.
As a result, the higher the degree of squeezing is, the larger
the effective coupling strength becomes. For room temperature
atomic vapors, the feasible value of coupling strength is around
κ0 ≈ 1.4 [34]. In this case, if we inject a light with 8.5 dB of
squeezing, a large coupling strength κeff

0 ≈ 10 can then be
achieved.

IV. CONCLUSIONS

In conclusion, we have presented a simple and realistic
scheme for realizing the CV CZ gate in an atomic ensemble.
The process is based on off-resonant interaction between
light and spin-polarized atomic ensembles. By sending two
off-resonant pulses propagating in two orthogonal directions
twice through an atomic ensemble which is initially prepared
in a spin-squeezed state, we find that a CZ operation between
the two pulses is performed. The more the amount of spin-
squeezing input, the higher the fidelity we will obtain. We
also considered the influences of the noise effects including
the atomic decay and photon reflections by the cell walls,
showing that they have a strong effect on the fidelity. Noises
of the latter kind, however, can be greatly suppressed by
adding antireflection coating to cell walls. Such suppressions
enable us to achieve quite high fidelities with current exper-
imental parameters. It is well known that offline squeezing
and CZ gate together enable the construction of arbitrarily
large CV cluster states [4,17]. Recently, offline squeezing
based on atomic ensembles has been proposed by Sherson
et al. [35]. Therefore, our proposal paves the way for the
implementation of CV one-way QC based only on atomic
ensembles.
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