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We present a derivation of the Redfield formalism for treating the dissipative dynamics of a time-dependent
quantum system coupled to a classical environment. We compare such a formalism with the master equation
approach where the environments are treated quantum mechanically. Focusing on a time-dependent spin-1/2
system we demonstrate the equivalence between both approaches by showing that they lead to the same Bloch
equations and, as a consequence, to the same characteristic times T1 and T2 (associated with the longitudinal
and transverse relaxations, respectively). These characteristic times are shown to be related to the operator-
sum representation and the equivalent phenomenological-operator approach. Finally, we present a protocol to
circumvent the decoherence processes due to the loss of energy (and thus, associated with T1). To this end,
we simply associate the time dependence of the quantum system to an easily achieved modulated frequency. A
possible implementation of the protocol is also proposed in the context of nuclear magnetic resonance.
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I. INTRODUCTION

The rapid development of quantum-information science has
brought together several areas of theoretical and experimental
physics [1]. Much effort has been concentrated in the search
for solutions to sensitive problems that prevent the efficient
realization of quantum-information processing [2]. We first
mention the system-environment coupling which induces the
decoherence of quantum states [3], apart from other barriers
such as scalability [4] and optimal control of individual
systems [5]. These challenges motivate both fundamental
physical phenomena and outstanding technological issues such
as individually addressing quantum systems, separated by only
few nm, with small errors [6].

Potential platforms for the implementation of quantum
logic operations have appeared in many fields such as
condensed matter, quantum optics, and atomic physics [1].
However, the problems mentioned above are faced by all
the different communities when employing their particular
techniques. In the particular case of the dissipation and
decoherence phenomena—in which we focus in the present
work—the Redfield formalism [7,8] and the master equation
[9] have been the most applied approaches to address the
environment effects on the proposed protocols for quantum-
information processing. Whereas the semiclassical Redfield
formalism relies on a classical noise source, a quantum
environment is assumed in the master equation approach. In
this article, considering the general case of a time-dependent
system, we discuss general similarities and differences be-
tween both approaches and show that they are equivalent,
in the sense that they lead to the same phenomenological
Bloch equations [10]. Consequently, both of them result in the
same characteristic relaxation times T1 and T2 associated with
the longitudinal and transverse relaxations, respectively [7,8].
From this identification we show how these characteristic
times are related to the operator-sum representation [2] and
the phenomenological-operator approach [11].

The Redfield formalism was intended to offer a microscopic
description of the relaxation phenomenon, thus providing a

deeper understanding of the parameters T1 and T2. Whereas
the classical noise source employed in the Redfield theory
suffices to derive both relaxation times, two distinct quantum
environments must be adopted to derive these time scales from
the master equation formalism. On this regard, an amplitude
and a phase damping environment are assumed to define the
longitudinal and the transverse relaxation times, respectively.
These quantum environments represent an energy-draining
and a phase-shuffle channel by which the system loses
excitations and phase relations.

After presenting a detailed derivation of the Redfield theory
and comparing the derived characteristics times with those
obtained from the master equation, we finally apply these
equivalent formulations to the problem of state protection.
We note that several distinct techniques have been proposed to
control the effects of decoherence on quantum states, aiming
to enlarge the fidelity of quantum-information protocols.
Among others, we mention the quantum-error correction
codes [12], environments engineering [13], decoherence-free
subspaces [14], and dynamical decoupling [15]. We finally
mention that in a previous work [16], addressing the energy
draining and decoherence of a harmonic oscillator, it was
demonstrated that the inevitable action of the environment
can be substantially weakened when considering appropri-
ate nonstationary quantum systems. Reasoning by analogy
with the technique presented in Ref. [16], we show how
to enlarge the longitudinal relaxation time associated with
the amplitude-damping channel focusing a spin-1/2 system.
The ideas presented here for decoherence control can be
easily implemented in the nuclear magnetic resonance (NMR)
context.

This article is organized as follows: In Sec. II we present
the derivation of the Redfield equation for the general scenario
of a time-dependent system. In Sec. III we apply the master
equation approach to the same case. In Sec. IV we show the
equivalence between the Redfield and the master equation
formalisms by deriving the Bloch equations from both ap-
proaches. Focusing on a time-dependent spin-1/2 system, in
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Secs. V and VI we present the operator-sum representation and
the phenomenological operator approaches and their relation
with the previous techniques. As an application of the theory,
in Sec. VII we address the state protection of a nonstationary
spin-1/2 system. Finally, Sec. VIII is dedicated to our final
remarks where we discuss the generalization of the methods
presented in this article for larger systems. In general, we
will adopt the language of the NMR quantum-information
processing [17], although the theory presented here is valid for
several other platforms, as quantum dots [18], superconducting
artificial atoms [19], and so on. Throughout the article we will
use natural units such that h̄ = kB = 1.

II. REDFIELD FORMALISM FOR A TIME-DEPENDENT
SPIN SYSTEM

Considering the interaction of a time-dependent spin
system, described by the Hamiltonian HS(t), with a spin lattice
modeling the environment and represented by the Hamiltonian
HL, the total density operator ρsch(t) in the Schrödinger
picture, evolves as

dρsch(t)

dt
= −i[HS(t) + HL + HSL(t),ρsch(t)], (1)

with HSL(t) being the time-dependent spin-lattice interaction.
In the interaction picture, defined by the unitary transformation
U (t) = exp[−i(HS(t) + HLt)], where HS(t) = ∫ t

0 dt ′HS(t ′),
we simplify the above evolution equation to the form

dρ(t)

dt
= −i[VSL(t),ρ(t)], (2)

where VSL(t) = eiHS (t)HSL(t)e−iHS (t), with HSL(t) =
eiHLtHSL(t)e−iHLt . We have assumed the condition
[HS(t),HS(t ′)] = 0 which is always fulfilled whenever
the free Hamiltonian of the system can be written as a
diagonal time-independent operator, with a time-dependent
coefficient HS(t) = f (t)OS . Moreover, we observe that
in NMR relaxation experiments all the required pulses to
perform the necessary rotations are applied either at the
beginning, to prepare the initial state ρsch(0), or at the end
of the experiment, to implement the tomography of the
evolved state. Between the applications of these pulses, the
prepared state ρsch(0) of the system, described by the diagonal
Hamiltonian HS(t), evolves only under the action of the
environment.

By its turn, the density operator in the rotating frame
is given by ρ(t) = eiHS (t)ρ̃sch(t)e−iHS (t), where ρ̃sch(t) =
eiHLtρsch(t)e−iHLt . By assuming a weak system-environment
coupling and getting rid of the degrees of freedom of the spin
lattice, we solve Eq. (2) up to second order of perturbation
theory, obtaining

dσ (t)

dt
= −TrL

∫ t

0
dt ′[VSL(t),[VSL(t ′),ρ(t ′)]].

We considered that the interaction VSL(t) is a stochastic
operator with null mean value [7,8], which results in a zero
first-order term. Next, let us use the Markov approximation
ρ(t ′) → ρ(t) � σ (t) ⊗ ρL(0), with σ (t) being the reduced
density operator of the spin system, σ (t) = TrLρ(t), and ρL

the reduced density operator of the environmental spin lattice.

This approximation means that the state of the lattice is not
affected by the interaction with the system. In other words,
it means that the lattice presents a sufficiently large heat
capacity in order to remain in the thermal equilibrium state
ρL(0) = e−βHL/Tr[e−βHL ], with β = 1/T , T being the envi-
ronment temperature. Finally, inspired in NMR systems [8,17],
we are going to apply the high-temperature approximation,
which takes into consideration systems were the energy gap
between the spin levels, h̄ω (where ω is the characteristic
transition frequency among levels), is much smaller than the
thermal energy, kBT , of the system, i.e., h̄ω/kBT � 1. In
this sense, the density operator of the system can be written
as σ (t) = e−βHS (t)/Z � 1 − βHS(t). We stress that there is
a crucial difference between high and infinite temperature
limits; differently from the latter case, in the former there
is still a population difference between the spin levels
which accounts for the reminiscent equilibrium magnetization.
Thus, applying the high-temperature approximation we obtain
σ (t) ⊗ ρL(0) � σ (t) − βHL and, consequently,

dσ (t)

dt
= TrL

∫ t

0
dt ′[VSL(t),[VSL(t ′),βHL − σ (t)]]. (3)

From the Heisenberg equation of motion for VSL(t), we obtain

[VSL(t),σ (t) − βHL] = [VSL(t),σ (t) + βHS(t)] iβ
dVSL(t)

dt

+ iβU †(t)
dHSL(t)

dt
U (t),

and, consequently, the evolution equation reads

dσ (t)

dt
= iβTrL{[VSL(t),VSL(0)]}

− TrL

∫ t

0
dt ′[VSL(t),[VSL(t ′),σ (t) + βHS(t ′)]]

− iβTrL

∫ t

0
dt ′[VSL(t),U †(t ′)

dHSL(t ′)
dt ′

U (t ′)]. (4)

By rewriting the spin-lattice interaction as VSL(t) ∝ λ(t)O,
where λ(t) models the lattice stochastic fluctuation and O

stems for an operator acting on the spin system space, we verify
straightforwardly that the first term of the right-hand side of
Eq. (4) is null, in accordance with the assumption 〈λ(t)〉 =
0. Moreover, with the above definition for the spin-lattice
interaction, we verify thatHSL(t) = HSL(t) and, consequently,
VSL(t) = eiHS (t)HSL(t)e−iHS (t). Integrating by parts the third
term of the right-hand side of Eq. (4) and considering, as
usual, that the time oscillations of the operator U †(t ′)OU (t ′)
is much faster than that of VSL(t), we apply the rotating-wave
approximation to conclude that this term is also null. The fact
that this is indeed the case can be seen as follows: the operator
VSL(t) oscillates with the spin-lattice coupling frequency,
while the operator U †(t ′)OU (t ′) oscillates with the bare
spin frequency which (in the assumed system-environment
weak coupling regime) is much higher than the interaction
frequency. Putting all this together, we finally obtain the
simplified equation of motion for the spin system

dσ (t)

dt
= TrL

∫ t

0
dt ′[VSL(t),[VSL(t ′),βHS(t ′) − σ (t)]],
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which, in accordance with the high-temperature approxima-
tion, where σeq(0) � 1 − βHS(0) and βHS(t ′) � 1 − σeq(0),
becomes

d�(t)

dt
= −

∫ t

0
dt ′[VSL(t),[VSL(t ′),�(t)]], (5)

where we have defined the operator �(t) = σ (t) − σeq(0) and
substituted the trace over the lattice degrees of freedom by
the ensemble average over stochastic realizations, represented
by the overbar. We have thus obtained the Redfield equation
for a time-dependent spin system and we note, in spite of the
c-number character of the environment degrees of freedom, its
resemblance with the master equation to be presented below.

It is important to stress that the high-temperature ap-
proximation, allowing us to define the latter operator �(t),
indicates a relaxation to the highly mixed thermal Gibbs state.
However, we mention that in the whole calculation to obtain
the Redfield equation (5) it is not necessary to impose such an
approximation. It was only done because it is characterisitic
of NMR systems, on which we focus in the present work.

Toward the definition of the lattice spectral density we
next introduce, through the eigenvalue equation HS(t)|k〉 =
εk(t)|k〉, the spin basis {|k〉}. Taking the matrix element
kk′ of Eq. (5) and back to the Schrödinger picture where
�sch(t) = e−iHS (t)�(t)eiHS (t), we obtain the Redfield equations
for the evolution of the density matrix elements

d�sch
kk′ (t)

dt
= −i〈k|[HS,�

sch]|k′〉

+
∑
n,n′

e−i(�kk′+�n′n)Rkn,n′k′�sch
nn′ , (6)

where we have used the short-hand notation �kn(t) = Ek(t) −
En(t), Ek(t) = ∫ t

0 dt ′εk(t ′), �sch
nn′ (t) = 〈n|�sch(t)|n′〉, and de-

fined the relaxation matrix elements

Rkn,n′k′(t) = Jkn,n′k′(t,�n′k′)ei�kn(t) + Jn′k′,kn(t,�kn)ei�n′k′ (t)

− δk′n′
∑

j

Jkj,jn(t,�jn)ei�kj (t)

− δkn

∑
j

Jjk′,n′j (t,�n′j )ei�jk′ (t), (7)

with the environment spectral densities given by

Jkn,n′k′(t,�n′k′) =
∫ t

0
dt ′Gkn,n′k′(t,t ′)ei�n′k′ (t ′), (8a)

Gkn,n′k′(t,t ′) = 〈k| HSL(t) |n〉 〈n′| HSL(t ′) |k′〉. (8b)

To simplify the notation we have omitted the explicit time
dependence of all functions in Eq. (6).

For the particular case of a time-independent system,
we obtain Em(t) = εmt , �kn(t) = (εk − εn)t ≡ ωknt and the
above Redfield equations reduce to the well-known textbook
result [7,8]

d�sch
kk′ (t)

dt
= −i〈k|[HS,�

sch(t)]|k′〉

+
∑
n,n′

e−i(ωkk′−ωn′n)tRkn,n′k′(t)�sch
nn′ (t),

with

Rkn,n′k′ = Jkn,n′k′(ωn′k′)eiωknt + Jn′k′,kn(ωkn)eiωn′k′ t

− δk′n′
∑

j

Jkj,jn(ωjn)eiωkj t

− δkn

∑
j

Jjk′,n′j (ωnj )eiωjk′ t ,

and

Jkn,nn′ (ωnn′ ) =
∫ ∞

0
dt ′Gkn,nn′ (t ′) exp{iωnn′ t ′}.

We observe that, although we have focused on a spin
system, the equations obtained here are completely general,
being valid for the Hamiltonian HS(t), provided that the
three following conditions are met: (i) [HS(t),HS(t ′)] = 0,
(ii) system-environment weak coupling regime (Markovian en-
vironment), and (iii) high-temperature approximation [specif-
ically, to derive Eqs. (6), (7), and (8)]. The restrictions and
the validity of these approximations will be discussed in the
conclusions of the article. Let us now turn to the master
equation approach.

III. THE MASTER EQUATION APPROACH

In this section, in contrast to the semiclassical approach
of the Redfield formalism, we derive the master equation
governing the dynamics of the dissipative time-dependent spin
system where the environment is assumed to be modeled
within the quantum formalism. We start from Eq. (3), such
that

dσ (t)

dt
= −TrL

∫ t

0
dt ′[VSL(t),[VSL(t ′),σ (t)]]. (9)

Now, instead of assuming a classical environment leading to
the above defined spin-lattice interaction as VSL(t) ∝ λ(t)O,
we consider two distinct quantum environments, to be defined
below as the amplitude- and the phase-damping channels, each
one being modeled by an infinite collection of decoupled
harmonic oscillators, described by the Hamiltonian HL =∑

r,
 �r
a
†
r
ar
, where r = 1,2 labels the environments while


 stands for the infinity set of oscillators whose frequencies are
denoted by �r
. a†

r
 (ar
) represents the creation (annihilation)
operator for the lth mode of the rth environment. The action
of these environments on the spin system is modeled by the
interaction

VSL(t) =
∑

r

[O†
r �r (t) + Or�

†
r (t)], (10)

where �r (t) = ∑

 γr
(t)ar
 and γr
(t) = γ Schr

r
 (t) exp[i�k(t)]
with �k(t) being the phase factor coming from the trans-
formation U †(t)O†

r ar
U (t) to the interaction picture. It is
worth mentioning that the time dependence of the system-
environment coupling in the Schrödinger picture, γ Schr

r
 (t),
comes from the assumption of a time-dependent spin system
Hamiltonian, HS(t). In fact, the coupling strength γ Schr

r
 (t)
leads to the decay rate of the master equation which plays the
role of the time-dependent relaxation matrix in the Redfield
equation (6).
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By inserting Eq. (10) into Eq. (9) and performing the trace
over the environments degrees of freedom, we obtain the
master equation in the interaction picture

dσ (t)

dt
=

∑
r,r ′

{Frr ′ (t)[Or ′σ (t),O†
r ]

+Grr ′ (t)[O†
r ′σ (t),Or ] + H.c.}, (11)

where we have defined the functions

Frr ′ (t) = 2 lim
τ→0

[
1

τ

∫ t+τ

t

dx

∫ x

t

dx ′〈�†
r (x)�r ′(x ′)〉

]
,

Grr ′ (t) = 2 lim
τ→0

[
1

τ

∫ t+τ

t

dx

∫ x

t

dx ′〈�r (x)�†
r ′(x ′)〉

]
.

For the environments considered in this work it fol-
lows that 〈�†

r (t)�†
r ′(t ′)〉 = 〈�r (t)�r ′(t ′)〉 = 0, 〈�†

r (t)�r ′(t ′)〉 =
〈nr〉δrr ′ and 〈�r (t)�†

r ′(t ′)〉 = (〈nr〉 + 1)δrr ′ , 〈nr〉 being the
thermal average excitation of the rth environment. These
relations, of course, depend on the state of the environment.
We observe that this master equation describes the Markovian
evolution of a general time-dependent system, provided that
the conditions (i) and (ii) of the last section are satisfied.

IV. THE CHARACTERISTIC RELAXATION TIMES

In this section, restricting us to the case of spin-1/2 systems,
we aim to derive the Bloch equations for the evolution of
the magnetization components of N noninteracting spins.
First, we obtain the Bloch equations from the Redfield
formalism, relating the characteristic relaxation times with the
properties of the associated classical stochastic environment.
Next, computing the evolution of the average magnetization
from the master equation formalism, we are able to link
the characteristic relaxation times with the properties of the
quantum environment.

A. From the Redfield to the Bloch equations

Let us consider here a spin-1/2 system placed in a
constant magnetic field in the z direction. The frequency gap
between the two Zeeman levels defines the Larmor frequency
ωL(t) = ω1(t) − ω0(t), with ω1(t) and ω0(t) representing the
frequencies of the excited and the ground state, respectively.
The modulation of these frequencies are due to some external
influence, like an additional time-dependent magnetic field.
The bare Hamiltonian of the spin-1/2 system is then given
by HS(t) = ωL(t)Iz. The action of the environment over the
system is modeled by the spin-lattice Hamiltonian

HSL(t) = −γn

∑
q

λq(t)Iq, (12)

where γn is the gyromagnetic factor, q labels the orthogonal
Cartesian directions {x,y,z}, λq(t) refers to the lattice stochas-
tic fluctuation in q direction, and Iq = σq/2 stands for the spin
(Pauli) operator.

For this system, the spectral density given in Eqs. (8)
becomes

Jkn,n′k′(t,�n′k′) =
∑

q

I kn
q I n′k′

q �q(t,�n′k′), (13)

where I kn
q = 〈k| Iq |n〉 and

�q(t,�n′k′) = γ 2
n λ2

q

∫ t

0
dt ′e−|t ′ |/τ0ei�n′k′ (t+t ′). (14)

To derive Eq. (14) we have assumed isotropic stochastic
fluctuations [8], by which

λq(t)λq ′(t + t ′) = δqq ′λ2
qe

−|t ′|/τ0 ,

λ2
q being a mean value depending on the specific nature of

the spin system and τ0 the environment correlation time,
measuring the rate of flips between the bath spins due to a
specific anisotropic spin interaction (e.g., chemical shift and
dipolar coupling) [20]. Note that we have assumed that the
mean values of the coupling λq(t) are not affected due to
the time dependence of the system. This is quite reasonable
since we are modeling the environment as a stochastic noise
source. Remembering Sec. II, we have

�kn(t) =
∫ t

0
dτ [ωk (τ ) − ωn (τ )] ,

which is just the integral of the Larmor frequency with a
positive or negative signal, depending on the difference k − n

(k,n = 0,1).
Next, by substituting Eq. (13) into Eq. (7), we obtain the

elements of the relaxation matrix

Rkn,n′k′(t) =
∑

q

{
[�q(t,�n′k′)ei�kn(t)

+�q(t,�kn)ei�n′k′ (t)]I kn
q I n′k′

q

−
∑

j

[
δk′n′I kj

q I jn
q �q(t,�jn)ei�kj (t)

+ δknI
jk′
q I n′j

q �q(t,�n′j )ei�jk′ (t)]}, (15)

which enables us to compute the evolution of the mean value
of the magnetization 〈Id〉 in an arbitrary d direction:

d 〈Id〉
dt

= d

dt
Tr [Id�(t)] = Tr

[
Id

d�(t)

dt

]
.

By replacing Eqs. (6) and (15) into the right-hand side of the
last equation, we obtain

d〈Id〉
dt

= −i
∑
l,m

I lm
d 〈m|[HS(t),�]|l〉

+
∑

q

∑
l,m

�q(t,�ml)e
−i�ml Iml

d 〈l|[[Id,Iq],�]|m〉.

Since, for spin-1/2 systems, |�ml(t)| = �(t)(1 − δml), the
above equation can be separated into the longitudinal and
transverse field components,

d〈Id〉
dt

=
∑

q={x,y}

∑
l,m

κq(t,�ml)I
ml
d 〈l|[[Id,Iq],�]|m〉

+ κzTr{Iz[[Id,Iz],�]},
where κq(t,�ml) = �q(t,�ml)e−i�ml (t). We stress that we
have neglected the free-evolution term in the above equation
because we are interested only in the effect of the environment
induced dynamics. We also note that 〈m|Ix(y)|l〉 �= 0 if and only
if m �= l and 〈m|Iz|l〉 �= 0 when m = l, which explains why

062336-4



EQUIVALENCE BETWEEN REDFIELD- AND MASTER- . . . PHYSICAL REVIEW A 83, 062336 (2011)

the term κx(y)(t,�ml) is a time-dependent function while κz is a
constant. Writing the last equation in terms of the longitudinal
and transversal magnetizations, defined as Mz = 〈Iz〉 and
M⊥ = 〈Ix〉x̂ + 〈Ix〉ŷ, respectively, we obtain

dMz(t)

dt
= −Re[κx(t,�) + κy(t,�)] {Mz(t) − M0} ,

dM⊥(t)

dt
= −1

2
Re[κx(t,�) + κy(t,�) + 2κz]M⊥(t),

with M0 = 〈Iz〉eq = Tr{Izσeq} being the equilibrium longitu-
dinal magnetization. Now, comparing these results with the
phenomenological Bloch equations

dMz(t)

dt
= 1

T1
{Mz(t) − M0} , (16a)

dM⊥(t)

dt
= −M⊥(t)

T2
, (16b)

the characteristic relaxation times, in terms of the time-
dependent decay rates κq in the classical stochastic environ-
ment, is defined as

1

T1
≡ Re[κx(t,�) + κy(t,�)], (17a)

1

T2
≡ 1

2
Re[κx(t,�) + κy(t,�)] + κz, (17b)

Equations (16) and (17) show that, in contrast to the
longitudinal rate T1, the transverse decay rate T2 is related
to an energy-conserving process, affecting only the quantum
coherence of the system. This fact justifies the choice of
the amplitude- and phase-damping channels for the quantum
description of the spin system. It is worth mentioning that T1

can be controlled through the time-dependent parameter �(t)
while T2 can only be partially controlled since the decay rate
κz does not depend on �(t). Finally, from Eqs. (17) we obtain
the well-known relation between both characteristic times

1

T2
= 1

2T1
+ κz. (18)

B. From the master equation to the Bloch equations

In this section we consider the same system as before,
but instead of a classical noise the spin system interacts with
two quantum environments. In order to compute the evolution
of the average magnetization from the master equation (11),
which takes into account the amplitude- and phase-damping
channels, we first address the decay rates Frr ′(t) and Grr ′ (t)
defined in the end of Sec. III. When considering the amplitude-
damping channel (r = a) we associate Oa (O†

a) with the
lowering (raising) spin operators, whereas in the case of
phase-damping (r = p) we define Op as the Hermitian number
excitation operator. We then set Oa = I− and Op = Iz. For
both cases we set the mean values for the environment
operators 〈a†

rlark〉 = 〈nr,k〉δlk and, consequently, 〈arka
†
rl〉 =

(〈nr,k〉 + 1)δlk , 〈nr,k〉 being the thermal average excitation of
the kth mode of the rth environment. Considering that the
environment frequencies are very closely spaced to allow a
continuum summation, such that

∑

 → (2π )−1

∫ ∞
−∞ dνJr (ν),

J (ν) being the spectral density of the environment, we obtain,
for the amplitude damping case, the effective time-dependent
decay rates

Fa(t) = 〈na〉
2π

�a(t), (19a)

Ga(t) = (〈na〉 + 1)

2π
�a(t), (19b)

where, referring to the time dependence of the system-
environment coupling in the Schrödinger picture γ Schr

r
 (t),

�a(t) = lim
τ→0

{
1

τ

∫ t+τ

t

dx

∫ x

t

dx ′
∫ ∞

−∞
dνJa(ν)

× γ Schr
a (ν,x ′)γ Schr

a (ν,x)ei[�(x ′)−�(x)+ν(x−x ′)]
}
.

To obtain the effective decay rates in Eq. (19) it was
assumed, as usual, that the thermal average excitation of the
environment modes vary slowly around the range of variation
of the spin system frequency. This is a good approximation
when the environment is in a thermal state, as the present
case [9].

For the phase-damping channel, the effective decay rates
are given by

Fp(t) = 〈np〉
2π

�p(t), (20a)

Gp(t) = (〈np〉 + 1)

2π
�p(t), (20b)

where we defined

�p(t) = lim
τ→0

[
1

τ

∫ t+τ

t

dx

∫ x

t

dx ′
∫ ∞

−∞
dνJp(ν)

× γ Schr
p (ν,x ′)γ Schr

p (ν,x)eiν(x ′−x)

]
.

Due to the diagonal system-environment coupling associated
with the phase-damping case, we are able to compute �p(t)
without having the explicit form of �(t). In fact, assuming that
the spectral density Jp(ν) as well as the system-environment
coupling γ Schr

p (ν,x ′) vary slowly around ν = 0, we obtain the
time-independent parameter

�p = lim
τ→0

{
Jp (0)

τ

∫ t+τ

t

[
γ Schr

p (0,x)
]2

dx

}

= Jp

[
γ Schr

p

]2
.

From this result we see that, in contrast to the case of
the amplitude-damping channel, the decay rates Fp and Gp

do not acquire a time dependence due to the modulation
of the system frequency, resembling the result obtained in
the Redfield formalism. Finally, the master equation (11)
becomes

dσ (t)

dt
= 〈na〉

2π
�a(t)[I−σ (t),I+]

+ (〈na〉 + 1)

2π
�a(t)[I+σ (t),I−]

+ �p

2π
(2〈np〉 + 1)[Izσ (t),Iz] + H.c. (21)
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Computing the evolution of the mean value of the mag-
netization 〈Id〉 in an arbitrary d direction we obtain for the
longitudinal and transversal magnetizations

dMz

dt
= −Re�a(t)

π
(2〈na〉 + 1)Mz,

dM⊥
dt

= −
[

Re�a(t)

2π
(2〈na〉 + 1)

+ Re�p

π
(2〈np〉 + 1)

]
M⊥.

As in the preceding subsection, we compose these equations
with the Bloch equations (16) to obtain

1

T1
≡ Re�a(t)

π
(2〈na〉 + 1), (22a)

1

T2
≡ Re�a(t)

2π
(2〈na〉 + 1) + Re�p

π
(2〈np〉 + 1), (22b)

and, consequently, the relation

1

T2
= 1

2T1
+ Re�p

π
(2〈np〉 + 1),

which has the same structure as Eq. (18), obtained by the
Redfield formalism. From Eqs. (17) and (22) we can make the
identifications

Re�a(t)

π
(2〈na〉 + 1) ≡ Re[κx(t,�) + κy(t,�)], (23a)

Re�p

π
(2〈np〉 + 1) ≡ κz. (23b)

These equations show the connections between the semi-
classical and quantum approaches to open system dynamics.
In the next two sections we will construct the Kraus and the
phenomenological operators for the time-dependent system
studied in this section.

V. THE OPERATOR-SUM REPRESENTATION

It is well known that every transformation that is given
by a completely positive map admits a representation of the
form [21]

σ (t) =
∑

k

Ek(t)σ (0)E†
k (t) , (24)

with the Kraus operators Ek(t) satisfying the following relation∑
k

E
†
k(t)Ek(t) = 1.

Our goal in this section is to construct the operators Ek(t) for
both channels studied in the last section. To achieve this we
will consider the density operator evolution equations, which
follows from the Redfield or the master equation formalisms.
We then compare these equations with those shown in Eq. (24)
to obtain the time dependence of the Kraus operators.

In the next two subsections we will adopt the basis defined
in Sec. IV that diagonalizes the spin operator Iz, {|0〉,|1〉}.
Since both channels studied here are independent, let us then
consider each one of them separately.

A. Phase-damping channel

Considering only the phase damping (�a = 0), the master
equation (21) leads us to the following set of differential
equations satisfied by the elements of the density operator

dσ11(t)

dt
= 0, (25a)

dσ00(t)

dt
= 0, (25b)

dσ10(t)

dt
= −�pσ10(t), (25c)

dσ01(t)

dt
= −�pσ01(t), (25d)

where we have defined �p = 2Re[Fp + Gp] =
Re�p(2〈np〉 + 1)/π . Note that, as expected, the populations
are not affected by this noisy channel. We assume that the
Kraus operators for this case are given by [2]

E
p

0 =
√

1 − p(t)

(
1 0
0 1

)
, (26a)

E
p

1 =
√

p(t)

(
1 0
0 −1

)
, (26b)

with p(t) being the parameter to be determined. Starting from
the initial density operator

σ (0) =
(

σ 0
11 σ 0

10
σ 0

01 σ 0
00

)
,

and substituting Eq. (26) into Eq. (24), we thus obtain[
σ11(t) σ10(t)
σ01(t) σ00(t)

]
=

[
σ 0

11 (1 − 2p)σ 0
10

(1 − 2p)σ 0
01 σ 0

00

]
. (28)

By imposing that the time derivative of the elements of the
above evolved density operator must be identical to those in
Eqs. (25), we derive the following differential equation for the
parameter p(t):

dp

dt
= −�p

2
(2p − 1),

with the initial condition p(0) = 0, arising from the fact that
the Kraus operators must reduce to the identity at the initial
time. The solution for p(t) is thus given by

p(t) = 1
2 {1 − exp[−�pt]}, (29)

which finally defines the Kraus operators in Eqs. (26).

B. Amplitude-damping channel

For the case of amplitude damping we assume that the
Kraus operators are given by [2]

Ea
0 = √

γT

[
1 0
0

√
1 − a(t)

]
, (30a)

Ea
1 = √

γT

[
0

√
a(t)

0 0

]
, (30b)

Ea
2 =

√
1 − γT

[√
1 − a(t) 0

0 1

]
, (30c)

Ea
3 =

√
1 − γT

[
0 0√
a(t) 0

]
, (30d)
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where γT = exp[−βE]/Z is the Boltzmann factor, E is the
energy gap of the spin-1/2 levels, and Z = 1 + exp[−βE]
is the partition function. By analogy with the preceding
subsection, our aim is to obtain the differential equation obeyed
by the parameter a(t). To this end, we compute the time
evolution given by Eq. (24), to obtain

[
σ11(t) σ10(t)
σ01(t) σ00(t)

]
=

[
γT a + q

(
1 − σ 0

00

) √
qσ 0

10√
qσ 0

01 (1 − γT ) a + qσ 0
00

]
,

with q = 1 − a. By imposing that the differential equations
derived from the above density operator must be identical to
those obtained from the master equation (21), with �p = 0,
given by

dσ11(t)

dt
= 2Re{Fa(t)σ00(t) − Ga(t)σ11(t)},

dσ10(t)

dt
= −{F∗

a (t) + Ga(t)}σ10(t),

dσ01(t)

dt
= −{Fa(t) + G∗

a (t)}σ01(t),

dσ00(t)

dt
= −2Re{Fa(t)σ00(t) − Ga(t)σ11(t)},

we finally obtain

[γT − σ 0
11]

da

dt
= −2Re{Fa(t) + Ga(t)}(γT a + qσ 0

11

)
+ 2Re {Fa(t)} ,

da

dt
σ 0

10 = 2{Fa(t) + G∗
a (t)}qσ 0

10,

da

dt
σ 0

01 = 2{F∗
a (t) + Ga(t)}qσ 0

01.

The fourth equation is identical to the first one. Adding the
last two equations and noting that the initial conditions for the
elements of σ (0) are arbitrary, the following set of differential
equations must be satisfied:

σ 0
11 − γT

2

da

dt
= Re {Fa(t) + Ga(t)} (

γT a + qσ 0
11

)
+ Re {Fa(t)} , (31)

da

dt
= 2Re {Fa(t) + Ga(t)} q, (32)

together with the condition a(0) = 0. The solution of Eq. (32)
is readily obtained as

a(t) = 1 − exp

[
−2

∫ t

0
Re {Fa(τ ) + Ga(τ )} dτ

]
, (33)

and its substitution into Eq. (31) leads to the relation

(γT − 1) Re {Fa(t)} + γT Re {Ga(t)} = 0,

which, together with Eqs. (19), results in the identity

〈na〉 = γT

1 − 2γT

= 1

eβE − 1
.

Equation (33) satisfies both Eqs. (31) and (32) and is, thus, the
desired solution.

It is now straightforward to see the connection between
both ab initio approaches, the Redfield and the master
equation, with the operator sum representation. Referring

to the identifications in Eqs. (23) and the definition of
the relaxation times in Eqs. (22), we can rewrite the time
dependence of the Kraus operators for the phase-damping
channel as

p(t) = 1

2

{
1 − exp

[
−κzt

2

]}
and for the amplitude-damping channel as

a(t) = 1 − exp

[
−

∫ t

0

1

T1 (τ )
dτ

]
.

It is interesting to point out that within the operator
sum formalism the distinction between the decay of the
coherences and the T2 decay in NMR systems becomes
evident. While the density matrix coherences decay is com-
pletely independent from the T1 relaxation time, there is an
intrinsic dependence of T2 with T1 through Eq. (18). Thus,
one can conclude that the phenomenological T2 does not
reflect only the decay of the quantum coherences of the
system.

Before applying this formalism to a specific situation, let us
make some remarks regarding a very closely related technique,
the phenomenological-operator approach [11], which is also
introduced to simplify the treatment of dissipative quantum
systems.

VI. THE PHENOMENOLOGICAL-OPERATOR APPROACH

The phenomenological-operator approach is a technique
equivalent to the operator sum representation but taking
explicitly into account the state of the environment together
with those of the open quantum system. From the phenomeno-
logical operators we automatically derive the Kraus operators
and vice versa.

A. Phase-damping channel

First, let us consider the coupling of the spin-1/2 states
to a surrounding phase-damping environment, which can be
described by the map

|0〉|E〉 → |0〉T̂ (p)
00 |E〉 (34a)

|1〉|E〉 → |1〉T̂ (p)
11 |E〉 + |1〉T̂ (p)

10 |E〉, (34b)

where |E〉 denotes the initial state of the environment and
the operators T̂ , acting on this state, account for the system-
environment coupling. Since a phase-damping channel does
not exchange energy with the system, we obviously have
the identity operator T̂ (p)

00 = 1. Regarding the excited initial
state |1〉, it will remain as such, with or without an additional
phase shift relative to the ground state |0〉, due to the action
of the environment. In the latter case, we must impose (after
the computed master equation (21) with �a = 0), the decay-
ing probability T̂ (p)

11 = e−�pt1, with the above defined rate
�p = 2Re[Fp + Gp], remembering that the time-dependent
frequency does not lead to a time-dependent relation rate
�p. In the former case we have T̂ (p)

10 = ∑
j fj (t)(a†

j + aj ),
with fj (t) giving the probability amplitude for environment,
described by the creation and annihilation operators a

†
j and aj ,

respectively, to induce a phase shift on the excited state of the
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system. Assuming that the state of the environment is modified
such that 〈E |T̂ (p)

10 |E〉 = 0, we obtain, after normalization
of the state vector |1〉|E〉, the relation

∑
j |fj (t)|2 = 1 − e−2�pt .

It is straightforward to verify that the map in Eqs. (34)
leads exactly to the density operator (28) derived for the
phase-damping process.

B. Amplitude-damping channel

Before addressing the nonzero temperature case, we first
consider the coupling of the spin-1/2 states to an amplitude-
damping environment at T = 0 K, described by the map

|0〉|E〉 → |0〉T̂ (a)
00 |E〉,

|1〉|E〉 → |1〉T̂ (a)
11 |E〉 + |0〉T̂ (a)

10 |E〉.
With the environment in the vacuum state we obviously
have the identity operator T̂ (a)

00 = 1, and after the com-
puted master equation (21) with �p = 0, we must impose
that T̂ (a)

11 = exp[−2
∫ t

0 Re{Fa(τ ) + Ga(τ )}dτ ]1. For a time-

independent system we obtain the usual solution T̂ (a)
11 =

e−�at1, where �a = 2Re[Fa + Ga]. For the operator T̂ (a)
10

associated with the excitation of one of the infinite en-
vironment modes, we have T̂ (a)

10 = ∑
j gj (t)a†

j , with gj (t)
giving the probability amplitude for the excitation of the j th
oscillator mode of the environment. After normalization of the
wave vector |1〉|E〉, we obtain

∑
j |gj (t)|2 = 1 − e−2�at .

By turning our attention to the case of a nonzero temperature
environment, we can write the extended map

|0〉|E〉 → |0〉T̂ (a)
00 |E〉 + |1〉T̂ (a)

01 |E〉,
|1〉|E〉 → |1〉T̂ (a)

11 |E〉 + |0〉T̂ (a)
10 |E〉,

where, now, instead of the identity operator T̂ (a)
00 = 1, we must

account for the probability of excitation of the system due
to the environment background photons. Since the operator
T̂ (a)

00 is associated with an event at which the environment
is not excited, it must remain proportional to the identity.
Moreover, as far as the probability for the system to remain
in the ground state must decrease in a rate proportional
to the environment temperature, we naturally impose that
T̂ (a)

00 =
√

1 − (1 − e−2�at )γT 1. From the above assumption
for T̂ (a)

00 we straightforwardly obtain for T̂ (a)
01 = ∑

j hj (t)aj ,

the relation
∑

j |hj (t)|2 =
√

(1 − e−2�at )γT , with gj (t) giv-
ing the probability amplitude for the system to be excited
by the j th oscillator mode of the environment. Regarding the
operator T̂11, we know that it must be also proportional to
the identity since the environment must remain unaffected.
However, for the case of nonzero temperature, the probability
for the system to remain in the excited state must decrease
in a rate smaller than the exponential decay factor e−2�at/2

coming from an environment at absolute zero. Moreover,
the equilibrium probability must depend on the thermal
average photon number 〈na〉, such that we impose T̂ (a)

11 =√
e−2�att + (1 − e−2�att )γT 1. Consequently, for the comple-

mentary operator T̂ (a)
10 = ∑

j h̃j (t)a†
j we obtain

∑
j |h̃j (t)|2 =√

(1 − e−γ t )(1 − γT ), hj (t) being the probability amplitude

for the excitation of the j th oscillator mode of the environment
at nonzero temperature.

VII. COHERENCE CONTROL

Reference [16] proposed a method to circumvent the
decoherence process of a nonstationary system under an
amplitude-damping channel. In that work, the authors fo-
cused on the state protection of a cavity mode whose
modulation of the frequency ω(t) was engineered through
the atom-field interaction. The master equation approach
was used to investigate the dynamics of the cavity
mode, assuming its interaction with the environment to be
proportional to

ξ 2

[ω(t) − ν]2 + ξ 2
, (36)

ν being the continuous frequency of the environment and
the parameter ξ accounting for the Lorentzian sharpness of
the coupling around the frequency ω(t). Thus the Lorentzian
coupling, which is justified in the system-environment weak-
coupling regime, “follows” the evolution of the frequency of
the system, as expected under the sudden coupling approxi-
mation.

The modulation of the frequency was engineered to be of
the form

ω(t) = ω0 + χ sin ζ t, (37)

with ω0 being the static frequency of the cavity mode. The con-
dition ζ/ω0 � 1, easily achieved within typical experimental
conditions as in NMR and cavity quantum electrodynamics,
define the adiabatic modulation of the frequency. Out of this
regime, when ζ >∼ ω0 we reach the regime of the Casimir-
like effect [22], where the decoherence mechanism of the
cavity mode is completely distinct from the one discussed
here.

Within the condition ζ/ω0 � 1, we show that the control
of the decoherence process is achieved by means of the two
parameters,

η ≡ �0

ζ
, (38)

ε ≡ ξ

χ
∼ �0

χ
, (39)

where �0 is the natural decay rate of the cavity mode and
we have assumed, as it is expected, that ξ ∼ �0. It was
demonstrated in Ref. [16] that a significant attenuation of the
decoherence occurs when both of these parameters are smaller
than unit. This is seen from the derived time-dependent decay
rate of the cavity mode, which gets weaker as one or both
parameters η and ε decreases. The physical reason for this
can be seen as follows: The characteristic time interval for
an appreciable action of the environment over the stationary
system is around �−1

0 . However, when the frequency of the
system changes continuously, its rate of variation (proportional
to ζ ) plays a crucial role in the effective coupling between the
system and the environment. Remembering that this coupling
occurs around ω(t), in a region defined by the Lorentzian
sharpness ξ [see Eq. (36)], a rate of variation ζ significantly

062336-8



EQUIVALENCE BETWEEN REDFIELD- AND MASTER- . . . PHYSICAL REVIEW A 83, 062336 (2011)

larger than �0, such that η � 1, makes an effective action of
the environment over the system difficult since their interaction
time is reduced proportionally to η . Otherwise, when ζ

is smaller than �0, an effective action of the environment
takes place, inducing the relaxation of the system before a
significant change of its frequency. In its turn, the role of
the amplitude of the oscillation χ is to trigger the action
of the rate of variation ζ . In fact, when the amplitude χ is
smaller than the Lorentzian sharpness ξ , the nonstationary
system does not leave the region (in frequency space) of
its effective coupling with the environment, thus decaying
as a stationary system, whatever the value of ζ . However,
when χ is larger than ξ , the effective system-environment
coupling moves to different regions of the spectrum, thus
triggering the action of the rate of variation ζ as described
above [16].

We now apply the same idea to the case of a spin-1/2 system
considering the Redfield formalism to treat the decoherence
process. The same conclusions of Ref. [16] are obtained
here, but without imposing any specific form for the system-
environment coupling, as in Eq. (36), since a Lorentzian
time-dependent effective decay rate for the spin-1/2 system
automatically appears from the Redfield formalism applied
to NMR systems. As far as we do not have to define the
function in Eq. (36), we stress that the parameter ε, which
takes place explicitly in the effective time-dependent decay
rate of the cavity mode in Ref. [16], does not appear in the
present spin-1/2 case. Instead, we must use the ratio χ/ζ , also
defined in Ref. [16], weighting the contributions of parameters
η and ε.

The spin-1/2 system, interacting with the amplitude-
damping environment, is described by the Hamilto-
nian HS(t) = ωL(t)Iz, with ωL(t) being modulated as in
Eq. (37). We note that such a frequency modulation bears
no connection with how the protocol works, considering the
solution of the differential equation governing the evolution of
the longitudinal magnetization [see Eq. (16a)], which decays
with the effective rate given by

D(t) =
∫ t

0
dτ

1

T1 (τ )
,

T1(t) defined in Eq. (17a). Therefore, to circumvent deco-
herence we have to make T1(t) greater than its static value
T 0

1 (equivalent to �−1
0 in the previous case of a damped

cavity mode). This fact can also be directly seen from the
operators in Eqs. (30), which reduces to the identity when
a(t) → 0, i.e., when D(t) → 0. By considering an isotropic
and homogeneous environment, Eqs. (14), (17a), and (37) lead
to the following expression for D

D(τ ) = 2
(
γnλT 0

1

)2
∫ τ

0
dτ2

∫ τ2

0
dτ1 exp

(
−T 0

1 τ1

τ0

)

× cos

[
T 0

1 ωLτ1 + 2
χ

ζ
sin2

(
2
τ1

η

)]
, (40)

where we have performed the change of variable τ = t/T 0
1

and η = (T 0
1 ζ )−1 as in Eq. (38). The gyromagnetic factor γn

and the lattice stochastic fluctuation in q direction λ ≡ λq is
defined in Eq. (12).

0 0.5 1 1.5 2 2.5 3
0
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0.4

0.6
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(τ
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χ = 0

η = 0.1, χ/ζ = 1

η = 0.1, χ/ζ = 10

Γ
0

FIG. 1. (Color online) Plot of the decay function a(t) defined
in Eq. (33) for some values of the control parameters η and χ/ζ .
The black solid line represents the uncontrolled case, where χ = 0.
The other two shows the effective control of the relaxation process
due to the modulation of the system frequency. The vertical green
dash-dotted line marks the relaxation time for the static (uncontrolled)
case.

In Fig. 1 we plot the function a(τ ) = 1 − e−D(τ ) against
the dimensionless time τ , for some values of η and the
ratio χ/ζ . As can be seen, the relaxation decay rate for the
stationary case χ = 0, the black solid curve, is significantly
attenuated when the control parameter η decreases and/or the
ratio χ/ζ increases. The red-dashed and the blue-dotted curves
correspond to the pairs of values (η = 0.1,χ/ζ = 1) and
(η = 0.1,χ/ζ = 10), respectively. The curves corresponding
to the pairs (η = 0.01,χ/ζ = 1) and (η = 0.01,χ/ζ = 10) are
very close to the red dashed and blue dotted lines, respectively,
and, therefore, they are not shown in the figure. From this fact
we conclude that the role of parameter χ (the amplitude of the
modulation) in the decoherence control is more effective than
the role played by ζ (the modulation frequency). This result
is in perfect agreement with the one obtained in Ref. [16].
An important observation is that this protocol is completely
independent of the temperature of the environment, as well as
of the initial state of the system.

A possible implementation of the proposed scheme could
be realized in an NMR experiment as discussed below. In
addition to the static Zeeman field B0 which defined the Larmor
frequency ωL = γnB0, another parallel time-dependent field
B(t) is applied to modulate the frequency of the spin-1/2
system. This additional field may be furnished by a Helmholtz
like coil surrounding the probe, traversed by a tailored current
which provides the time-dependent component γnB(t) of the
frequency. By imposing the time dependence of the auxiliary
field to be of the form

γnB(t) = χ sin (ζ t) ,

we obtain the frequency modulation given by Eq. (37). To
circumvent decoherence we must have η � 1 [see Eq. (38)
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and Fig. 1], which implies that the modulation frequency must
obeys

ζ � (
T 0

1

)−1
. (41)

This relation is in agreement with the adiabatic condition, since
we have, in general, T1 � ω−1

L . The other condition for the
protocol to work is that the amplitude χ of the oscillation of the
system frequency must be greater than the spectral sharpness
of the coupling which, as said before, is expect to be of the
order of (T 0

1 )−1, such that

χ � (
T 0

1

)−1
. (42)

Besides the conditions (41) and (42), the magnetic field B(t)
must also obey the adiabatic condition [see the equation below
Eq. (37)], which leads to |B(t)| � |B0|. This condition can be
easily attained in a typical NMR experiment. Considering a
hydrogen nuclei at B0 ∼ 10 T (ωL � 400 MHz) and T1 ∼ 1 s,
we obtain, together with condition (41), the following range
for the magnitude of the control field B(t) for the protocol to
work, i.e., (γnT

0
1 )−1 � |B(t)| � |B0|:

10−6 T � |B(t)| � 10 T.

Note that the NMR setup is appropriate for this kind of
experiment due to the fact that the relaxation time is relatively
large compared with other platforms. This fact permits us to
realize the experiment in a high-temperature environment. It is
also important to observe that, despite the fact that in the NMR
experiments both amplitude and phase damping are present,
there exist experiments where only the amplitude damping is
probed, so they can be used to verify our proposals. Therefore,
we can control only the relaxation time T1 but not T2.

VIII. FINAL DISCUSSIONS

We have presented here a unified view of the semiclassical
Redfield formalism and the quantum master equation approach
for a time-dependent spin system. Focusing on a spin-1/2
system, we showed the equivalence between both approaches
through the fact that they lead to the same Bloch equations
and, consequently, to the same characteristic longitudinal T1

and transversal T2 relaxations times. We verified that only T1

is affected by the time dependency of the system frequency
and built the Kraus and the phenomenological operators
for the spin-1/2 system under both the amplitude- and the
phase-damping channels assumed within the master equation
approach.

As an application, we revisited a protocol to circumvent
relaxation and, consequently, the coherence control of a

nonstationary system [16]. In contrast to the protocol in
Ref. [16], in the present case, we do not imposed a functional
form for the system-environment coupling, which emerges
naturally from the Redfield semiclassical formalism. The
coherence control of the spin-1/2 system was demonstrated by
enlarging the longitudinal relaxation time through the modula-
tion of the system frequency. We stress that the protocol in Ref.
[16], translated here for the spin-1/2 system, differs from the
dynamical decoupling methods presented in the literature [15],
where one must interfere in the system in time scales less than
the bath correlation time. The frequency modulation technique
takes advantage of the pre-existing natural frequency of the
system, adding to it a small amplitude to achieve such time
scales. We also discussed the implementation of this protocol
to control the longitudinal relaxation time in the NMR context.

It is worth stressing that the development present here
applies for Markovian environments and adiabatic modulation
of the required time-dependent frequency. Therefore, an
extension of the present development for non-Markovian en-
vironments as well as for interacting time-dependent systems
would be desirable, since non-Markovian environments is
present in many promising platforms for quantum-information
processing such as photonic crystals [23]. Moreover, time-
dependent interacting system would considerably enlarge the
perspective of the present work for quantum-information
purposes.

Although the entanglement is not usually present in the
NMR system [24], there exists classical and quantum corre-
lations that could be useful for some quantum-information
protocols [25]. The decoherence control exposed here can
then be directly applied to protect these correlations from the
action of the amplitude-damping channel. Finally, we stress
that the theory presented here is completely general and can
be applied to different platforms for quantum-information
processing such as cavity quantum electrodynamics, trapped
ions, quantum dots, and so on. However, for this statement
to be valid we must assume that all the rotations needed
to implement quantum-information processing occur at the
beginning or at the end of the experiment; in between them,
the system evolves only under the action of the environments.
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